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0. Prerequisites. In this paper* we use the terminology and notation
of [6] (with slight modifications). In particular, for any abstract algebra,
i. e. a set A with a family of fundamental finitary operations, we denote
by A™ the family of all n-ary algebraic operations. The letters f and g
always denote algebraic operations in 4.

For simplicity sake we say that I isgan independent set instead of I
is a set of independent elements (in the sense of [5] and [6]). The family
of all independent sets has finite character, i. e. I is independent whenever
each finite subset of I is independent.

For any non-void set H<= A we denote by C(F) the subalgebra gen-
erated by E, C(0) denoting the set of algebraic constants (i. e. the values of
the constant algebraic operations). The operation C has finite character, i.e.

(F) C(E) = | JCO(F), where F runs over the family of all finite subsets
of K.

We say that the algebra is finitely [independently] generated if it
is generated by a certain finite [independent] subset.

We use the symbol = in the sense “identically equal in 47, e. g.
f(@,, 2,) = g(x,;, x;) is to be understood as f(z,, ;) = g(x,, z;) for every
Ty, Ty, TzeA. One-element set {a} is written simply as a.

1. Problem and results. The following theorem about exchange of
independent sets is true for all algebras ([6], p. 58, theorem 2.4 (ii)):
(0) Let P, Q and R be subsets of an algebra. If

(1) P U @ is independent, (2) PAQ=0,
(3) R is independent, (4) C(R)=C(Q),

* The results of which have been presented without proofs by E. Marczewski
in his lecture Independence in abstract algebras. Result and problems to the Confer-
ence on General Algebra, held in Warsaw, September 7-11, 1964 (see this volume,
p. 169-188).
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then
(5) P o R is independent.

It might seem at first glance that relation (4) could be replaced by
a weaker one:

(4*) R < CQ).

Since, as we shall see later on, this is not generally true, we say that
an algebra satisfies the condition of exchange of independent sets (EIS)
whenever for any subsets P, @ and R of it, the relations (1), (2), (3) and
(4*%) imply (5). The finite character of the operation C together with the
finite character of the family of independent sets imply that in definition
~of EIS it is enough to consider ouly finite P, Q and R.

This paper is a contribution to the general problem which algebras
satisfy the condition EIS. It turns out that Boolean algebras (see Section 3)
and, more generally, Post algebras (Traczyk [11]), vector spaces and, more
generally, v*-algebras (Section 4), and Abelian groups, and, more gener ally,
algebras called here separable variables algebras (Section 5) satisfy EIS.

Nevertheless, there are algebras which do not satisfy EIS. The first
example of this kind, namely & non-Abelian infinite group, in which
EIS fails, is due to A. Hulanicki and S. Swierczkowski (1960). It is given
at the end of this paper. We give also a simpler example of a group not
satisfying EIS. This group is finite and has the minimal possible num-
ber of elements which is 729 (Section 6).

A recent paper of Plonka [11] presents different classes of algebrag
satisfying EIS and a seven-element algebra not satisfying it.

Our theorem concerning v*-algebras is a corollary of a theorem about
the generalized closure operators having finite character and the Steinitz
exchange property (Section 4). Thus, that proposition belongs to the theory
of abstract linear independence (and, perhaps, is not new).

2. Exchange in algebras. Let us begin by the remark that theorem (0)
has been strengthened recently (and at the same time generalized for
algebras with infinitary operations) by Schmidt [12] as follows:

(i) Let (Pi)ir be an indexed family of pairwise disjoint independent

subsets of an algebra A, (R)).r another family of disjoint independent sub-
sets of A with C(Py) = C(Ry) for teT, and let

P = UP; and = UR:.

tel teT

Then the independence of P implies the indepe-ndence. of R.

Since the union of every increasing transfinite sequence of independ-
ent sets is independent (in finitary algebras), we obtain by Kuratowski-
-Zorn lemma:
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(ii) For any (finitary) algebra satisfying EIS we may replace in (i)
the relation C(R;) = C(Py) by Ry < C(Py).

We pass to other facts on EIS which will be used in the final section.

