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1. Introduction and summary of results. One of the important problems
met by Marczewski’s independence theory [1], [2] was that of charac-
terizing the class of independent subsets of an abstract algebra in
terms of general set theory (see [3]). The problem is: given an abstract,
finite or infinite, set A and a family J of subsets of 4, what are the
conditions on J necessary and sufficient in order that J be the class of
independent subsets of an abstract algebra whose set of elements is A%

- It is fairly obvious that the following two conditions are necessary:

(i) J is hereditary,

(ii) J is of finite character (i.e. if XeJ, for any finite X < ¥,
then Y eJ).

Examination of simple examples shows that it is too much to
expect that it will be possible to find simple conditions both necessary
and sufficient, though it was not before Urbanik’s results [6] when the
complexity of the situation became clear. On the other hand, there
are some easy conditions which, added to (i) and (ii), form a system of
sufficient conditions for the existence of an algebra with the prescribed
family J of independent sets; these, at the first place, are due to
S. Swierczkowski [5].

In what follows, partly for completeness and partly to take advan-
tage of the situation and to clarify its peculiarities, we give a brief sketch
of the results of Swierczkowski [5] and Urbanik [6] adding some impro-
vements to them.

Our notation is the following: {4 ; F)» denotes an algebra in which F
is a set of fundamental operations; A™ is the family of algebraic opera-
tions of n variables. (X) denotes the subalgebra generated by a set
X < A. In virtue of (ii) it is sufficient to consider only finite independent
sets. Ind = Ind {4 ; F) is the family of all finite independent sets in the

* Presented to the Conference on General Algebra, held in Warsaw, September
7-11, 1964 (mimeographed summary).
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algebra (A; F). (A, J) is a pair in which 4 is an arbitrary set and J
a hereditary family of finite subsets of 4. {4; F) is called an (A4, J)-al-
gebra if Ind<{4; I') = J. For a fixed pair (4;J), we put

= {&: {x}¢J}.

Suppose that there exists a maximal number m such that every
subset of m elements of A disjoint with S belongs to J (if such an m does
not exist, then there is an (4, J)-algebra; such is of course the algebra
{4; S>). We put

={X:Xed, |X|>m} (),
U=U%, U* = JX.

XeJ X

THEOREM (S. Swierczkowski). If |S| > |J|, then an (4, J)-algebra
exists.

It can be seen at first glance that the set S of “self-dependent”
elements is depressingly large and one would like to find weaker condi-
tions satisfied in some important cases. We present here two conditions
of that kind.

THEOREM 1. Suppose there exists a mapping f: J — S such that if
X #Y and X o Yed, then f(X) # f(Y). Then an (A, J)-algebra exists.

The proof of Theorem 1 is an easy modification of the proof of the
theorem of Swierczkowski.

THEOREM 2. Suppose that S # 0 and that there exists a mapping
f: J* - UNU* such that if X,Y,X o Yed¥, then f(X) # f(Y). Then
an (A, J)-algebra exists.

Though Theorems 1 and 2 are similar, we have not found any
reasonable common generalization of them.

In order to obtain some necessary conditions, K. Urbamk has found
a wide class of hereditary families J of finite subsets of a set A with the
property that if for an algebra whose set of elements is 4 and the family J
is contained in the family of the independent subsets, then the algebra
is trivial and so any subset of it is independent. Let us quote a typical
theorem of Urbanik and one of its corollaries.

TueorREM (K. Urbanik). Let » and m be integers satisfying n > in,
n >3, and let {(A; F) be a finite algebra without algebraic constants con-
taining at least n--m elements. Suppose there exists an m-element subset M
of A such that each n-element subsel of ANM is independent. Then each
n-element subset of A s independent.

(1) |X| denotes the power of X.
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This clearly implies

CororrArY (K. Urbanik). Let n and m be integers satisfying the in-
equalities n > m, n > 3, and let A be a finite set containing at least n—+m
elements and M an m-element subset of A. For any hereditary family J
of subsets of A containing all one-point sets and all n-elements subsets of
ANM which does not contain all n-elements subsels of A, an (4, J)-algebra
does not exist.

We present here another type of “bad” families J. First we will
prove another theorem analogous to a theorem of Swierczkowski ([4],
th. 2).

THEOREM 3. Let |A| =n >4 and {A; F) be an algebra which has
some sets Bc Dc A with |B| =n—1, |[AND| <n—2, and such that
for any weD B the set B o {w} is a base (i.e. a set of independent
generators of (A; F3), and there is no constant in the subalgebra C(B).
Then (A; F) is the trivial algebra.

