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1. Introduction. E. Marczewski introduced some classes of abstract
algebras in which the notion of independence (see [5]) has fundamental
properties of linear independence in vector spaces. These classes are:
v-algebras (called also Marczewski’s algebras; see [4] and [11]), v*-algebras
(see [1], [7], [8], [12] and [13] )and v}-algebras (called also v**-algebras;
see [9]). W. Narkiewicz has recently defined a class of v,-algebras being
an extension of the class of v-algebras (see [14]). This expository paper”*
is devoted to the representation problem for algebras belonging to these
four classes. Theorems proved in earlier papers will be presented here
without proof.

For terminology and notation used here see [5]. Let 2l = (4; F)
be an algebra, i. e. a set A of elements and a class F of fundamental ope-
rations consisting of A-valued functions of several variables running
over A. If A = {a,b,...} and F = {f, g, ...}, we shall sometimes write
(ayby...5fy9,...)0r (A5 f, g,...) instead of (4; F). The n-ary operations

65?)(51;1,%2, .o-ymn) =T (k - 1727""”'; %':-1,2, )

will be called trivial. We denote by A the class of all algebraic operations,
i. e. the smallest class containing trivial operations and closed under the
composition with fundamental operations. The subclass of all n-ary al-
gebraic operations will be denoted by A™ (n > 1). Further, by A we
shall denote the class of all algebraic constanis, i. e. the class of values
of constant algebraic operations. If 1 <k <, then A™" will denote
the subclass of A™ consisting of all operations essentially depending
on at most k variables. Thus fe A™" if there is an operation geA® such
that f(@,, 2y, ..., 2x) = 9(@e, %iyy ..., @) for a system of indices ¢,
fgy ...y iz Two algebras (4; F,) and (4; F,) having the same class of
algebraic operations will be treated here as identical. In particular, we
have the equality (4; F) = (A4; A). If a non-void subset B of A is closed

* Partially presented to the Conference on General Algebra, held in Warsaw,
7-11. IX. 1964. .
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with respect to F, then the algebra (B; F) is called a subalgebra of the
algebra (4; F). If F is a non-void subset of A, then the smallest subal-
gebra containing F will be denoted by [E]. If F = {a,, as,..., a,}, then
we shall sometimes write [E] = [a,, a,, ..., a,]. Moreover, for the empty
set @ we put [@] = (49, F).

Following Marczewski [5], we say that elements of a non-void set
I (I = A) are independent if for each system of different elements a,,
@y ...y 4y from I and for each pair of operations f, ge A™ the equation

flay, azy ..., a,) = g(a, as,y ..., a,)

implies that f and g are identical. A set whose elements are not independent
will be called a set of dependent elements. An element aeA is said to be
self-dependent if the one-point set containing a is a set of dependent
elements.

We say that a set B (B < A) is a basis of the algebra (4; F) if it
is a set of independent elements and [B] = (A4; F). If an algebra 2 has
a basis and all bases have the same cardinal number, then this cardinal
number will be called the dimension of the algebra 2 and denoted by dim L.
Furthermore, if all elements of the algebra 2 are algebraic constants or,
in other words, [@] =2, then we put dim2 = 0.

Let f,geA™ (n >1). We say that the equation

(@19 oy eeny @) = §(B1y Doy very @)
depends on the variable », if there exists a system a,, ay, ..., a,, a, of

elements of A for which

f(a’11 Aoy ey n_q, afn) —~ g(al’ Aoy eeey An_1y an)
and
flay, asyeny @ny,y ay) # g(ay, By ey On_1y Op).
Now we shall give the definition of v-algebras, v,-algebras, v*-al-
gebras and v;-algebras.
An algebra 2 is called a v-algebra if for every integer n (n > 1) and
for every pair of operations f, ge A™ for which the equation

(1.1) Ty Boy vurey T} = OBy By w555 By

depends on the variable x, there exists an operation he A®~" such that
~the equation (1.1) is equivalent to the equation

T = h(Byy Bgy eoey Tn_y).

An algebra 2 is called a v,-algebra if for every integer n (n >1)
and for every pair of operations f, geA™ for which the equation

(1.2) f(@1y @ay ooy @) = g1, @5y ooy Ty)
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depends on the variable x, there exist an index j (1 <j < =) and an
operation heA™ " such that the equation (1.2) is equivalent to the
equation
q Bp = h(Byy Doy eeey Li_1y Bjp1y eeey Pn)-

An algebra U is called a v*-algebra if it satisfies the following con-
ditions:

(i) each self-dependent element is an algebraic constant,

(ii) if the elements a,, as,..., @, (n = 1) are independent and the
elements a,, ay, ..., @,, @y, are dependent, then a,, ,¢[a,, a,,...,a,].

Condition (i) may be treated as a degenerated case (n = 0) of (ii).
The v*-algebras can be also defined as follows. We say that the elements
of a non-void subset F <= A are C-independent if a¢[EN\{a}] for every
ael. Then the v*-algebras are the algebras in which the following two
axioms hold:

EQuivALENCE AXI10M. Independence coincides with C-independence.
ExcHANGE AXTOM. If a¢[F] and ae[l o {b}], then be[F v {a}].

An algebra 2 is called a vi-algebra if it satisfies the following con-
ditions:

(%) each self-dependent element is an algebraic constant,

(%) if the elements a,, @s, ..., a, (n = 1) are independent and the
elements a,, ayy ..., @y, a,,, are dependent, then there exists an index j
(1 <j <n-+1) such that aje[a;, asy ...y @Gj_1, @1y onny Apyr]-

The vi-algebras can be also defined as algebras in which the equi-
valence axiom holds.

It is very easy to prove that the class of v}-algebras contains the classes
of v-algebras, v,-algebras and v*-algebras. Moreover, both classes of o,-
algebras and v*-algebras contain the class of v-algebras. In the sequel
it will be shown that all these classes are different.

W. Narkiewicz proved in [9] (Theorem I) that if @ v}-algebra has a basis,
then all bases have the same cardinal number. Thus for any vi-algebra
with a basis the concept of dimension is well defined. Moreover, each
v*-algebra and, consequently, v-algebra either has a basis or consists of al-
gebraic constants (see [4], p. 616, and [7], p. 334). Thus for any v*-algebra
the concept of dimension is defined.

2. v-algebras.  First we shall give some examples of v-algebras.