First let us recall that if B is a subalgebra of an algebra A and if
a subset I of B is independent in A, then [ is independent in B. The con-
verse is not true ([6], p. 56), but it is easy to see that if a finite subset
of A is independent in every finitely generated subalgebra including
it, then it is independent in A. By this remark, it is not difficult to prove

(iii) If every finitely generated subalgebra satisfies EIS, then the whole
algebra satisfies EIS.

The following propositions concerning independence will be useful
in the proof of (iv) and later:

Al. If A is 'a finite algebra generated by an independent set I,
then any independent set in A has cardinal not greater than || and every
independent set of cardinality [I| generates A.

This is a direct consequence of a known theorem (Swierczkowski
{117, p. 749, Theorem 1). ' ,

A2. If Bis a subalgebra of 4 and I, J < B, |J| < |I|, I is independent
in 4, and J independent in B, then J is independent in A.

Let a,, ..., a, be distinct elements of J. Since |I| > n, there exist
distinct elements by, ..., 0, of I. If

f(@ryeeey @) = g(ay, ..., an),

then, by the independence of {a,, ..., a,} in B,

J(byyeeeybu) = g(b1y .-y ba),
whence f and g are identical in A by the independence of {b,, ..., bn}
in A.

(iv) If each subalgebra generated by a finite independent set is finite
and satisfies EIS, then the whole algebra satisfies EIS.

Take any finite sets P, ¢ and R satisfying (1), (2), (3) and (4*). On
account of (4*), P v R is contained in the subalgebra B = C(P v Q)
which is finite and satisfies EIS by the assumption. Hence it follows -
from (1), (2), (3) and (4*) that P v R is independent in B and consequently,
by Al, we have |P v R| < |P v @| and, by A2, P o R is independent
in 4, q.e.d.

3. Exchange in Boolean algebras.

THEOREM. Boolean algebras satisfy the condition of exchange of inde-
pendent sets (EIS) (1).

(*) This theorem is contained in an analogous result concerning Post algebras
(Traczyk [14]).
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Proof. Let B = (B; v, ~,’,0,1) be a Boolean algebra. For any
element aeB we put

r

a’® = a and a! = a,

and we call an atom of the finite set a,, ..., a,eB (where a,, ..., a, are
obviously distinet) every element of the form

@'~ a’ A~ e  where i =0,1for k=1,...,n

It is known that I = B is an independent set if and only if every
atom of every finite subset of I is different from 0 (see [5]).

In order to prove the theorem we suppose (1), (2), (3) and (4*) and
we consider each of the atoms @ of any finite non void set # =« P w R.

It F<PorFc R, then a # 0 because of (1) or (3). Thus we may
suppose that @ = b ~ ¢, where b is an atom of a finite subset 8 of P and ¢
an atom of a finite subset T of R. In view of (3), we have

0 #ceC(Q).

It is known that in Boolean algebras every element of C(E) different
from 0 is the union of certain atoms of a certain finite subset of .

Consequently, there is an atom d of a finite subset 7 of Q such that
d = ¢. In view of (2), the sets S and 7' are disjoint, whence, b ~ d is an
atom of § o T*. Hence, by (1),

0 £bAndobAec=a.
Thus we obtain (5) and the theorem is proved.

4. Exchange of O-independent sets. Exchange in v*-algebras. A gene-
ralized closure operator (' in a set A (i. e. an extensive, monotone and
idempotent mapping of the family P(A) of all subsets of 4 into P(4);
cf. e. g. Birkhoff [1], p. 49) is said to have finite character, if it satisfies
condition (F) (see Prerequisites).

C has the exchange property (called also Stenitz property), whenever

(E) if q¢C(F) and qeC(E < p), then peC(E U q).

A set I < 4 is called C-independent, whenever p¢C(I\p) for every
pel (see e.g. Bleicher-Marczewski [2] and the papers quoted there).

Now we replace the independence by the C-independence in the con-
dition EIS, saying that C satisfies the condition of exchange of C-inde-
pendent sets (ECIS), whenever the conditions

(19 P o @ is a C-independent set, (2) P~AQ=0,
(3% R is a C-independent set, (4*) T c<C(Q)
imply

(5°) P o R is a C-independent set.
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THEOREM. If a generalized closure operator C has finite character (F)
and Stenitz exchange property (E), then C satisfies the condition of exchange
of C-independent sets (ECIS).