And then the negative results follows.

COROLLARY. Let 8> [A| =n >4, Bc Dc A, |B|=n—1 and |A\D)|
< n—2. For any hereditary family J of finite subsets of A which contains
all one-element subsets of A, all sets of the form B o {x} with xe D\ B
and not all n-element subsets of A, an (A, J)-algebra does not exist.

In [1] Marczewski treated the following problem: Let u denote a fini-
tely additive measure over some set 2, let u(%) = 1 and B be the family
of u-measurable subsets of 2. Does there exist a (B, J)-algebra in which .J
is a family of finite subsets of B stochastically u-independent? Marczewski
gives a negative solution of this problem under the additional assumption
that the union of two elements of B is an algebraic operation in that
algebra (see [1], p. 736). We can remove the last supposition.

THEOREM 4. If 0 < u(&) <1 for a certain &eB, then there ewxists
no (B, J)-algebra.

This theorem will be shown to be an easy consequence of the following

ProrosIiTION. If in the algebra (A; F) there is a set P with n > 0

elements such that, for any weANP, P o {x} is independent, then every
operation of n variables is trivial.

2. Proofs. Proof of Theorem 1, as in [5].
For the proof of Theorem 2 we need first the following

LuzMMA. In the algebra <A; F), let B < A be a set such that |A\B)|
=mn > 1. If for every non-trivial operation f of n—1 variables and an ar-
bitrary system @,y ..., @,_eA we have f(a,, ..., a, ,)eB, then there exists
an (A4, N)-algebra, where N is the sel {X: XeInd<d4; F) and |X| < n}.



228 8. FAJTLOWICZ

Proof. We define an operation by

x, if x; are different and all x;¢B,

Ly ssag L =
9(@15 20 ) {wl in the other case.

~ In the algebra (A; F o {g}> every n-element set is dependent, be-
cause ¢ has the same values as el or €] but is not equal to any of them.
Therefore for any n-element set there are different operations having

the same values on this set.
| Now we show that every operation of »—1 variables which is al-

gebraic in <A4; F u {g})> is algebraic in (A;Fy too, i.e. we must verify
that
B(yy.nny Bp) = g(f1(w1’ coey @n_q)y ooy Jul@ry ooy wn—l))

is an algebraic operation in (A4 ; F) if f; are algebraic operations in (4 ; F).
If some f; is non-trivial, then its values on each system @y, ..., Zn_,
belong to B and in view of the definition of g

(+) Ry, veey Bn_y) = Fo(@1y oevy Buiy)-

And if all f; are trivial, there must be repetitions among them, be-
cause there are only n—1 trivial operations of n—1 variables. Hence

we have also ().
Since the algebras (4 ; Fy and (4; F v {g}) have the same operations

of n—1 variables, then each at most (17— 1)-element set is independent
in one of them iff it is independent in the other.
Proof of theorem 2. Let ceS and f be a mapping as supposed
in our theorem. We take the notation
fwsyy ooy @iy i {2,000y g, yed* and all o
(%) ity iy (@rg ooy @) = are different,
¢ in the other case.

We will show that the algebra (A4;F) = (4;S v

(fy iz >y {iy .y i} © {1,...,n}, and |{iy, ..., @x}| > m]

has no non-trivial algebraic operations with the exception of fundamental
operations.
Let

g(wly ceey Tp) =f{7?1,...,ik}(f1(w11 veey Tn), -"7fm(w11 iy mn))

If some f;, is of the form (%), then for each sequence a,, ..., a, We have
f,-j(al, very @) e UNU* U {c}, whence, consequently, fi(@yy ooy ), ..
eoey Jip (@yy oeny ay)¢J* and g(@y, ..., &n)=c. Of course, the last equation
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holds if either there are repetitions among fi]. or some of them are constant.
If all f; are trivial, i.e. if fi; = €y, then
{F{@pyy -vey T} 1 {@py oony B} ed* and all a,,
G(L1yoeny y) = ' are different,
¢ in the other case,

i.e. g(@yy ...y Tn) =f{7;1,...,pk}(m1’ veey Tp).
In the algebra (A ; F) there are no algebraic operations of m variables

but the trivial operations. Thus all at most m-element sets disjoint
with S are independent. -

Let {a,,...,a,}eJ*. Different algebraic operations of m variables
have different values on this set since

Syt @y ey @) = flaiy ey @}

and f is a one-to-one mapping on sets eJ*. Therefore Fiirs g (@1y oony @)
e (UNU?), a;eU* and S ~ U = 0 imply {ay, ..., @} eInd<4; F>.