2.1. Let A be a linear space over a field 2 (i. e. an associative di-
vision ring not necessarily commutative) and let 4, be a linear subspace
of A. If A is the class of all operations f defined as

fl@y, Xgy enny @) = A+ a,

s

k

I
-
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where A;, 2y, ..., et and aed,, then A = (4; A) is a v-algebra. In
this case we have the relations A” = @ and A™ = A™" (n > 2) whenever
A contains at least two elements. Moreover, denoting by lindim B the
linear dimension of the linear space B and by B/B, the quotient space
with respect to a linear subspace B, of B we have the formula

dim? = lindim 4 /4,.

2.2. Let A be a linear space over a field 2 and let 4, be a linear sub-
space of A. If A is the class of all operations f defined as

n
]
f(@y @ay ey @) = D Mt a,
k=1

where A, Ayy .oy Aned’y, Y2 =1 and aed,, then A = (4; A) is a v-al-
=

gebra. In this case we have the relations A® = @ and A™ = A™Y
(n = 3) whenever the set A contains at least two elements. Let us remark
that A® = A®Y if the field & consists of two elements. Moreover,

dimY = 1+4lindim A4 /4,.

2.3. Let ¢ be a group of permutations of a set A. We suppose that
every permutation that is not the identity has at most one fixed point
in A. Let A, be a subset of A containing all fixed points of permutations
that are not the identity and which is invariant under all permutations
from &. If A is the class of all operations f defined as

f(mlamzr---;mn)Zg(mj) 1<3<n),
or
Sy, @py .oy @) = a,

where ge% and aed,, then 2 = (4; 4) is a v-algebra. In this case we have
the relation A™ = A™" (n>1). Let B = A. By ¢(B) we shall denote
the cardinal number of transitive constituents of B with respect to the
permutation group ¢. It is very easy to prove the formula

dim 2 = t(AN\A4,).

REPRESENTATION THEOREM FOR v-ALGEBRAS. Let 2 be a v-algebra,

(i) If A9 =0 and A® # A®Y, then there is a field A such that
A is a Uinear space over X and, further, there exists a linear subspace A,
of A such that all algebraic operations are given by the formula

n
id

@y, Lgyeeey Tp) = Z Ay +a,
k=1

where Ayy Ayy oooy Ane” and acd,.
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(i) If A© = @ and A® = A®Y, then there is a field A" such that A
is a linear space over & and, further, there exisis a linear subspace A, of A
such that all algebraic operations are given by the fromula
‘n
f(:l)” Loy esny .’,Uk) = X‘.;Lkwk—{_ a,

P
fe=

-

n
Where Ayy Aoy eeey dned'y D=1 and aecd,.
=1

(iti) If A® = ACD then there is a permulation group ¥ of A such that.
each permutation that is not the identity has at most one fixed point in A-
Moreover, there is a subset A, of A containing all fived points of permuta-
tions from % that are not the identity and which is invariant under all permu-
tations from ¥ such that all algebraic operations are given by the formulas

@1y 2y oey 2a) = g(15) 1<j<n),
or
f(wla Loy eeey xn) = a,
where ge¥ and aed,.

The proof of this theorem is presented in [11].

An algebra is said to be trivial if all algebraic operations are trivial.
Obviously, all trivial algebras are v-algebras (the case (iii) of the repre-
sentation theorem for one-element group ¢). Consider the two-element
set T = {0, 1} with the addition mod2. From the representation theorem
it follows that the following ten algebras are the only v-algebras over
the set 7': the trivial algebra ¥, P, = (T3 2+ y+2), 2, = (T;2+y+2+1),
Q, = (T; 24+, Q, = (T;2+1), Q, = (T;0), Q; = (T;1), R, = (T}
wt+y+1), R, = (T;2+1,0), Ry = (T;0,1). Moreover, dim< = dim P,
— 2, dimQ, = dimQ, = dimQ, = dimQ, = dimQ; =1 and dimN,
= dimR, = dimR, = 0.

3. v,-algebras. We start with some examples of v,-algebras. In this
section # will denote an associative ring with the unit element, without
divisors of zero, such that for every pair a, f of elements of # there exists
an element yeZ satisfying the equation a = fy or the equation f = ay.

3.1. Let A be a unital left-module over # satisfying the cancellation
law, i.e. a left-module satisfying for every xeA the condition lo =@
and such that for any aeZ (a # 0) and yeA the relation ey = 0 implies
y = 0. A submodule 4, of 4 is said to be divisible if for any aeZ (a # 0)
and aed the relation aaeA, implies the relation aed,. Given a divisible
submodule A4, of 4 we denote by A the class of all operations

n
n

fl@yy @y ouey xy) = Z Ayt a,
k=1
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where 2,, 25, ..., 4,eZ and aeA,. The algebra U — (4; A) is a v,-algebra
(see [9] and [14]). Moreover, if A contains at least two elements, then
A® 3£ 0 and A™ % A™Y (4 > 2). The algebra in question is an analogue
of the algebra (2.1). However, it may have no basis. For instance, as a ring
2 we take the ring %, of all rational numbers nf(pm-+1), where n, m
are arbitrary integers and p a fixed prime, under usual addition and mul-
tiplication. As the set 4 we take the set of all rational numbers. Setting
A4, = {0}, we get an algebra 2, in which every element different from Zero
is independent and every pair of elements is dependent. On the other
hand, the algebra A, is not generated by a finite number of elements.
Consequently, it has no basis and zero is the only self-dependent element.

3.2. Consider a unital left-module 4 over % satisfying the cancel-
lation law. A subset B of the Cartesian product Zx A is said to be admis-
sible if it satisfies the following conditions:

(i) <1,0)eB,

(ii) if (4, a)eB, then the element 1 is invertible in %,

n
() 3 pory gy ooy ey, Ypy =1 and hy, 3B (j=1,2, ..., n),
then 7=1

X midiy Y puiasdeB,
7=1 =1

(iv) if a, Ae, a + 0, aed and {1+ al—a, aayeB, then (1, adeB.
If 4, 1is a divisible submodule of A, then the set {1}x 4, is admissible.
Now we shall give a less trivial example of an admissible set. As the

ring # and the module 4 we take the ring %, considered in the preceding
example. The set of all elements

< pnt1l n—m N\
pm~+1" pm+1 "
where » and m are arbitrary integers is admissible (see [14], Section 2).

Given an arbitrary admissible subset B of Zx A we denote by A
the class of all operations

n
v

f('f'u17 632, ccey mn) B Z ﬂkwk+ a/,
k=1

where 2;, 25y uuy Aye?, aecd and (D %k, ayeB. The algebra 2 — (4; A)
K1

is a v,-algebra (see [147], Section 3). Moreover, if A contains at least two
elements, then A® = @ and A™ = A™D for 5 > 3. This algebra is an
analogue of the algebra considered in 2.2.

