COLLOQUIUM MATHEMATICUM

XIv WARSZAWA — WROCLEAW 1966

GENERAL ALGEBRAIC DEPENDENCE STRUCTURES
AND SOME APPLICATIONS*
BY

V. DLAB (PRAGUE)

Here, we introduce a set-theoretical scheme of algebraic (1. e.
of finite character) dependence, which is general enough to accomodate
previously investigated concepts of dependence (or independence). An
attempt to treat algebraic dependence axiomatically was made with the
introduction of GA-dependence structures in [1]. The primitive notion
was there the relation “an element depends on a set”, i. e. a binary re-
lation between the given set and its power-set. In the first part of the
present paper we generalize some ideas of [1] and introduce the concept
of an A-dependence structure in terms of a relation of the mentioned
type, in terms of a closure operation, and in terms of a family of independ-
ent sets. Next, the translation of the notions into each other is described.
Accordingly, in the second part aiming to derive the concept of rank
(dimension) and to show the relations to some earlier results, two parti-
cular types of A-dependence structures are defined and studied in terms
of independent sets. Finally, some applications of the theory are given
in the last section.

Let S be a given set, P&§ its power-set and # the subfamily of its
all finite subsets. # and X denote always an element and a subset of §,
respectively.

A subfamily # of P&§ satisfying the conditions

(f) VI € X A FeF - Fed) > wef
and
(m) X, X, A XyeF = X, S

is said to be an A-independence mnet of S.

* Presented to the Conference on General Algebra, held in Warsaw, September
7-11, 1964.



By a relation o on S we understand a subset g of the cartesian product
SxP8S. For a relation p on 8, define the subfamily .#, =€ PS of o-inde-
pendent subsets by

(0 — F) XeJ, & Yr(rxeX = [2, X  (2)]¢0).
Two relations o, and p, on S are said to be associated or similar if

Sy = Iy

or ,
'I'.gﬁX = ([ilT, IY]EQl - [:ljs Xv]£@2)0
respectively.
A relation ¢ on S satisfying the following three conditions:

4

(F) [, X]ep > JF(F = X A FeF A [z, Fleo),
(M) X, X, A [, X ]eo — [z, X.]ep,
and

(E,) @ ¢X A XEJQ A [, X]¢9 Ay, X o (®)]eo = [@2, X U (2,)]€0,

is called an A-dependence relation on S. In this case, the corresponding
subfamily #, is an A-independence net of S. The relation o is said to be
proper or regular if, moreover,

(I) reX = [x, X]eo
or
(R) o¢X A (2, X)eo = JIUI € X A [eF, A |2, []eo)

is satisfied, respectively.

Evidently, a relation ¢ on S can be fully described by the following
mapping 2, of S into PP S:
(2,) XeD,(r) < [x, X]ep.

A relation ¢ is an A-dependence relation on § if and only if the map-
ping %, possesses the following properties:

(F¥) Xe@,(x) = JF(F < X A FeF A Fe2,(1)),
(M?) X, X, A X,e9,(x) > Xye D,(x),

and

(EZ) 2dX A Xef, A X U (@)¢F, = XeD,(x).

Consider also the mapping 27 defined by
(28 XeF(x) = JIT = X A 2dl A 1eF, A [z, 1]ep).

When a relation ