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We say, following E. Marczewski, that an abstract algebra % = (4; F)
satisfies the condition of exchange of independent sets (EIS) if for any non-
empty subsets P, @, R of A the four relations

(a) P~ @ =0,

(b) P © @ is independent,

(¢) R is independent,

(d) R is included in the subalgebra generated by @,
imply the relation

() P v R is independent.

If (d) is replaced by the stronger condition, that the subalgebras
generated by @ and R coincide, then (e) follows whatever 2 is (Marczew-
ski [2], p. 58, theorem (ii)). EIS is not true in all algebras, not even in
groups, as Hulanicki and Swierczkowski have shown. But EIS is true
in Abelian groups, Boolean algebras, Post algebras (Traczyk [7]) and
v*-algebras. These results are collected in the paper [1] by Hulanicki,
Marczewski and Myecielski.

The purpose of this paper* is to prove or to disprove EIS for some
other algebras.

The notation of [2] is adopted in general throughout this paper.
Instead of saying “a set of independent elements”, the expression “in-
dependent set” is used. C(FK) denotes the subalgebra generated by E.

Due thanks should be expressed here to Professor E. Marczewski
and Docent J. Mycielski for numerous discussions and remarks.

THEOREM 1. The condition EIS 1is satisfied in every alegbra in which
all algebraic operations depend on at most one variable.

* The results of this paper were announced in [4] and presented to the Confe-
rence on General Algebra, held in Warsaw, September 7-11, 1964.
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Proof. Let us consider such an algebra 2 — (4; F), and let P, Q,
R be subsets of A satisfying (a)-(d). Let p, reP o R. We have to prove
that

(1) f(p) = g(r) implies f = g.

If both elements p, r belong to P or both belong to R, then from the
independence of the sets P and R it follows f = g- Let now e. g. peP,
reR. As R < C(Q), there exists geQ and heA™ such that r = h(q).
Hence f(p) = g(h(q)). In view of (a), p # ¢. The independence of 4 B
implies now f(z) = g(h(y)) = ¢, with some algebraic constant ¢. From (1)
it follows now g(r) = ¢, and from the independence of R we infer g(x)
= ¢ = f(x) what completes the proof.

THEOREM 2. Every algebra with at most siz elements satisfies EIS.
There exists an algebra U, with seven elements, in which BIS is not satisfied;
moreover, every algebra with seven elements in which EIS is not satisfied
has the same algebraic operations depending on at most three variables as oA,

Proof. At first we define the algebra 2, = (a,b,ec,d,e,f, 8;0)
where o is a commutative binary operation defined as follows: aob =d,
aoc =e boec=f, and zoy = s in all other cases.

Let P = {c}, @ = {a, b} and R = {d}. It is easy to see that relations
(a)-(d) of EIS are satisfied while (e) is not, because cod =dod =8
in spite of xoy = yoy.

Now it suffices to prove that every at most seven-element algebra
either satisfies EIS or consists of precisely seven elements and its ternary
algebraic operations are identical with the ternary algebraic operations
of 2. ;

We assume that 2 = (4; F) is an at most seven-element, algebra
with subsets P, @, R satisfying (a)-(d). As R is generated by (), then for
every relt there exists an algebraic operation h and ¢, vovy @r€Q) such
that h(qy, ..., qx) = r. Let {k,},.r be the set of all such operations.

Suppose that (e) is not satisfied, i. e. that there exist @y .ery GgeP U R
(a; # a; for i +# j) and two algebraic operations ¢ = v such that

(2) ‘P(a’;an'ra;)=‘V)(a;"-°7a;)-
We can write this in the form
(3) f(aly---’am) =g(a1+m,“'9an+m)1

where a;eP o R, a; # a; for ¢ < j <m and for m-+1 <j<iy; f#g,f
depends on all m variables, g depends on all # variables. (We do not as-
sume here a; # a; for ¢ <m, j > 1+m.)

We shall denote the elements of the sets P, Q, R by p, ¢, r with in-
dices, respectively.

Let us now consider all possibilities.
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1° Each of the operations f, g, h depends on at most one variable. (Ev-
idently the operations h, cannot be constant, as R is independent.)

Consider now the algebra B = (4;f, ¢, {h:}sr). Then this algebra
does not satisfy the condition EIS, which contradicts Theorem 1.

920 For some roeR, toeTy n > 1 and ¢y, ..., qneQ we have 1, = hey(Qas - o-
vy Gn)y and b depends on all n variables.

Tt follows that in P o @ there exist at least 1-+n elements, as P is
non-empty. Operation h, depends on n elements and consequently (in
view of the formula (iii) in [2], p. 725, or the formula (1) in [6], p. 191)
A contains at least 2n-+2 elements. If n > 2, then 2n-+2 > 7, so it must
be n — 2. For simplicity we shall write h.(z,y) =Y.

Let peP. Then the following six elements are certainly distinct:
Py Qis 4oy PG1y Plzy 9192, and none of them is an algebraic constant, as
P o @ is independent.

If #-y is non-commutative, then the elements ¢,p, q:P, 4201, are
distinct and different from the listed above and so |A| > 9. An obvious
contradiction.