3.3. Let % be a semigroup of one-to-one transformations of a non-void
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set A into itself containing the identical transformation and satisfying
the following conditions:

(%) each transformation that is not the identical transformation
has at most one fixed point in A,

(#%) if g, goe? and g,(A) ~ gs(A) # O, then there exists a transfor-
mation ge% such that ¢, = g,9 or g, = ¢.9.

Let A, be a subset of A containing all fixed points of transformations
from & that are not the identical transformation and satisfying the con-
ditions g(4,) = 4, and {a: g(a)ed,} = A, for all ge&. If A is the class
of all operations f defined as

f(@1y oy oony Tn) = g(;) (1<j<n),
or

f(mlywm "-’mn) = a,

where ge and aed,, then the algebra 2 = (4; A) is a v,-algebra (see
[14], Section 3). Of course, A™ = A™" for all » > 1. This algebra is
an analogue of the algebra (2.3).

From these examples it follows, in particular, that the class of v,-al-
gebras does not coincide with the class of v-algebras.

REPRESENTATION THEOREM FOR 0,-ALGEBRAS. Let U be a v,-algebra.

(i) If A® = @ and AD # A®D| then A is a unital left-module satis-
fying the cancellation law over an associative ring # with the unit element,
without divisors of zero, such that for any pair of elements of # at least one
element s left-divisible by the other one. Moreover, there exists a divisible
submodule A, of A such that all algebraic operations are given by the formula

7

f(@yy ooy a) = Z}”kwk‘{'a’
k=1

where Ayy Aoy oooy AneZ and acA,.

(ii) If A9 =@ and A® = A®Y, then A is a wunital left-module
satisfying the cancellation law over an associative ring # with the unit ele-
ment, without divisors of zero, and such that for any pair of elements of %
at least one element is lefi-divisible by the other one. Moreover, there exists

an admissible subset B of #x A such that all algebraic operations are given
by the formula

n
f(wu Loy aney wn) - Z’lka”'k+a’7
k=1

n
where Ayy Agy eevy Ae®, aecA and () Ay, ayeB.
k=1



240 K. URBANIK

(iii) If A® = A®Y, then there is a semigroup & of one-to-one transfor-
mations of the set A into dlself containing the identical transformation and
satisfying the conditions

(%) each transformation that is not the identical transformation has at
most one fixed point,

(*%) if g.g2eS and g,(A)~ g,(A) # O, then at least one element of
the pair g,, g, is left-divisible by the other one. Morcover, there exists a subset
A, of the set A containing all fized points of transformations that are not
the identical transformation and satisfying the conditions g(4,) = A, and
{a: g(a)ed,} € A, for all ge such that all algebraic operations are given
by the formulas .

f(mumzw“:mn):g(wi) (1<j<n)
and
fl@y, 2,, ceny p) = @&,
where ge& and aeA,.

The proof of this representation theorem is given in [14].
As a consequence of the representation theorem for v.-algebras
we obtain the following theorem:

THEOREM 3.1. Finite v,-algebras are v-algebras.

Proof. Suppose that the algebra (A4; F) is a finite v,-algebra. In
the cases (i) and (ii) of the representation theorem for v.-algebras the set
4 is a unital left-module satisfying the cancellation law over a ring #
without divisors of zero. By the cancellation law for A the ring 2 is also
finite and, consequently, is a field. Thus in the case (i) the algebra (A4 ; F)
is a v-algebra. In the case (ii) the only admissible subsets of 2 x A are the
products {1} X 4,, where 4, is a linear subspace of 4, (see [14], Theorem
2.2). Hence it follows that in the case (ii) the algebra (A4 ; F) is also a v-al-
gebra. In the case (iii) the semigroup of one-to-one transformations of
the finite set A is a permutation group and, consequently, the algebra
(4; F) is a v-algebra.

THEOREM 3.2. Let (A; F) be a v,-algebra containing at least two in-
dependent elements. If every set of independent elements can be extended
to a basis, then (4; F) is a v-algebra.

Proof. The same reasoning as in the proof of the preceding theo-
rem shows that in the cases (i) and (ii) of the representation theorem to
prove our statement it suffices to prove that the ring # is a field.

Let a,, a, be a pair of independent elements of 4 and 1 an arbitrary
element of # different from zero. Obviously, the operation flz,y) = lz+
+(1—A)y is algebraic and depends on the wvariable z.

First we shall prove that the elements f(ay, a,) and a, are independent.
Suppose the contrary. Since v,-algebras are vi-algebras, we infer that
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either a,¢[f(a,, a,)] or f(a,, a,)e[a,]. Consequently, there is an algebraic
unary operation g such that either a, = g(f(a,, a,)) or f(a,, a,) = g(a,).
By the independence of a, and a, we get either g(f(x, y)) =y or f(x, y)
= ¢(y) for all x and y from A. Since f(x,z) = #, we have g(z) = z in
both cases. Consequently, f(x, ¥) = y which is impossible because f(x, y)
depends on the variable x. Thus the elements f(a,, a,) and a, are in-
dependent.

By the assumption the pair f(a,, a,), a, can be extended to a basis.
Consequently, there exists a system b,, by, ..., b, of elements of A for-
ming together with f(a,, a,), a, a set of independent elements and an
operation he A™*? guch that

a, = h(f(a’n @3)y Gy byy by ..o bn)-

Hence we get the formula

flay, a) =f(h(f(a’19 @2)y Gy byy by o.ny bn)1 az)-

Since the elements f(a,, a,), a,, b, b,, ..., b, are independent, the last
equation implies the equation

x :f(h(w’y,y’”-;y)’?])

for all #,yeA. Setting h(z,y,v,...,y) = ar+ py+a and taking into
account the formula f(z,y) = Ax+(1— A1)y, we have the equation

= Aax+ (14+ 18— A)y+ Aa

for all z, yeA. Hence,; by virtue of the cancellation law in A, we get the
equation Aa = 1. Since the ring # has no divisors of zero, the last formula
shows that each element A of # different from zero is invertible. Thus #
is a field which completes the proof in the cases (i) and (ii).

In the case (iii) to prove the theorem it suffices to prove that the
semigroup & is a group. Let a be an independent element of A. From the
definition of the set 4, consisting of algebraic constants for every ge%
it follows that g(a)¢ A, and, consequently, is not an algebraic constant.
Since v,-algebras are v;-algebras, we infer that g(a) is an independent ele-
ment. Thus it ean be extended to a basis. Consequently, there exists
a system b,, b,, ..., b, of elements of A forming together with g(a) a set
of independent elements and an operation ke A™*" such that a = h(g(a),
biybyy ..., by). In view of the independence of a the operation & is not
constant. Since in the case (iii) all algebraic operations depend on at
most one variable, there exists an element g,e.% such that either a = g¢,(b;)
for an index j (1 <j <m) or @ = g,(g(a)). In the first case g(a)e[b;],
which contradicts the independence of g(a) and b;. In the last case we
have, by the independence of a, the relation g, = 1. Moreover, g(a)

Colloguium Mathematicum XIV 16
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= g(go(g( ) which, by the independence of g(a), implies the equation
& = g(g,(x)). Consequently, gg, = 1. Thus each element of & is invertible
and & is a group which completes the proof.

It should be noted that the assumption that the algebra contains
at least two independent elements is essential. A simple counterexample'
can be constructed as follows. Let #, be the ring defined in the example
3.2, and let B be the set of all pairs

< pn+1  n—m >

pm+1’ pm+1,/"

where n and m are arbitrary integers. Let A be the class of all operations f
on %, defined by the formula

n

f(‘vn Lyy aeey Ty) = szmk'{‘aa
k=1

Where ayhyy Aoy eeny e, and <Zﬁk, ay eB. The algebra (%,; 4) is a Vy-

algebra in which every element is independent. Moreover, this a,lgebra,\_
is generated by every element and consequently, each one-point set is
a basis. Suppose that (#,; 4) is a v-algebra. Let 1 be an element of %,
different from zero. Of course, the operation Ar-+(1—A)y is algebraic
and the equation Jx+(1—2)y = 2z depends on the variable z. Conse-
quently, there is an operation ay- fz+y such that the last equation is’
equivalent to the equation x = ay+ fz+y. Hence it follows that the
equation A(ay+pfz+y)+(1—21)y = 2z holds for all y and z from Z,.
Consequently, A = 1 which shows that each element of %, different from
zero is invertible in Z,. But the prime p is not invertible in %#,. Thus
the algebra (#,; A) is not a v-algebra.

4. v*-algebras. We know that each wv-algebras is also a v*-algebra.
Now we shall give some other examples of v*-algebras.

4.1. All algebras in which all elements are algebraic constants are
v*-algebras. Moreover, these algebras are the only zero-dimensional
v*-algebras.

4.2. Let & be a semigroup with a unit element such that each non-
invertible element from . is a left zero-element. An n-ary operation f.
on & is said to be &-homogeneous if for every system a, a,, a,, ..., ay
of elements of % the equation '

flaya, asa, ..., 6,0) = f(@y, @3y ..., G3)@

hplds. It is evident that the composition of &-homogeneous opemtions‘:
is &-homogeneous. Moreover, the operations f(x) = ax (a<¥) are the only
&-homogeneous unary operations. : i
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Let F be an arbitrary class of #-homogeneous operations containing
all #-homogeneous unary operations. The algebra (&; F) will be called
an %-homogeneous algebra over <. 1t is very easy to verify that the left
zero-elements are the only algebraic constants. Moreover, each invertible
element is independent and generates the whole algebra. Thus each
&-homogeneous algebra over & is a one-dimensional v*-algebra.

4.3. A set 2 containing at least two elements with a multiplication
and a substraction operations is called a quasifield if it contains an element
0 such that 0a = a0 = 0, 2 {0} is a group with respect to the multi-
plication, and :

(1) a—0 = a,

(ii) \ a(b—b) = ab— ac,

(iii) a—(a—c¢) = ¢,

(iv) a—(b—c) = (a—b)—(a—b)(b—a)e if a #b.

In the last axiom (b—a)~! denotes the multiplicative inverse of b—a.
The notion of a quasifield was introduced by G. Gritzer ([1], Section 2)
and can be regarded as a generalization of the notion of a near-field, i. e.
the notion of an algebraic system in which all laws of a division ring
excepting the right-distributivity hold (see [2], Chapter 20, Section 4,
where the dual notion is used, namely the right distributive law is po-
stulated). In fact, if a©b is the substraction in a near-field 2 and w is
an arbitrary element of order two from the centre of 2, then 2 is a quasifield
under the multiplication and the substraction defined by the formula
a—b =aOb if @ # 0 and 0—b = bu (see [1], Theorems 3 and 4). From
results of Gritzer and M. Hall ([1], Section 2; [2], Chapter 20, Section 7)
it follows that each finite quasifield can be obtained in such a way from
a near-field. ' ‘

An m-ary operation f on a quasifield 2 is said to be 2-homogeneous
if for (very system a, b, a,, a,, ..., a, of elements of 2 the equation

fla—ba,, a—bay, ..., a—ba,) = a—bf(a,, asy ..., ay)

holds. It is evident that the composition of 2-homogeneous operations
is also 2-homogeneous. One can prove that the trivial operations are
the only 2-homogeneous unary operations. Moreover, the operations
flz,y) =2—(x—1¥y)a (ae2) are the only 2-homogeneous binary opera-
tions.

Let F be an arbitrary class of 2-homogeneous operations contai-
ning all 2-homogeneous binary operations. The algebra (2; F) will be
called a 2-homogencous algebra over 2. Since every pair of elements of 2
is a basis of (2; F) (see [1], Theorems 6 and 7), the algebra (2;F) is
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a two-dimensional v*-algebra. We note that all unary algebraic operations
in (2; F) are trivial.

4.4. Consider an algebra (¥; i, q"), where E is a four-element set,
the unary operation ¢ is an involution without fixed points and the ter-
nary symmetrical operation ¢* is uniquely determined by the condi-
tions ¢*(2,y,4(x) =y, ¢*(»,y,2) =« The algebra (E;i,q*) will
be called exceptional. 1t should be noted that the exceptional algebra
can be also defined in terms of Boolean operations. Namely, the set E
can be treated as a four-element Boclean algebra, i(x) = &', ¢" (v, ®,, ;)
= (T, ~ Xy~ Xy) U (T A By ~ Bg) U (B ~ Ty A Tg) U (2 ~ 2y ~a3) if all
elements x,, x,, x; are different and ¢*(z,, ©;, 23) = (¥, ~ Ty ~ X3) U
(@) A By~ 5) w (T, A Ty A X3) U (¥ ~ Xy ~ x3) in the opposite case.

It is every easy to prove that the involution ¢ is the only non-trivial
algebraic unary operation in the exceptional algebra. Moreover, there
is no binary algebraic operation in (E; ¢, ¢*) depending on every variable.
Hence it follows that the elements a,beF (a # b) are independent if .
and only if a ## 4(b). Furthermore, since the involution ¢ has no fixed
points, the algebra (E; i, ¢*) is generated by every pair of independent
elements. Consequently, the exceptional algebra is a two-dimensional
v*-algebra.