Proof. Assume (1°), (2), (3%, (4*) and suppose, that (5°) is not true.
Thus there exists an element aeP o R such that ae<C(P o R\a),

In virtue of (F) there exists a minimal finite set I such that
FcPoRN\a and aeC(F). We have F = P, R,, where P, =F A~ P
and Ry = F ~ R.

(a) aeP and (B) aeR\P.
If (a), then in view of (4%)
aeC(P v R\a) < C((P\a) ) R) = (]((P\a) v Q),

which is impossible by virtue of (1°) and (2).
If (p), then, for each beP,, by the definition of ¥, we have

acC(F) and a¢C(EF\D),
whence, because of (E), (f), (4*) and (2),
beC(FNb u a) < C((Pob)  B) = O((PNb) w R) < O((P\b) w Q)
= 0(P v Q\b)

which is impossible, in virtue of (1°). Hence, P, = @, and consequently,
by the definition of ¥ and R,,

aeC(F) = C(Ry) = C(R\a),

which contradicts (3°).

Thus condition (5) must be satisfied and the theorem is proved.

For every algebra A the operation ¢ (where C(FE) denotes the sub-
algebra generated by F) is a generalized closure operator of finite cha-
racter. A is called a v*-algebra if 1° independence and C-independence
coincide for it and 2° C has the exchange property (E). Thus, Theorem
implies

COROLLARY. Hvery v*-algebra satisfies the condition of exchange of
tndependert sets (EIS).

Let us recall that v*-algebras are a generalization of vector spaces
(see Narkiewicz [8] and Urbanik [12]).

Examples due to J. Plonka show that each of the conditions (F) and
(E) in Theorem are essential.

5. Exchange in separable variables algebras and in Abelian groups.
We say that in an algebra A the variables can be separated or that A is
a separable variable algebra if for each pair of different operations f, geA™
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(where m =1,2,...) and each m with 1 <m < n there are fredt™
and g*eA™ ™ gsuch that the equations

J(@1y coes @) = g(®yyovey@n) and  f*(@yyc00y @) = §*(Tmpry <o vy Tn)
are equivalent.

THEOREM. A separable variable algebra satisfies the condition of ex-
change of independent sets (EIS).

Proof. Suppose (1), (2), (3) and (4*) (see definition of EIS).

Let {Dys «eey Prf © Py {15 5005 tn} c R, and

(%) TPy ovo 5. Pps Py owvs Ta) == 001y vens Py ¥as veeyTn)e

In order to show (5) we have to prove that f = g.
Since, by hypothesis, the variables can be sepatated, there are f*
and ¢* such that the equations

J(@1y ooy @y Y1y ooy Yn) = 9(@1y ooy @iy Yay o ovy Yn)
and -
P @1y ooy @) = 6* W15 +eny Un)
are equivalent.
‘Heénce, () implies f*(P1y ..oy Pr) = g5 (F1y oevy n)-
By (4*), there exists g, and ¢,,..., gn€@ such that

) 9*(7'1:"-97'7:) = 0,(q1y -+ey qm),
whence

ipy, ooy Pr) = g*(Ql’ coey @m)-

In view of (1) and (2), {p,,..., Px} and {¢;, ..., g} are disjoint sub-
sets of an independent set P o @, whence (on account of proposition
(iv) of [7]), f* and g, are constant. Their common value is of course an
algebraic constant ¢. Hence, by (),

g*(rlf ey 'rn) =C,
and, by (3),
9 Y1y .-y Un) = c.
Finally, we have

f*(a"'u veey Xg) = g*(yu ooy Yn)y

whence, by definition of f* and ¢* we get f =g, q. e. d.

Every group G with the operations z-y and #~' will be regarded as
the algebra (@, -, 7).

Since, obviously, in Abelian groups the variables can be separated
we get

COROLLARY. Abelian groups satisfy the condition of exchange of inde-
pendent sets (EIS).
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Let us remark that two conditions obtained by replacing in EIS
independence by linear independence in the sense of [3], p. 37, or by
linear independence in the sense of [4], p. 123, are also satisfied in every
Abelian group.