Hence -y is commutative. If there are no algebraic constants, then
by Theorem I in [6] there exist in 92l n-ary algebraic operations dependent
on all variables for n = 3,4, ...

An argument of Marczewski ([3], p. 725) gives the following propo-
gition (which is a slight modification of his proposition (ii) on p. 725
of [3]):

(o) If an algebra (E; F) has the following properties: 1° there exist
algebraic-k-ary operations dependent on all variables for k = 2,3, 4,...,n
(n > 2), 2° there are no algebraic constants, 3° there exists an independent
set I = {a,,..., Gy}, 4° |A| = 2"—1, then the algebraic nm-ary operations
in (E, F) are roughly speaking the same as in (2"\{@}, v) or, more pre-
cisely, there exists a one-one mapping ¢: E — 2\{0} transforming
the family A®™(E;F) onto the family A™(2"\{0}; v ).

We apply this proposition to the algebra 2. Since there exists in A
at least 3-element independent set, we have (by inequality (*) of [3],
p. 724, or Theorem 3 of [6], p. 192) |4] > 23—1 =T and since, by hypo-
thesis, |4| < 7, we have finally [4] = T. Hence the hypotheses of propo-
gition (o) are satisfied.

In order to prove (e) for at most three-element set P o R it suffices
to consider ternary operations only and hence it is easy to verify, with
the aid of (o), that in the considered case EIS is satisfied.

Hence there are constants in 2 and so

A = {p, q1) Qos P1y PL2s €125 €}

where ¢ is & constant.
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Let us observe that (ay)z can depend on at most two variables, as
(25 ¢:5 qg.) is independent.

If (ry)z = ¢, then ax = ¢, because 2l cannot have non-trivial opera-
tions of one variable which are not constants, as otherwise we would
have three more elements, say #(q1)y ¢(gs), @(p), and zz = 2 would imply
¢ = (xx)r = ox = x, a contradiction.

It is clear that in 2 there are no operations depending on at most 3
variables, which are not generated by @-y. As (4;z-y) is isomorphic
with 2, our theorem follows in the case (ry)z = e.

Now, consider the remaining possibilities:

If (zy)2 = o and ax = z, then x = (xx)2 = 2, p = pq,.
@y)z = x and xx = ¢, then z = (zy) (xy) =
If (#y)z =y and oz = x, then » — (xx)e = a2, p = pq,.

(
(
If (wy)e =y and #z = ¢, then y — (vy)(xy) = c.
If (zy)2 =2 and 22 = @, then z = (xx)z = @z, p = pq,.
If (zy)z =2 and ax = ¢, then ¢ = (wy)(zy) = ay, ¢ = pq,.
If (xy)z = 2y and zx = x, then ¢ = xr = (vx)e = a2, p = P4, -
If (xzy)z = xy and zz = ¢, then ¢ = (xy)(xy) = ay, ¢ = PY; .
If (zy)2 = xz, then yz = (y2)2 = (ay)2 = @2, pg, = pq,.

If (xy)2 = yz, then yz = (wy)z = (yz)z = x2, Pqy = PQ,.

In all these cases we got a contradiction, and so the theorem is proved
under the assumption of 2°,

3% For some reR, qeQ and he A, r = h(q) and, moreover, W £ )
Jor k =1,2,..., (where 1*)(z) denotes the k-th iterate of h, and (e{’z)
= &).

In this case we prove that all elements F'(r)(n =1,2,...)are distinet,
what will lead to an obvious contradiction with |4| < 7. Indeed, suppose
that

™ (r) = KP(v).

where 1 << m << p and m is as small as possible.

Since the set {r} is independent, it must be R"™(x) = h”(x), whence,
K" 7N (r) = "N (R(q)) = K™ (g) = R(q) = h""'(h(g)) = W*~'(r), what does
not lead to a contradiction with the minimal property of m only in the
case m =1, but then h(x) = h”(z) and so r = h(q) — W' (q) = K"~ (k(q))
= k"' (r) contrary to our assumption.

4° Al functions h; depend on at most one variable, and for each t there
exists k(t) such that hi® = ¢,

Then at least one of the functions [ g (viz. (3)) must depend on more
than one variable.

Suppose f depends on more than one variable. The elements a,, ...
++y @y, cANMOY all belong to P or all to R, as it would imply the dependence
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of one of those sets. If it were {a,,...,a,} =P, {@p 1y...,a,} € R or
vice versa, then the condition (d) would imply f = ¢g. Hence we can write
(3) in the form

(4)  f(Duseees Py T1y oovy Tmy) = G(Prmys1s Pmgsngs Pmgr1s oo vy Tmgamy) s

where m;+my, = m, n;+n, =n and m >1, m; > 1, m, > 1.

At least one of the r; occurring here belongs to E\@, say ri e E\@Q.
Then we have r; = hy(q,) with some g,¢(). We must have at least one
more element, say ¢, in @, as otherwise hggto’ =) would imply ¢, =
= h‘,’;‘u“”(rio), and so < C(R), but then, by Theorem 1, EIS would
be satisfied, contrary to our assumption.

Let peP. Then the following elements of A are certainly distinct:
Ps 415 4o hto(p)a hiy(q1)y Puy(gs). 1f hto(Q2)€R\Q7 then we conclude as
before that ¢ contains a further element, say ¢,, and that hy,(q5) would
be different from the elements listed above, and so |4| > 8. A contra-
diction. Thus hy (¢,)¢ R\Q. If I was generated by ¢ by means of 2 ope-
rations, h , hy, say, then 4 would contain at least 9 elements. Let ()
be thus the only operation by means of which ¢ generates K. Obviously
Pl =1, || = 2.

BEvidently h(h(x)) =« as otherwise A would contain 9 elements.
Moreover, ¢, does not belong to R as otherwise R would generate @ and
in view of a theorem of Marczewski ([2], p. 58, th. (iii)) the condition
EIS would be fulfilled. It follows that R contains the element %(q,) only,
and so the operation f occurring in (3) must depend on exactly two
variables. But now the elements f(p, q.), f(p, ¢s), f(¢1, g:) wWould be
distinet and 4 would contain at least 9 elements, a contradiction.

The theorem is thus proved in all cases.

An n-dimensional diagonal algebra (see [4] and [b]) is an algebra
D = (X;d) with a unique fundamental operation d(x,,...,w,) satis-
fying the following postulates:

1° difmy . ou ) = wy

2% BBy < o5 T s LBy veg )y o vug BADT s 5500 WR)) = Al By ey TR

If the operation d(,,...,®,) depends on each variable, then the
n-dimensional diagonal algebra will be called proper.

We say that an element a of the n-dimensional diagonal algebra
is collinear in the p-th direction with an element b of this algebra, which
relation we shall denote by

if a=d(a,...,a,b,a,...,a), where the element b in parantheses on
the right-hand side is on the p-th place.
The diagonal algebras have the following properties (see [3]):
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(x) A subset J of an n-dimensional proper diagonal algebra is de-
pendent if and only if there exist in it two different elements a and b
which are collinear in some direction.

(xx) Every algebraic operation feA™ of the n-dimensional diagonal
algebra is of the form

@y oony @) = d(@yy ...y @),

1<i,<mfor p=1,...,n.

(xxx) If @ = d(ay,...,a,), then a =, a, for p =1,...,n.

(xxxx) Each relation =, is an equivalence.

THEOREM 3. In every proper n-dimensional diagonal algebra the con-
dition EIS s satisfied.

Proof. Let P, @, R be non-empty subsets of such an algebra, satis-
fying (a)-(d) but not (e). In view of (x) we can find in P v R two different

elements collinear in some direction. Clearly, we may assume that one
of them belongs to P and the other to R, and so let peP, r¢R and

(5) P =r.

From (d) and (xx) it follows » = k(g,, ..., ¢,), hence by (xxx) we
have

(6) T =i 4.
From (5) and (6) it follows by (xxxx) that p =, ¢, but that contra-
dicts the independence of P u Q.

A semilattice is a commutative semi-group with an idempotent
multiplication. In a semilattice we define the relation “<?” putting a < b
if ab = a.

Szasz [5] proved that a subset 4 = {a,,...,a,} of a semilattice
is dependent iff for some ¢ one has a; > a,...a;_,a; +1...dr. We prove now

THEOREM 4. In every semilattice condition EIS is satisfied.

Proof. Let P, ¢, R be subsets of a semilattice and let us assume that
the conditions (a)-(d) are satisfied, while the condition (e) is not. There
exists then a set J = {j,,...,js} = P u R such that

(7) Jo = J1ee-Js-

It can be neither J ~ P =@ nor J ~ R =0, because one of the sets
P, R would be dependent. If p,eP, then (7) may be written in the form

(8) Do = PrevPmlre. Ty (m+mn = 8,]91-61), TiER)'
But (d) implies

(9) ri=q0.gt)  (E=1,...,n; ¢<Q).
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From (8) and (9) we get
(10) Po = Pree-Dm(q - al) . (g . gf).

But this contradicts the independence of the set P o Q. Hence, j,¢P
and 8o j,eR. Thus (7) may be written in the form

(11) Yo ZDreesPmliee Ty (M+n =8, pieP, r;eR).
As 1y =gP...qf) (¢, i =0,1,...,m), we have

(12) ..o = 2.0l -.qi‘l’)m(q‘l”’---q%’:f)-

Each of the elements ¢f” (j =1,...,k,) must appear explicite in
one of the parantheses on the right-hand side of (12) because otherwise
from

¢ = q...qf) for some j
we would have
¢ = p1ee Pm(d . )

in contradiction with the independence of the set P v Q.
But now we can write

¢"...d) = (a...a8)... (V... 4,
e ry=>r...7,.
The last formula contradicts the independence of the set R which
completes the proof.

Remark (added .in proof). In view of some recent results of
K. Urbanik (contained in the paper On some wnumerical constants asso-
ciated with abstract algebras, Fundamenta Mathematicae, in print),
Theorem 2 can be strengthened by omitting the words ‘‘depending on
at most three variables”.
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