4.5. Let ¢ be a group of permutations of a set 4 and let 4, be a sub-
set of A containing all fixed points of permutations from ¢ that are not
the identity and which is invariant under all permutations from ¢. If 4
is the class of all operations f defined as

f(mlamzy---amn)::g(mi) 1<ji<n)
or

f(@1, Tgy .oy @) = @,

where ge% and aed,, then 2 = (4; A) is a v*-algebra. Moreover, dim 2
= t(A\A4,), where t(A\ A4,) denotes the cardinal number of transitive
constituents of AN A4, with respect to the permutation group %. This
example is an analogue of the example (2.3) of a v-algebra. The only
difference is that we do not restrict here the number of fixed points of
permutations from .

From these examples of v*-algebras it follows, in particular, that
the class of v*-algebras coincides neither with the class of v-algebras
nor with the class of v,-algebras.

REPRESENTATION THEOREM FOR v*-ALGEBRAS. Let 2 be a v*-algebra
of dimension at least one. Then one of the following cases holds.

(i) A is an F-homogeneous algebra over a semigroup & with the
unit element and such that each non-invertible element from & is a left
zero-element of .
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(ii) A is a 2-homogeneous algebra over a quasifield 2.

(iii) 2 is an exceptional algebra.

(iv) There exists a permutation group % of the set A and a subset A,
of A containing all fized points of permutations from % that are not the iden-

tity and which is invariant under all permutations from % such that all
algebraic operations are given by the formulas

f(wlawza---amn):g(m:i) (1 \<~J<")
and
f(@yy @y oevy @) = a,
where ge% and aeA,.
(v) 2 is a v-algebra.

For v*-algebras of dimension at least three one of the cases (iv) and (v)
holds.

Proof. The last assertion was proved in [12]. If 2 is a two-dimensional
v*-algebra without non-trivial unary algebraic operations, then every
pair of its elements is a basis. Consequently, by Gritzer’s theorem the
set 2 of elements of the algebra 2 is a quasifield and 2 is a 2-homogeneous
algebra over 2 (see [1], Theorems 8 and 9). Further, we have proved in
[13] that for two-dimensional v*-algebras with non-trivial unary algebraic
operations one of the cases (iii), (iv) and (v) holds. Consequently, to prove
the theorem it suffices to prove that for one-dimensional v*-algebras the
case (1) holds.

Let 2 be a one-dimensional v*-algebra and & its set of elements.
Let ¢ be an independent element of &. Since the one-point set {e} is a ba-
sis, to every element ae there corresponds one and only one unary
algebraic operation I, such that a = h,(e). Of course, the operation #h,
is trivial. We define a multiplication in % by the formula ab = #, (hb(e)).
It is very easy to verify that the set % is a semigroup under this multi-
plication and the element e is a unit element. Moreover, each algebraic
constant is a left zero-element. If a is not an algebraic constant and, con-
sequently, is an independent element, then there is a unary algebraic
operation g such that g(a) = e. Put a~! = g(e). Of course, a~'a — g(ha(e))
= g(a) = e. Moreover, h,(g(a)) = hy(¢) = a, whence, by the indepen-
dence of a, the formula h,(g(e)) = e follows. Consequently, aa-! = e
which shows that each non-constant element of the algebra is invertible.

Further, for any n-ary algebraic operation we have he equation

flay,y asy ..., ay) :f(ha]‘(e)y haz(e), XS] han(e))
which implies the #-homogeneity condition

flayy gy ...y a2)b = f(hq (hy(e)), ho, (Ro(e)), ..., ha,, (0 (e)))
= f(a,b, @b, ..., a,b).
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Consequently, 2 is an #-homogeneous algebra over #. The represen-
tation theorem for v*-algebras is thus proved.

- It is evident that each set of independent elements in a v*-algebra
can be extended to a basis. Consequently, from Theorem 3.2 we obtain
the following theorem:

TuroreM 4.1. If 2 is a v,-algebra and a v*-algebra simultaneously
and dim A > 2, then it is a v-algebra.

We note that the algebra (%,; 4), being an example for the essentiality
of the assumption that the algebras in Theorem 3.2 contain at least two
independent elements, is also v*-algebra. Consequently, the assumption
dim2 > 2 in the last Theorem is essential too.

Finally we note th&t each two-element algebra with at least one constant
algebraic operation is a v*-algebra. Of course, it suffices to prove this sta-
tement for algebras over the set T = {0, 1} regarded as a group under
the addition mod2. Taking into account that the operations 0,1, # and
z-+ 1 are the only unary operations in 7', we infer that each self-dependent
element in an algebra over T is an algebraic constant. Further, if an al-
gebra over 7' contains a constant algebraic operation and a is an independ-
ent element of 7', then the remaining element b of 7'is an algebraic constant
and, consequently, be[a]. Thus each algebra over T with a constant al-
gebraic operation is a v*-algebra.

We have seen in Section 2 that there are exactly ten v-algebras over
the set T. E. L. Post has proved in [10] (Chapter 23) that there are de-
numerably many different algebras over the set 7' with at least one con-
stant algebraic operation. Consequently, there are denumerably many
v*- algebras over the set 7. The trivial algebra over T is of course a two-
dimensional v*-algebra. The following three algebras are the only non-
trivial two-dimensional v*-algebras on the set 7' (see [6]):

P, = (T; s4+y+2), P*=(T;zy+yz+az),
P = (T; 2+y+2, zy+yz+2).

o The addition and the multiplication are here taken mod2. Further,
from Post’s results [10] it follows that the following seven algebras are
the only zero-dimensional v*-algebras on T':

R, = (T;o+y+1), Ry=(T;2+1,0), Ry=(T;0,1),
R, = (T;0,1,ay), Re=(T;20+1,ay),
R = (T; 0,1, 2y +2+y), R,=(T;0,1,ay+yz+22).
All remaining v*-algebras on 7T are one-dimensional.

5. o*-algebras. All v,-algebras and v"algebras are vy -algebras. Now
we shall give some other examples of vy-algebras.



LINEAR INDEPENDENCE 247

5.1. Let N be the set of all non-negative integers. We define two
unary operations f, and f, in the Cartesian product N X N by the formulas

Hp, @) =<p+1,05, [f.(Kp, ) =<p,q+1>.

Since f,(fy(®)) = f,(x), we infer that each unary algebraic opera-
tion in the algebra (NxXN;f,,f.) is of the form f(x) = fy(f"(x)) (n, m
=0,1,...), where f?(w) = fg(w) =2 and f?“(a)) :f](f?(w)) (." =1, 2;
n=0,1,...). Hence, by a simple reasoning for all ae N X N we get the
inequality f(a) # g(a) whenever f == g. Thus each element of N X N is
independent. Moreover, we have the equations

[T, @) = <y80 i r>p
and

2 1<p, ) =<(r,8> if r=p and s>q.

Consequently, for any pair of elements of N X N one element is generated
by the other one. Thus (N X N;fi,f.) is a vi-algebra.

Of course, each algebraic operation in (N XXN;f,,f,) essentially
depends on one variable. Since f,(f,(x)) = f,(x), the left-cancellation
law does not hold in the semigroup with respect to the composition of
all algebraic unary operations in (N X N; f;, f,). Consequently, the algebra
in question is a counterexample to a theorem formulated in [9] (Theorem
IV) that the left-cancellation law holds in the semigroup of non-constant
unary algebraic operations provided the algebra is a v;-algebra contain-
ing at least one independent element and all algebraic operations depend
on at most one variable (see [9], Correction).

5.2. Let & be a semigroup with a unit element satisfying the conditions

(%) for each pair of elements of & at least one element is right-
divisible by the other one,

(#x) if a,b,ce, a # b and ac = be, then ¢ is a left zero-element.

Let (#; F) be an .#-homogeneous algebra over &, i.e. the class F
of fundamental operations consists of #-homogeneous operations and con-
tains all unary #-homogeneous operations f(z) = ar (ae?). It is very
easy to verify that the left zero-elements are the only algebraic constants.
Moreover, each element which is not a left zero-element is independent
and for each pair of elements of ¥ at least one element is generated by
the other one. Furthermore, the unit element is a basis. Thus (&; F)
is a one-dimensional v;-algebra. This example is an analogue of the example
4.2. of v*-algebras.

The product N X N of the set N of all non-negative integers is a semi-
group with the unit element satisfying conditions (*) and (*%) with respect
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to the multiplication
ptr,gy U g=0,

b} 7’78 - A
R P R

If F is the set od all unary N X N-homogeneous operations, then
the algebra (N XN ; F) and the algebra (N X N;f,,f.) considered in 5.1
are identical.

Now we shall prove that each one-dimensional vi-algebra in which
every pair of elements is dependent is an -homogeneous algebra over a semi-
group & with the wunit element and satisfying the conditions (x) and (#x).

Let 2 be a one-dimensional vi-algebra in which every pair of elements
is dependent. By & we shall denote the set of elements of the algebra 2.
Let {e} be a one-point basis of 2. To every element a of & there corresponds
one and only one unary algebraic operation h, such that ¢ = h,(e).We
define a multiplication in % by the formula ab = ha(h.b(e)). It is evident
that the set & is a semigroup with respect to this multiplication and the
element e is the unit element. Let a, be¥. Since every pair of elements
of # is dependent, there exists an algebraic unary operation g such that
a = g(b) or b = g(a). Setting d = g(e), we have db = g(hy(e)) = g(b) = a
or da = g(ha(e)) = g(a) = b respectively. Consequently, condition (x)
is satisfied. If @ # b and ac = be, then h, # hy and h,(¢) = hy(c) which
implies that the element ¢ is an algebraic constant. Consequently, the
operation . is constant and for any element we% we have the equation
o = hc(hu(e)) = ¢. Thus the element ¢ is a left zero-element of . which
completes the proof of the condition (s). Further, for any n-ary algebraic
operation f we have the equation

f(a17 Qgy evvy Oy) = f(hal(e)7 ha2(3), weey han(e))
which implies the %-homogeneity condition
flay, agy ..., a,)b = f(hal(hb(e)), hay (i (€)), -+ ha, (Ru(e)))
= [l b, @aby vus y Gyl )s

Consequently, 2 is an %-homogeneous algebra over .

5.3. Let w be a one-to-one mapping of all ordered m-tuples (m = 2)
kyy ksy ...y ky, of different non-negative integers into the set N of non-
negative integers satisfying the condition

(5.1) W(kyy Ky oery kim) > ke (s =1,2,...,m).

For instance, as a mapping w we can take the mapping

W(kyy Koy onny B) =p’f‘p’§2...p,’§,m,
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where P, Pay..., pm are primes. We extend the mapping w over all
m-tuples of non-negative integers by setting w(k,, Egs sy hom) = Iy T
all remaining cases.

We shall prove that the algebra (N;w) is a vi-algebra. First we
‘shall prove an auxiliary Lemma.

LEMMA. Let ay, dy, ..., @, be a system of elements of N. If f is an
n-ary algebraic operation in (N;w) satisfying the condition

(5.2) f(a'u“za-=-yan)¢[a'27a3:-”:a'n]7

then the inequalily f(ay, @y, ..., @) = a; holds.
Proof. The class A™ of all n-ary algebraic operations in (N;w)

(e e)
is the union 4™ = | J A", where the classes A} are defined recursively
© k=0

as follows
AP = (™, e, ..., e,

A(I:Ql = A" {w(f1yfas ---afm):f:r'EA(kn): j=1,2,...,m} (k=0,,...)

(see [5], p. 47). Let f be an operation from A satisfying condition (5.2).
We shall prove the Lemma by induction with respect to k. If k = 0,
then, in view of the assumption (5.2), f = e and, consequently, f(a,,
@gy ...y Gy) = a;. Suppose now that the Lemma is true for all operations
from A{" satisfying condition (5.2). Let f be an operation from A7), satis-
fying condition (5.2). There exist then operations fy,fs, ..., f. from
A" such that

(5.3) S(@1y Zay vy X0)
= W(f1 (L1 Bay ovey Tn)y F2 @1y Loy ooty Zn), ---:fm(mly Loy eeny -”Uw,))-

Suppose first that all elements f,(a,, @y, ..., @), fol@y, @y ooy @), ...
veey fn(@yy @y, ..., @) are different. Then, by the condition (5.1), we have
the inequality

(5.4) flay, agy ooy @n) > fi(@y, Gy ooy @n) (j=1,2,...,m).

Furhter, from the condition (5.2) and from (5.3) it follows that f.(a,,
Gy veey Gy)¢[Asy Agy ..., a,] for at least one index r. Since f.e A7), we have,
by inductive assumption, the inequality f.(@,, @, ..., @) > @, which,
in view of (5.4), implies the inequality f(a,, @z, ..., an) > ;.

Suppose now that at least two elements among fi(a;, @y, ..., @),
fol@yy @oy ooy @)y oovy fi(@y, @, ...y ay) are equal. Then, by (5.3) and
the definition of the fundamental operation w, we have the equation

f(al, a27 ceey (ln) :fl(al, az, reey aln)b

Moreover, fi(dy, dsy ..., ty)¢[dgy Asy ..., @] Since fie A", we have, by
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the inductive assumption, the inequality f,(a,, as,,..., a,) > a, and,
consequently, the inequality f(a,, a,,..., a,) > a, which completes the
proof.

Now we shall prove that the algebra (N;w) is a v}-algebra. It is
evident that all (m—1)-ary algebraic operations in the algebra (N; w)
are trivial. Hence it follows that each (m— 1)-element set is independent,
Suppose that » > m and the elements a,, a,, ..., a, are dependent. Con-
sequently, there are two different n-ary algebraic operations f and ]
such that

(5-5) f(aua’zy'--ran):g(alyam---ya’n)-
- Suppose that f, geA!™. We shall prove by induction with respect
to k that there exists an index j (1 < j < n) for which a;¢[a,, a,, .

@1y ooy On).

If k=0, then f = ¢{" and g = ¢, where the indices i and j are
different because of the inequality f # g. Hence and from (5.5) it follows
that a; = a; and, consequently, a;¢[a,, ay, ..., a;_,, B 150wy Big s

Suppose now that our statement is true for operations f, g from
AfD. Let f, ge A{"),. Of course, without loss of generality we may assume
that f¢A%Y. Consequently, there are operations fy, fy, ..., fm belonging
to A% such that

(5.6) f(@y, @,y ..., )
e w(fl(mn Ty eeny Tn)y [l @1y Tayoeey @n)y oony fin (1) gy ..o, “’n))
Since f¢A}”, all the operations are different. If for a pair i, j of
different indices the equation :
filay,y agy ..., ay) = fi(ay, ag, ..., ay)

holds, then, by inductive assumption, one element among a,, a,, s Sy iy
is generated by the other ones. Consequently, we may assume that all
the elements f)(ay, @y, ..., an), fo(ay, @y, .oy @n)y o.ry frulay, aq, .evy Qp) are
different. Thus, in virtue of (5.1) and (5.6), we have the inequality

(5.7) Jay, asyeey @) > filay, gy ...yan)  (6=1,2,...,m).

First consider the case geA". Without loss of generality we may
assume that g = e{™. Thus, by (5,5),
(5.8) flay, as, ... an) = a,.

Suppose that f(a,, a,, ..., a,)¢[a,, as, ..., a,]. Then fi(a,, a,, ..., a,)
¢[as, ag, ..., a,] for an index j (1 <j < m) and, consequently, by the
Lemma, f;(a,, as, ..., a,) > a,. Hence and from (5.7) we obtain the
inequality f(a,, a,, ..., a,) > a, which contradicts (5.8). Thus flag,
Azy +-+y On) €[z, ag, ..., a,] and, consequently, by (5.8), a,e[a,, ay, ..., a,].
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Now consider the case g¢A(”. Since, by the assumption, geAf?),,
there exists an index r (1 <7 < k-+1) such that ge A"\ A{",. Conse-
quently,

(5.9) g(®yy Zay --ey Tn)
== w(91(3717w2a ooy @n)y Jo(®1y Loy oory Tn)y oeny Im (T15 Xay o eey wn))y

where the operations g, gs, ..., m are different and belong to A™,.
If for a pair ¢, j of different indices the equation

gi(ay, agy ..., an) = Gi(@1y Agy oo vy ay)

holds, then, by inductive assumption, one element among ay, @a, ..., Ay
is generated by the other ones. Consequently, we may assume that the
elements ¢, (@, @y vy @)y Jo(Ary Gayovvy An)yvey Gin (@1 y Ggy ..., ayp) are dif-
ferent, Since, by (5.5), (5.6) and (5.9),

w(fl(“l? Aoy ooy Op)y follyy By onny An)y ooy frn(@ry Gy ney a’n))
= w(gl(au Gy oevy Un)y Gallyy oy oeny @n)yoeny Im(@ry Aoy oeey a‘n))

and the mapping w is one-to-one on m-tuples of different elements, we
have the equations

(5.10) fil@yy Qgy oeny @) = Gi(Gyy Ggy oeny Qy) (F =142y sauyM).

Further, the inequality f ## g yields, by (5.6) and (5.9), the ine-
quality f; # ¢; for an index . Since both operations f; and g; belong to
A", we infer, in view of (5.10) and the inductive assumption, that one
element among a,, @y, ..., a, is generated by the other ones which com-
pletes the proof that (N;w) is a vi-algebra.

From the representation theorems for v-algebras, vy-algebras and
v*-algebras it follows that for any algebra belonging to one of these three
classes, containing at least one independent element, and satisfying
the condition A® = A®Y every algebraic operation essentially depends
on at most one variable. The algebra (N ;w) shows that for vy-algebras
the situation is quite different. Namely, each element of N is independent
and all (m—1)-ary algebraic operations are trivial but the fundamental
m-ary operation w depends on every variable.

5.4. Consider an absolutely free algebra (A; F) with an arbitrary
generating set and an arbitrary seb F of fundamertal non-constant free
operations (see [3], p. 157). The set A is the set of all words. We note that
the algebra (A4; F) has te following properties:

(i) if @y, @gyeeey Ony D1y Doy ooy bned, f, g are m-ary and m-ary ope-
rations from F and (@, Gay vy @) = G(byy bay oovy bu), then n = m,
f =g and a; = b (1 =1,2, ey M)y
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(i) if A is any m-ary algebraic operation depending on the first va-
riable and different from e{™, then for any system a,, @y, ..., a,eA the
inequality h(a,, a,,...., a,) # a, holds.

We shall prove that absolutely free algebras are vi-algebras. This
example of vj-algebras was suggested to me by K. H. Diener.

We shall use in the proof the decomposition of the class A™ of
n-ary algebraic operations into the classes ALY defined recursively as

follows:
A = {ef™, &M, ..., &M,

Agc@l - l(cn)u {f(fl?fza '“7fm):f€F’f'i5Al(cn)7 .7 =1, 2: seey m}

(see [5], p. 47).

First we shall prove that every element in the absolutely free algebra
(4; F) is independent. Suppose the contrary. Given a dependent element
aed, we denote by » the smallest index for which there are different al-
gebraic operations f and g belonging to A" such that f(a) = g(a). Of
course, » > 1 and, consequently, there are operations f,, goe ' and ope-
rations fi, fay oevy fus 01y Goy ovvy Gne ALY, such that
f(x) :fo(fl(m)yfz(w)a---;.fn(m)) and  g(x) zgo(gl(w)ygz(x)’---rgm(m))'

From the equation

fo(fl(a'),fz(a); ) n(a’)) = go(gl(a’); g:(a), ..., gm(a))

and the property (i) it follows that n — m, fo =g, and f;(a) = g;(a)
(j=1,2,...,n). Since f +# g, we have the inequality f; # g; for at least
one index 4. But f;, g;e A", which contradicts the definition of the num-
ber r. Thus every element of A is independent.

Let ay, a3, ..., a, (n > 2) be a system of dependent elements. There
are then two different n-ary algebraic operations f and g such that

(5.11) f(auaz’n-’an)=g(a’17a2’-°-5an)-

Suppose that f, geAgc“’. We shall prove by induction with respect
to k that there exists an index j (1 < j < n) for which a;e[a,, a,, ..., a;_,,
@ip1y oeey a’n]'

If £ =0, then f = ¢{™ and g = ¢{™, where the indices ¢ and j are
different because the inequality f = g. Hence and from (5.11) it follows
that a; # a; and, consequently, a,¢[a,, Aoy eeny Bi_qy Wjyqy eney Oyl

Suppose that our statement is true for operations f, ge A, Let
[y geAf),. Without loss of generality we may assume that fe A, Conse-
quently, the operation f is non-trivial. Suppose that geA{. Without loss
of generality we may assume that g = e{"). Thus, by (5.11), flay,y ayy ..., ay)
= a; which, by the property (ii), implies the independence of the opera-
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tion f on the first variable. Consequently, a, = f(as, a,, as, ..., a,) €
[as, as, ..., ay].

Suppose now that g¢ A{™. Thus the operations f and g can be written
in the form

J(@1y @ay ooy @)

=fo(f1(w1a Doy eevy Bn)y Fo(@1y Doy eeey Tn)y oney fo(@1y Ty o ony w'n));
g(@1y Zay oevy Tn)

= 90(91(“’17 Loy eeey @)y Ja(Pry Tay eovy Tn)y ooey Jo(@1s By oo ey mn))y

where fo, goeF' and fi, fay ..y foy 915 92 coey §geAYY. By (5.11) we have
the equation

fo(fl(a17 a27 LR | a’ﬂ«)’fz(al’ a’25 ey an), “'7f1’1(a'17 a2’ MR | a'l’l))
= go(gx(ala Aoy evvy On)y Gal@ry Aoy ouvy @)y ooy Go(yy Aoy .o ey an))

which, in virtue of the property (i), implies the equations p = ¢, fo = g
and f;(ay, Ggy ..oy @) = gi(Qy, Ggy ...y @) (j =1,2,...,p). Further, the
inequality f # g yields the inequality f; # g; for an index 4. Since both
operations f; and g; belong to A", we infer, by the inductive assumption,
that one of the elements a,, ., ..., a, is generated by the others which
completes the proof. Thus each absolutely free algebra is a vy-algebra.

All these examples of v}-algebras have extremely different algebraic
structure. Thus the representation problem, which is still open, seems
to be rather difficult (P 529).

We note that some conditions imposed on a vx-algebra imply that
it must be a v*-algebra. Namely, the following two theorems hold.

TuroreM 5.1. Each finite vi-algebra is a v*-algebra.
This result was proved in [9] (Theorem III).

TuroreM 5.2. If 2 is a vi-algebra in which every set of independent
elements can be extended to a basis, then 2 is a v*-algebra.

This assertion was proved under an additional assumption that |
possess a finite basis ([9], Theorem (ii), p.124). Theorem 5.2 gives an
affirmative answer to a question raised by Narkiewicz in [9] (p. 124).

Proof. By the definition of vi-algebras each self-dependent element
in 2 is an algebraic constant. Suppose now that the elements a,, a,, ..., @,
(n > 1) are independent and the elements a,, a,,..., 0y, @y, are de-
pendent. To prove the theorem it suffices to prove the relation a, ,,€[a,,
s, ..., a,]. By the definition of vj-algebras there exists an index j (1 <j
< m+1) such that aje[ay, gy ooy Gy, Gjpqyeeny Oyyq]e I j=n+1, then
the theorem is proved. Consider the case j < n. Without loss of generality
we may assume that j =1, i. e. a,€[asy @3y ..oy Gpy Byiq]- Consequently,
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there is an n-ary algebraic operation f for which the equation
(5.12) a, = f(@y, a3, ..., ay, U 41)

holds. The set {a,, a,, ..., a,} of independent elements can be extended
to a basis. Consequently, there exists a system byy by, ..., by, forming
together with a,, a,, ..., a, a set of independent elements and an (n+m)-
ary algebraic operation g such that

(5-13) A1 = G(@yy Qayenvy @Gy by, by, ooy by).
Setting
(5.14) c=g(a’uazy-'-!a'nyanya’nr"'7an)a

we have the relation
(5.15) celdy, Gyy ooy 0, ].
From (5.12) and (5.13) we get the equation

a, =f(a'2: A3y eeny Opy §(@1y Bayovvy @yy byy by, .., bm))

which, in view of the independence of a,, A3y -evy Apy byy by ooy by, implies
the equation S

a, =f(a'2, Ay enny Oy §(Ag, gy .uvy @y, Ay Gy ooy an))
Thus, by (5.14)
(5.16) a; = f(@z, 3, ..., Gy, ¢)
and, consequently, by (5.15),
(5.17) [alya’za'--sa’n] =[c,a2, Agy eevy Oy ).

From the definition of v}-algebras it follows that the set {c, a,,
@3y ...y @,} contains a subset F such that [E] = [c, ay, a3,y ..., a,] and E
is either empty or consists of independent elements. Since, by (5.17),
[E] = [a,, ay,...,a,] and the elements @y @, ..., @, are independent,
we infer that the set E is non-void and, consequently, is a basis of [a,,
@y, ..., a,]. It is known that all bases of a vi-algebra have the same car-
dinal number (see [9], Theorem I). Thus the basis B consists of # elements
and, consequently, F = {c,a,, a,,..., a,}. Hence, in particular, the
elements ¢, a,, ag, ..., a, are independent. From (5.14) and (5.16) we
obtain the equation g
|

¢ = g(f(afzy Agy euny Qpy C)Agy Qgy vuny Gy Ay, Ay oeny an)

which, by the independence of ¢, a,, as, «vvy Oy, implies the equation

Api1 = g(f(afzy A3y eony Qpy 9’n+1): Doy gy evny Wy Ay By .o a’n)- i
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Hence and from (5.12) and (5.14) we get the equation

Uiy = G(Br; Ogyanny Oyy Oy Oy ooy a,) = c.

Thus, by (5.15), @y, €[ay, a,, ..., a,] which completes the proof.
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