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The following questions have been asked by Marczewski [2]: 1° how
large can be the number of independent elements (in the sense of [1])
in an n-element abstract algebra with a binary operation and, conversely,
2° how small can be the cardinality of an algebra having a binary
operation in which there exist » independent elements? In order to discuss
these problems we consider the following classes of algebras in which there
exists a binary algebraic operation f depending on both its variables:
the class 27, of all such algebras with algebraic constants, the class 2 of
all such algebras without constants, with symmetrical f, and the class #™
of all such algebras without constants, with unsymmetrical f.

For the classes 4, #° and #™ Section 2 of this paper contains the
complete answer to the second problem (which turns out to be easier
than the first one) and Section 3, based on the preceding one, answers
to the first. A certain result of S. Fajtlowicz concerning the class ™
{Theorem 12) has permited to finish the investigation of the first problem
for that class.

The author is indebted to Professor E. Marczewski and Docent
J. Mycielski for valuable suggestions and comments.

1. At first we shall prove a theorem which will be useful in the fol-
lowing considerations and which is also of some interest in itself.

TueEoREM 1. Let 2 be an algebra, without algebraic constants, having
a binary algebraic operation f(x, y) which depends on both variables and is
symmetrical, i.e. f(x,y) = f(y,x). Then for every m = 3,4,... there
exists an algebraic operation of n variables depending on each one (1).

* The main results of this paper were announced in [4] and presented to the
Conference on General Algebra, held in Warsaw, September 7-11, 1965.
(!) Some generalization of Theorem 1 has been published by Marczewski [3].
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The proof will be preceded by several definitions and lemmas. We
shall write f(x, ¥) = xy and we shall call products all algebraic operations
generated by the operation xy. Every product, even xy, will be written
in parantheses (e. g. instead xy we shall write (zy)). By the n-th complete
product we shall mean the operation P, of 2" variables defined recursively
as follows:

P, (2, 2;) = (2,2,),
Pn+l(a/‘17 ey mz'n.-g-l) = (Pn(mla ceey mzn)Pn(m2n+17 teey m2n+1))-

LeMMA 1. Let P, be a complete product. Suppose © + j are natural
numbers not greater than 2". Then there exists a permutation ¢ of the set
1,2,...,2" such that ¢(i) = j, ¢(j) = @ and Pp(21, ..., 2,0) = Pn(@yq, .-
ceny {I'q(zw)).

Proof. It is enough to apply a suitable number of times the commu-
tativity of (xy).

LEMMA 2. Let F (@, ..., z,) be a product of different variables z,, ..., ©,.
Then there exist indices iy, ..., 1 and complete products Fij(a:.;j, g\, ...,_?/S:'.;"))
such that after substituting @i, in B by these complete products we oblain
a complete product.

For example, the produect ((x,2,)x;) can be completed to a complete
product by substituting x, by (a,2,). The proof is obvious.

LEMMA 3. If there are no constants in 2, then every complete product
depends on all its variables.

Proof. Let s(x,...,@,,) be a complete product, and suppose it
does not depend on a;. It depends on some variables Tipy ey T, (p < 2"),
because otherwise it would be a constant. So we can write

$(@yy ..oy L) = h(wily ceey mip)7
where h is some algebraic operation of algebra 2( depending on each of its

variables. Let us assume that e. g. & < ¢,. Let us denote by ¢ the permuta-
tion given by Lemma 1 which changes the variables x; and @; on their
places. We have

8(Zyy oeey an)
= 8(Tpq1ys +ovy Tor—1ys Liys Loks1ys - -9 Laiy—1)s Thy Lg(iy41)s + o9 Lom) -
But the last equality is an identity, and so we can also write
$(Zpq1ys +- -9 Cp—1y5 Liyy Ty(er1ys =2 Pa(iy—1)r Lhoy Lo(iy41)s « oy Lo

- h(mka m(p(l'z) yeeey xq(i,p)) .
Hence

8(Lyy ..y &yn) = h(xy, L(igyr ++ =3 wtp(ip))7
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where on the right side of the last formula the variable #; does not appear.
Consequently, the complete product s(z,..., ;) does not depend on
@;, which contradicts our assumption.

LeMMA 4. If in algebra U there are mo constants, then every product
tn which all variables are different depends on all its variables.