6. Exchange in non-Abelian groups. In this section we consider
condition EIS for some non-Abelian groups. We note that a group is
independently generated if and only if it is a reduced free group in a va-
riety (i. e. an equational class) of groups (see [9] and [10]). According
to our general-algebraic notation, the subgroup generated by a subset X
of a group is denoted by C(E).

THEOREM 1. Hvery finite group independently generated by one or
two elements satisfies the condition EIS.

(At the end of this section we add an example showing that the as-
sumption of finiteness is essential.)

Proof. Let F be a finite group independently generated by 2 elements
(for cyeclic groups the result is obvious). Since F is finite, there is an n > 0
such that 2" = 1 holds in F. Let » be the least of such exponents. By
Al any independent set in F' has at most 2 elements. Thus we may as-
sume that P = {a} and @ = {b} and the orders of a and b are equal to =.
Now if R « C(Q) and R is independent, then R = {¢*} and (n, k) = 1.
Thus C(R) = C(Q) and by (o) (see p. 203) the result follows.

THEOREM 2. Every group of order < 729 satisfies the condition EIS
except one whose order is 729 and which has 3 independent generators.

The proof will follow in several lemmas.

Proposition (iv) implies the following

LeMMA 1. If all independently generated groups of order < 729 satisfy
EIS, then so does every group of order < 729 and any group of order 729
which is not independently generated.

Now for any group G we put
G = C{[z, y]: z, y <G},
G* = O{[x, y]: el y <G},

where [z, y] = ™'y 2y.

The following known propositions will be applied

B1(2). If F is a group independently generated by % elements, then
F|F' is a direct product of k cyclic group of equal orders, say n, and if n
is finite, then the relation #™ =1 holds in F.

(?) See B. H. Neumann [9], theorem 19.5. Recall that the term “reduced free”
used in [9] coincides with our “independently generated”.

Colloquium Mathematicum XIV 14
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B2 (%). If F is independently generated by k elements a,, ..., a; and
|F'[F?| 31, then F'[F? is a direct product of k(k—1) /2 cyclic groups
of equal orders generated by the cosets [a;, a,]F? where 1 <i < ik

Proof. Let ¢; = [a;, a;]. We note that, since

vy, z]e[z, 2][y, 2] 2, [z, y2]le[=, y][z, 2] F?,
[w_lyy]f[a"y y]_ley [m7y-l]€[$7y]—lF2;

[wyy] == [y’m]_-17
we have
B = (et 859 =152, cony Byt < jHE2.

Thus the cosets ¢;F? generate F'|Fo2.
Clearly, F'[F? is Abelian. Suppose that for some integers n; we have

(0) I_[ cifi e F?,
Ii<i<k

For any pair of indices ¢ < j we consider the endomorphism f of P
induced by the mapping a; — a;, a; — a;, a; — 1 for any s # i, j. Then
¢iif = cypf = 1forany pair (#’, j’) # (4, j). Thus the image of the left-hand
side of (o) is cj¥, the right-hand side remaining in F2. Consequently,

cijl e 2,
which proves that F’/F? is the direct product of the cyclic groups generated
by the cosets c;F2.

For showing that these cyclic groups have equal orders it is enough
to apply permutations of the set a,,..., a; interchanging the ¢;; which
clearly extend to automorphisms of F under which #’ and F? are in-
variant and thus they interchange the cosets ¢;F2. This concludes the
proof of B2. -

By Theorem 1 and Lemma 1, it is enough to prove Theorem 2 for
groups of order < 729 which are independently generated by k > 3 ge-
nerators. For every such group F there is a minimal » such that 2™ = 1
holds in F. If n = 2, then the group is Abelian and as such satisfies EIS
(see Section 5). Since, by B1,

(*) |F[F'| = n¥,
all we have to consider are the cases when

) n* <729, k>3, =n>3.

(*) This proposition while unpublished up to now is well known to the specialists.
Nevertheless for reader’s convenience we present a proof here. Mrs Hanna Neumann
has kindly informed us that this proposition was proved in 1963 by Peter M. Neumann.
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The following relations will be in permanent use:
() 729 > |F| = |F|F'|-|F'] and |F'| = |F'[F?]-|F?].

LEMMA 2. For any solution (k,n) of inequalities (}) other than (3.3)
and (3.4) the group F is Abelian.

Proof. All the solutions of (}) are in the following table:
k| n
| , 6, 7,8 9

L]

4, b
y 4 b

J

S Ot = W
W W W W

Consider the case k¥ = 3, n > 6, first. If F’ =+ 1, then, putting [F]
= 8, by (%) and (%¥) we have n3-s < 729 and s | »™ for an m > 1 (since F
is an n-group, |F| must divide a power of »). Hence, s =3 or s = 2.
This means that F” is a cyclic group of order 2 or 3. Let a, b, ¢ be inde-
pendent generators of F. If for a pair of these generators, say for a and b,
we have [a,b] =1, then [z,y] =1 i.e. F is Abelian, contrary to the
assumption F’' # 1. Now, since s < 4, at least two of the commutators
[a, ], [b,c], [c,a]eF” must be equal. Suppose [a,b] = [b,c]. Then
[z,y] = [y, 2]. Put 2z =1 and again we get [2,y] =1 contrary to the
assumption F’ £ 1.

Now for any of the remaining cases n is a power of a prime, which,
since F' is finite, implies that F is nilpotent. Therefore in order to prove
that for any pair (k, ») other than (3.3) and (3.4) the group F is Abelian,
it is sufficient to show that F' = F2, i.e. |F'|/F? = 1. We have.

(6) 729 = |F| = |F[F'|-|F' [F?|-|F*|.

Hence, if ¥ >3 and F'/F? # 1, then, by B2, F'[F? is the direct
product of at least (i) = 6 copies of a cyclic group. That is |F'[F?| > 26,
On the other hand, by B1, |F/F’| = n* > 3* whence, by (%), 729 > 3428,
which is false. In the case of & = 3, the only value of » which is left to
be considered is » = 5. Then, since F is a b-group, F'[F? is a 5-group,
whence, by B2, if non-trivial, it is the direct product of 3 copies of a eyclic
group of order 5, so, by (%) nad B1, 729 > 53-53, which again is false,
q. e. d.

By Lemma 2 we know that EIS holds in all groups of order < 729
except possibly the groups independently generated by 3 elements satis-
fying either #* =1 or z* = 1.

Now we are going to show that for each of these identities there is
precisely one non-Abelian group of that kind. One of them has 512 ele-

ments and satisfies condition EIS while the other has 729 elements and
does not satisfy EIS.
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LeMMA 3. If F has 3 independent generators, |F| < 729 and F satisfies
the relation

(a) 2t =1,
then it satisfies also

(b)y - [[991 ?]],ZI =1,
(c) [,y =1
and |F| < 512.

Proof. If F is Abelian, then (b) and (c¢) are obvious, and |F| = 43 <
< 512. Suppose it is non-Abelian. Then, as a finite 2-group, it is nilpotent
and so F'/F? # 1. By B2 since also F'/F? is a 2-group,

(ae |F'[F?| = (2™)® for an integer m > 1.

By B1, F|/F" = 43. Therefore, in virtue of (}¥), we must have m =1
and [F?| = 1. This proves that (b) is satisfied. By B2, F'/F? is the direct
sum of three cyclic groups, which in virtue of (}i) with m = 1, shows
that F’/F?is the direct sum of three cyclic groups of order 2. This combined
with the fact that F* = 1, shows that any element of ¥’ is of order 2,
i. e. that (c¢) holds. Clearly, by (%), |F| = 43-23 = 512.

LEMMA 4. A group F with 3 independent generators which satisfies
the relations (a), (b) and (c) of Lemma 3 has property EIS.

Proof. F is finite (it has < 43-23 = 512 elements). Therefore, by Al,
the maximal cardinal of a set of independent elements is 3. If || = 1,
then EIS is proved as in Lemma 2. Suppose |Q| = 2 and |P| = 1 and let
{a,b} =@, {¢} =P. By Al, a, b, ¢ are independent generators of F.
Let R < C{a,b} be a set of independent elements. If |R| = 2 = |Q),
then, by Al, C(Q) = C(R), whence, by (0), R U P is independent. Let
then B = {d} < C{a, b}. Relations (a), (b), (¢) imply that

d=ab[a,b], where 0<a,f<3,0<e<]1,

and, since d is independent, the order of it must be 4. As a consequence
of (b) we have in F

[2",y] = [@,¥"] = [2, y]" for any n.

Therefore, using (c), we see that, for any xeF, 2> commutes with
all elements of F. Hence, since d has order 4, either a or § must be odd,
because if both a and B were even, then

a* = a’ba’t’[a, b]? = a®b* =1,

since a” and b* commute. Let then a be odd and let « 4 = 1(mod4).
Then the endomorphism of F induced by the mapping a — a*, b —1,
¢ — ¢ maps d onto a and ¢ onto ¢, which proves that the set P v R = {d, ¢}
is independent, which was to be proved.
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LEMMA b. If F has three independent generators, is non Abelian,
salisfies

(a) ¥ =1

and |F| < 729, then I' is the reduced free group of three generators of the
variety of groups given by relations (a) and

(b) [z, ¥1, 2] = 1.
Moreover, |F| = 729.

Proof. Let P be the direct product of two eyclic groups of order 3,
i. e. the group of pairs (s, t), where s, ¢ are integers and s, ¢ = 0,12,
with the coordinatewise addition mod3. Let f be the automorphism of P
defined by

(s, 0)f = (s, 8+1).

Clearly, (s,?)f* = (s,1). Let G be the splitting extension of P by the
automorphism f that is the group of pairs (f”, p) where peP and m = 0,
1,2, the multiplication being defined by

"y o) ("5 @) = (" o+ q).

It is the matter of simple computation to verify that F is non-Abelian
and satisfies (a) and (b) and is generated by two elements (f°, (1, 0))
and (f, (0, 0)). Therefore, the free group F, with three free generators
in the variety of groups given by (a) and (b) is non-Abelian.

_ It follows immediately from (a) and (b) that any element of F, is
representable in the form

a b2 [a, b]4[D, c]% [¢, a]',

where a, b, ¢ are free generators of #, and 0 < a<3,t=1,...,6. So
|Fs] < 3% = 729,

Let F satisfy the conditions of Lemma 5 as F,; does. Since F is finite
and satisfies (a), it is nilpotent. Therefore, if non-Abelian, |F'[F2| 1.
Hence, by Bl and B2 in virtue of (*¥), we have ~

729 > |F| = 3%-3%-|F?| = 729 |F?|,

whence [F?| =1, i.e. (b) holds and |F| = 729. Henee, F = E,,

LeMMA 6. The reduced free groups Fy of three Jree generators a, b, ¢
of the variety given by identities (a) and (b) of Lemma 5 does not satisfy EIS.

In fact, ¥, is non-Abelian, so the element [a,bleC{a, b} is inde-
pendent, since the order of it is 3. But the set {[a, b], ¢} is not independent
because [[a, b],¢] =1 and [@,y] =1 does not hold in F,.

This concludes the proof of Theorem 2.

Now let us show that the assumption of finiteness in Theorem 1
18 essential (by Theorem 2 the other assumption is also essential).
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First we define an auxiliary group @. It is the group of pairs of in-
tegers with group operations defined by

(m, n)(k, 1) = (m+%, (—=1)*n+1),
(m, n)™" = (—m, (—1)"*'n).

It is easy to see that this is the group with two generators a = (1, 0)
and b = (0, 1) and one defining relation

(+) ba - a'b_lo
Of course b" = (0, n) and hence
1) b is of infinite order.

It is also easy to check that the identity

) [2?, 9] =1
holds in G.

ExAMPLE. The reduced free group F of two free generators in the variety
defined by (*F) does mot satisfy EIS.

In fact let « and S be the free generators of F. We put P = q,
Q = B, R = 2 It is clear that conditions (1), (2) and (4) are satisfied.
Since @ satisfies (*7), then the mapping a —a, f —b defines a homo-
morphism of F onto G, whence, by (1), 2 is of infinite order and so (3)
is also true. To show that (5) fails we consider the function f(u, v) = [%? v].
Of course f(«, #2) =1 and it is enough to show that f(z,y) =1 fails in .
But, since @ is in the variety of F, this would follow from f(b,a) #1.
Indeed, by (*) and (*,") we have

f(b, a) = b %% = b a"'ab™? =b"" £~ 1.
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