Let 0 < n < sup|X| =1 (if n = 0, (4; F) is of course an {4 ; J)-al-
Ted .
gebra). If {a,,...,a,}¢J, then fi,  w(ay,...,as) = c. Because there

exists an m-element independent set, then

f?l,2,...n}(x15 ceey Tp) F €y

and, consequently, {a, ..., a,}¢Ind.

If zeS, then z¢Ind<{4; F), because it is a constant.

By these facts, if 1 = §,, then <4;F) is an (4, J)-algebra. Let
1<, If |U*| =1, then <4; F)is an (4, J)-algebra in view of the fact
that only one l-element set belongs to J and, consequently, every (I+ 1)-
element set is dependent since it contains dependent subsets. If |U*| >1,
then the set (UNU*) u S satisfies the supposition of the lemma concern-
ing B. Hence by that lemma there exists an (4; J)-algebra.

Proof of Theorem 3. For every #¢C(B)\B we have weA\D,
because for every deD the set B w {d} is independent. Since subalgebra
C(B) has no constants, |B| = n—1 >3, |AND| <n—2, and B is inde-
pendent, hence in view of the theorem of Urbanik stated in the intro-
duction every (nm—1)-element set of this algebra is independent. The al-
gebra C(B) being finite and having an (n— 1)-element base, the independ-
end sets generate subalgebras of the same powers and n—1 > 3. Hence
in view of a result of Swierczkowski ([4], th. 2) the algebra C(B) is trivial.

Suppose that the algebra has non-trivial operations of n variables.
A lemma of Urbanik [6] states that if ’

() there are repetitions among Ty, ..., Tn,
then for every operation f there exists an index k = k; such that
f(@1yenns @) = @
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Now we will show that if («) holds, then

(B) for every we D\B there exists an y + &, ye D\B and a function
geA® such that g(by,...,b,_,,2) =y and g(®yy ..., @) # 2.

In A" there are n non-trivial function f; such that for ¢ - Jj we have
ky, + k,j.. In fact, if for example f, is a non-trivial function and ke, =1,
we have to take for f; a function Ji(®i, ..., 2; ) where 4y, ..., 4, is a per-
mutation such that ¢, = j. Functions fi are different, since ks =1, and
non-trivial, since f,(b,, ..., bo_,, x) does not belong to the set {b,,...,
by_1, x} and, consequently, neither filbyy ooy by_y, @) does.

In view of independence of the set {b1y.evy bu_y, @} all f; take dif-
ferent values on it and, on account of [AND| <n—2, at least two of
them take values from D\B o {#}. Choose from these two functions
this f; for which ks, # m (different functions have different indices) and
denote it by ¢. Taking ¢(b,,..., bu_1,2) as y we see that condition (B)
is satisfied. Since {b,,...,b,_,,y} is a base, there exists a function h
such that L(b,,...,b,_,,y) = 2. Substituting g(b,, ..., b,_,, ) in place
of ¥ we get the equation

(Y) & == h(bu nasy bn—l, g(bu sieie g bn—lyw))'

The set of arguments is independent, thus also (v) holds, if we do
any substitution for them. Of course, g(b,, b,, by, ..., by_y, ) = bkg # X
since k, # n. Replacing in (y) the element b, by b,, we get

xr = h(b].’ bl’ b3, ey bn..]’ bk'g)7

which contradicts the triviality of 4™V,

Proof of Corollary. Suppose that such an algebra exists. But
the subalgebra C(B o {x}) satisfies the assumptions of Theorem 3 and
so must be trivial. Hence each algebraic operation of n variables must be
trivial in view of independence of the set B o {r}. Consequently, each
n-element set must be independent which contradicts our assumptions.

Proof of Proposition. Let P —= {byy ..., b,}. In view of the in-
dependence of P o {f(b,, ..., b,)} for any operation f, we have f(b,, ...,
+e+y bn)eP. Thus P is the set of a subalgebra. Since P is independent,
each operation of n variables must be trivial.

Proof of Theorem 4. Suppose that a (B; J)-algebra exists. Any
triple which contains the empty set and the full set is of course stochastie-
ally u-independent. According to Proposition every two-element set of our
(B; J)-algebra must be independent. But the pair {&, Z\ ¢} is stochasti-
cally dependent which gives a contradiction.
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