To prove this, let us assume that the product f(w,, ..., x,) does not
depend on the varlable x; where 1 <k < n. Then

J(@yy ey n) = h(ir’ily °"7wi1,)a

where k = 4; for j = 1, ..., p, and & is an algebraic operation depending
on p variables (p < n). Let us complete the product f according to Lem-
ma 2 to a complete product putting respective products on both sides
of the last equation. We get

!

§=n,

where the wvariable x;, appears on the left side, and does not appear on
the right side. Consequently, the complete product does not depend
on x;, in contradiction to Lemma 3.

Our theorem is an immediate corollary of Lemma 4. The proof of
Theorem 1 would be much simpler if we assumed associativity of f(x
for the operation from this theorem, which was not done.

2. For every abstract algebra 2 = (4; F) we shall denote by a(2)
the number of elements of A, and by «(2l) the greatest possible number of
independent elements in 2 (see [1] and [2]). In the sequel we shall say
shortly “an independent set” instead of “a set of independent elements”.
E. Marczewski and S. Swierczkowski have proved (see [2]) that

® 415 100) = (1)

i=o

where I is an independent subset of 2 having n elements, C(I) denotes
the subalgebra of 20 generated by I, and w; is the number of different
algebraic operations of j variables depending on each its variable. Ob-
viously, the w; are non-negative integers, and ; > 1 because f(z) = @
is an algebraic operation depending on .

Let o be a given class of algebras, and let » be a natural number.
We define the function p(n, #") = mina(2), where this minimum is
taken over all algebras 2 from the class # for which (%) = n. If there is
no such algebra in #°, we put p(n, #’) = 0.

From now on we shall consider only such algebras 2 which have
at least one binary algebraic operation f depending on both variables
and we shall use the symbols 2, #° and #™ defined in'the introduction.
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THEOREM 2. For n>1 we have

() pin, o) = ‘"’“) Lt Y

Proof. By (1) and in view of suppositions on class #, we have

pln, A) >n+(’2’) +1 = (”2“) +1.

Formula (2) will be proved if we show that for each n > 1 there
exists an algebra €, belonging to the class #, for which «(€,) = n and
a(€y) = ¥n(n+1)+1. Let us take an arbitrary set P with |[P| = in(n+
+1)+1, and divide it into three disjoint sets: I (/7] = n), W (IW] = (3))
and ¢ = {c}. In the set P we define the operation f(z,y) as follows:
if a,bel and a # b, then f(a, b) = f(b,a) and f(a, b) arbitrary in W,
and if <{a, b) # <a,, b;>, then f(a, b) # fla,, b,). Otherwise flz,y) =c.
It is easy to see that this algebra satisfies all required postulates.

THEOREM 3. For n > 1 there is

(3) p(n, #°) =2 _1,

Proof. Formula (3) follows at once from Theorem 1 and from
the following theorem of Marczewski [2]: If ¢(2) = n > 1 and for each
J(j=2,3,...) there exists in the algebra 2 a j-ary operation depending
on each variable, then a(2) > 2"—1, where the algebra of non-void
sets with the addition of sets as the fundamental operation is the algebra
realising the equality.

THEOREM 4. For n > 1 holds

(4) p(n, A% = u*.
Proof. From (1) and from the definition of class #™ it follows that
1
p(n, ™) > n+2( ) n-+2 (n2 ) = #,

Let us consider the 2-dimensional diagonal algebra (see [4] and [5])
Dpn = (IxI;0),
where [I| = n and the fundamental operation o is defined by the formula
{a, byole, d) = {a, d).

The algebra D,, is an algebra of the class #* in which a = n?
and ¢ = n (see Theorem 2 of [4]).
Theorem is thus proved.
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The following theorem has been proved in [5]:

%) If g(x,y) is an algebraic operation in A depending on both vari-,
ables and if all algebraic m-ary operations for m <2 and the operations:
g(g(a: Y),2) and y(z,g(y,z)) are of the form 9@y @1,) with suitable i,
ta, then the operation g(x,y) is a diagonal multiplication (i. e. i satisfies’
the postulates 1°, 2° and 3° as given before).

From (x) follows

TueoreM 5. If U is an algebra from the class #", a(8l) = n?, z(&l)_

= n > 2, then the operation f appearing in the definition of H*is a diagonal
multiplication.

Proof. In fact, from (1) and the last formula it follows that every'
algebraic operation geA” (j < 3) must be trivial or it must have the
form f(z;, z;), and so the assumptions of (%) are verified.

- Let us observe that in the case n = 2 Theorem 5 is not true any
longer. Let B = (a,b,ec,d; h(z,y)), where h(a,b) =c, h(b,a)—=d
and h(x,y) = « in all remaining cases. Evidently the set (a, b) is inde-
pendent, B belongs to 4™ but nevertheless h(z,y) is not a diagonal
multiplication. In fact, B has no constants, because for every algebraic
operamon f(@y, ..., @,) of B one has f(x,,...,x) = 2; moreover, there
are no non-trivial operations of one varlable, and the only operations
of two variables, which depend on both variables, are h(z,y) and
h(y, x).

We shall now conipute the values of p(n, o), p(n, %), p(n, A
in the case n = 1.

LemMA 5. Every algebra from the classes considered has at least two
elements.

This is obvious, as in a set of one element it is impossible to define
an operation depending on two variables.

LEMMA 6. In the class ™ there are no 2-element algebras.
In fact, if such an algebra existed, we could denote its elements

by a, b. Because in the considered algebra there are no constants, and the

operation f(x, y) from the definition of the class J#™ is not symmetrical,
only four combinations can hold:

1. f(a, b) = a, f(bya'):b; fla,a) =a f(b’b)=b
2.f(a,b)——a, f(bya) =b, fla,a) =0, f(b,d)=a,
3. fla, b f(bya)=“1 fla,a) =a f(b7b)=a'
4.fa,b):b, f(b,a) =a, fla,a) =0, f(b,b)=a.

In the cases 1 and 4 the function f does not, however, depend on the
second variable, and in remaining cases it does not depend on the first
variable, in contradiction to the definition of the class ™.

Colloquium Mathematicum XIV 13
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THEOREM 6. There 1is

(5) p(la'%-c)=2;
(6) p(1, #°) =2,
(7) p(l, ™ = 3.

Proof. Formula (5) follows from Lemma 5 and from the existence
of the algebra €, = ({a, b}; f(x, ¥), b), where b is constant, and

(8) fla,b) =f(b,a) =0, fl(z,x)=w.

Formula (6) follows from Lemma 5 and from the existence of the
algebra ©, = (a, b; f(x, y)), where

(9) fla,b) =f(b,a) =>b and f(v,x) =
Formula (7) follows from Lemmas 5 and 6 and from the existence
of the algebra U, = (a, b, ¢; f(x, y)), where
fle,y) =2 i @ #y,
fla,a) =0, f(b,b)=¢, [flc,c)=a.

Our theorem is thus proved.
Theorems 2, 3, 4 and 6 give all values of the function p for the classes
Aoy A and A", In particular, we have

(10)

n | 1| 2|3 | 4|5
pn, ) | 2 | 4 | 7 [11] 16
pn,*) | 2 | 3 | 7 |15 | 31
pn, ") | 3 \ 4 | 9 | 16 ’ 25

Let us notice that for » > 5 we have a,lways‘p(n, f,,) < pln, A" <
< p(n, A°).

3. Let " be a class of algebras, and n a natural number. We define
the function q(n, ") as follows:

(11) g(n, #’) = max (),

where this maximum is taken over all algebras 2 e having n elements.
If such an algebra does not exist we put ¢(n, *) = —1.

THEOREM 7. For n > 4 there is

—14+V1+8(n—1)
2 b

(12) q(n, ) = [

where [x] denotes the integral part of x.



NUMBER OF INDEPENDENT ELEMENTS 195

Proof. From Theorem 2 it follows that

—1+1/1+8(n—1)]
> .

The algebra € of the class %, satisfying formulas
—14+V1+8(n—1) ]
=4q,

q(n, ) <[

2

is constructed in the manner that we divide an arbitrary set P with =
elements into four disjoint sets: I (|I| =g¢), W (IWI = (g)), C = {c} (where ¢
is a distinguished element) and R = P\ (I v W v (). In the set P we
define the operation f(x, y) as follows: if @, bel and a # b, then f(a, b)
= f(b, @) and f(a, b)eW, and if <a, b> # <{a,, by>, then f(a, b) # f(a,, by).

In all other cases f(x,y) = c. It is easy to verify that this algebra
satisfies the required conditions.

THEOREM 8. For m = 3 there 18

a(€) =n, (€)= [

(13) a(n, %) = [M]

log 2
Proof. From Theorem 3 it follows that

10g(n+1)]

A7) <
atn, %) < |52

We shall construct an algebra

log(n+1
S = (4;f(x,y), 4] =n, 5(@)=[%_)]=q_

Let A =W oV, where W is a set of all non empty subsets of
a g-element set I and V = {J,Js, ..., Jpn_sa,1}. We suppose that I < J,
cdJdy... © Jy_s0,1, and that those sets are distinet. Put f(z,y) =a vy
for #,yeA.

It is easy to verify that the set {{p}: pel} is independent and that
the algebra © satisfies all required conditions.

Let us compute remaining values of the function ¢(n, #.) and
q(n, A7)

THEOREM 9. There is

(14) q(3, ) =1,
(15) q(2, Ae) =1,
(16) q(1, Ae) = —1,
(17) q(2,#°) =1,

(18) g(l, #°) = —1.



1796 J. PLONKA

Proof. From (1) it follows that each of these values must be smaller
than 2. Formula (14) follows from the existence of the algebra C,
= {{a, by €}z e, flm; ), where ¢ is an algebraic constant, f(z,z) = =,
f(a,,‘b) = f(b,a) = b, f(a,c) = f(e, a) = f(b,¢) = f(e, b) = c.

Formula (15) follows from the existence of the algebra €, (see Theo-
rem 6). Formulas (16) an (18) follow from Lemma 5. Formula (17) follows
from the existence of algebra &, (see Theorem 6).

THEOREM 10. For m > 3 there does not exwist an algebra 2 = (A; F)
without constants with a binary operation f, depending on both arguments
and non-commutative, in which

(19) || = m?+k,
where m = (A) and 0 < k < m.

Proof. Let us assume that such algebra exists. From formulas (19)
and (1) it follows that in view of m > 3 the assumptions of (%) are satisfied
and thus f is a diagonal multiplication.

But the algebra 2 cannot be a diagonal algebra, because for the
2-dimensional proper diagonal algebra D formula (19) cannot hold, as
we have

(+) a(D) = n,n,, where », and n, are positive integers n; >1,
(D) = min(n,, n,) (see [5], Theorem 3).

Let us now consider the diagonal algebra @’ = (A4;f). Of course,
(D) = ¢(2A) and so
(20) (D) = (),
because if ¢(A) < ¢(D’) = m+p, then in view of (4) we should have

D] = (m+p)2>m*+k = a(A) = a(D).

Formulas (20) and (19) also give contradiction, because (19) cannot
hold for diagonal algebra. '

Hence our theorem is proved.

We shall now compute values of the function ¢(n, #™) for n <12,

LeEMMA 7. For n >4 we have q(n, A™) > 2.

For the proof we construct the algebra &L, = (ay, ..., au; f(z, ),
where f(a,, a,) = a5, f(a,,a,) = a, and otherwise f(x,y) =2. It is
easy to verify that the set {a,, a,} is independent and &, belongs to the
class ™.

In the sequel we shall write for simplicity (as in § 1) zy instead of
f(x, ), and call this operation multiplication. We shall say that the mul-
tiplication 2y is trivial if it depends on one variable only, i. e. if for all
x, y we have xy = x or for all x, y we have zy = y. We shall say that
xy is idempotent multiplication if xx = x for all x. All algebras considered
are from ™.
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LeMMA 8. An idempotent multiplication, satisfying one of the identities
(xy)z = 2(zy), (ry)z = z(yx), is commutative.
Proof. Identify « and v.

LeMMA 9. If there are mo non-trivial unary algebraic operations in A,
and the multiplication is non-trivial and non-commutative, then the equality
o, (2,25) = 2325 for all x, and for fized i, j tmplies ¢ =1, j = 2 or 3. _

Proof. As every unary operation is trivial, and ay is non-trivial,
it follows that ¢ j and obviously {¢,j} < {1, 2, 3}. There remain
the cases '

(21) X1 (Xo23) = o3, (22) 2y (X 3) = L3y,
(23) Zy(Lo3) = T4, (24) X, (@y3) = w0y,
(25) &, (Ty3) = 2,25, (26) @, (Xy3) = @,%3.

If we identify in the cases (22), (23) and (24) the variables x, and @y,
we see that the multiplication is either trivial or commutative against
our assumption.

LeMMA 10. If xzy is idempotent, (xy)z = (yx)z and x(yz) = xy hold
for all z, y, 2, then xy is trivial.

Proof. We have

((@)2)u = (o)),
(en)2)u = (slap)u = (z0)u,
((zy)2)u = (2(yz))u = (2)u,

whence (22)u = (2y)u. By putting here z = # we obtain zu — (2y) u:

Thus xy = (vz)y = (2x)y = 2y, and finally, by putting x =y, we get

L = 21, ;
LemMMA 11. If xy is tdempotent, (xy)z = (yx)z and x(yz) = xz hold

for all x, y, 2, then xy is diagonal. \
Proof. We have

(o)) = ((32)e) e
(zy)2)u = (2(zy))u = (2y)u,
(yz)2)u = (2(yw))u = (2x)u.

Thus (2y)u = (2x)u and by putting z =y we get zu = (2z)u.

LEMMA 12. If xy is idempotent, (xy)z and z(xy) = z(yx) hold for all
@, Y, 2, then xy = yx for all x, y.

Proof. Put 2 = yz in the first formula, and 2z = xy in the second.

LEmMA 13. If xy is idempotent, (xy)z = (2y)x and x(yz) = ay hold
for all =, y, 2, then xy is trivial.
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Proof. We have
ulla)s) = uliz)o,
u((zy)z) = u(xy) = uzx,
u((zy)x) = u(2y) = uz,

and therefore ux = uz nad » = «xz.

LEMMA 14. If zy is idempotent, (xy)z = (2y)x and x(yz) = xy hold
for all z, y, z, then my is trivial.

Proof. We have

u((xy)z) = u((zx)y),
u((zy)z) = u(xy) = uw,
u((22)y) = u(ar) = uz.

Thus uwx = uz, v = uz.

LeMMA 15. If xy is idempotent, (xy)z = (x2)y and x(yz) = xz hold
for all z, y, 2, then xy is trivial.

Proof. We have uy = u((@2)y) = u((zy)z) = uz, thus » = wz.

LeMMA 16. If ay is idempotent, (xy)z = (yz)xr and x(yz) = xz hold
for all z, vy, z, then xy is trivual.

Proof. We have wuw = u((y2)z] = u((xy)z) =uz. Thus u = we.

TueorEM 11.

(27) q(1, ™) = —1,

(28) q(2, 4" = —1,

(29) q(3, A% =1,

(30) q(4, A" = ... = q(8, ™) = 2,
(31) q(9, ™) —3,

(32) q(10, ™) =

(33) g(11, &™) = 2,

(34) q(12, #™) = 3.

Proof. From (1) follows ¢q(n, #™) < Vn. Now (27) follows from
Lemma 5, (28) from Lemma 6, (29) from the existence of the algebra ¥,
constructed in the proof of Theorem 6. Moreover, (30) follows from Lem-
ma 7, (31) from the existence of the diagonal algebra D, and (34) from
the existence of the diagonal algebra D,,. To prove (32) and (33) it
suffices by Lemma 7 to show that

(I) There exists no algebra & in #™ such that «(Y) = 10, (&) =3
and

(IT) There exists no algebra & in #™ such that a(Y) = 11, (Y) = 3.
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Proof of (I). Suppose that such an algebra exists. Then there exists
in it an algebraic binary operation f(z, y), which we shall denote by xy,
that depends on both variables and is not commutative. Let {a, b, c}
be an independent subset of this algebra. The remaining elements of our
algebra are thus ab, ba, ac, ca, be, cb and a tenth element, say, d. We
prove first that one of the following formulas must hold:

(a) (ab)e = d
or
(b) c(ab) =d.

Suppose this is not the case, then xy must be idempotent, and there
are no other binary operations depending on both variables, as otherwise
the algebra would have more elements. Hence the application of (x)
shows that the algebra is diagonal. But there is no diagonal algebra
with 10 elements and an independent triple (see (+)).

Obviously, (a) and (b) could not hold simultaneously as it would
contradict the independence of (a, b, ¢) in view of Lemma 3.

Suppose now that (a) holds. Then (ba)e =d, and c(ab) = ca or
¢(ab) = ¢b (see Lemma 9). The first possibility contradicts Lemma 9,
and the second contradicts Lemma 11. In the case (b) the proof is similar.

Proof of (II). Suppose that there exists an algebra U = (X, F)
in 2% such that a(i) = 11, and «(Y) = 3.

Let {a,b,c} be an independent triple in & and let zy = f(z,y)
be a non-commutative binary algebraic operation depending in both
variables.

X consists of the following elements: a, b, ¢, ab, ba, ac, ca, be, cb, d, e.
At first observe that either (ab)e = d, (ab)c = e, ¢(ab) = d, or ¢(ab) = ¢,
because otherwise an argument analogous to the argument used in the
proof of (I) would show that the algebra in question is diagonal, which is
impossible by (+).

Suppose then that (ab)e = d (the case (ab)e = ¢ can be dealt with
in exactly the same way). By Lemma 9 we must distinguish between
two following cases only: 1° (ba)e = d and 2° (ba)c = e.

In the case 1° we have (ab)e = (ba)ec = d. By Lemma 8 we have
also c(ab) # d, and, by Lemma 10 and 11, ¢(ab) # d, c(ab) # € (other-
wise ¢(ab) = ca and c(ab) = cb).

Thus ¢(ab) = e and ¢(ba) = e, as the equality c(ba) = d contradicts
Lemma 8, and if ¢(ba) # d, c(ba) # e, then we would have contradic-
tion with Lemma 9.

But the system (ab)c = (ba)e, c(ab) = ¢(ba) is incompatible by
Lemma 12.

Now consider the case 2°, where (ab)¢ = d and (ba)c = e. By Lemmas 3
and 9 we must also have ¢(ab) = ca or ¢(ab) = cb. In the first case (cb)a
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=d or (¢b)a = ¢, which contradicts the Lemma 13 or, resp., Lemma 14,
and in the second case we have (ac)b = d or (ac)b = e in eontradlctmn
with Lemma 15 or, resp., with Lemma 16.

In the remaining cases the proof is similar.

From Theorem 11 it follows that Theorem 10 is true for the case
n =3 as well.

The following theorem is given by S. Fajtlowicz:

THEOREM 12. For n = m*+k (m = 2, n > 6) there exists an algebm
Wex™ in which a(A) = n, (A) = m.

Proof. Let us consider an infinite set 4 and an m-element subset B
of it (m > 2). We define a binary operation in the Cartesian product
Bx A as follows:

Ty Y- <{uy v = (T, uU.

It is easy to verify that every subset € of Bx A containing Bx B
is a subalgebra of the algebra UA* = (Bx 4;->. Let 2 denote an algebra
{C;->. The operation - satisfies the equahtles

(z2y)z =wz, @(y-2)=wy, (wy)(wo)=au.

Hence we have in the algebra 2 only three non-trivial operatlons
depending on each variable, i.e. -y, y-x, a2
" Since m > 2, all these operations are different and none of them ig
constant. ‘

Let peANB, BX(B v {p}) = C and |C| = m?*+k. The set Bx {p}
is mdependent on account of the form of the algebraic operations in 2.
Moreover, as ¢(2) < m (see Theorem 4 of this paper), then we hzwg
((2A) = m. "

Theorems 7, 8, 9, 11 and 12 give the full description of the function q
for the classes 4, #° and X™:

n 1 | 2 3 4 b
q(n, A 1] 1] 1] 2| 2
g, % | —1| 1| 2 | 2 | 2
qg(n, 2 —1| -1 1| 2| 2

g(n, #o) = [H(—1+V1+8(n—1)] for n >4,

B log(n+1)
g(n, A7) —[W] for =n

\Y
-
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and
m for k=0,
gn, %)y ={m—1 for 0<Ek<m,
m for m <k <2m,

where 5 % n = m2+k nad m > 2.
It is interesting that the function ¢(n, #™) is not monotone.
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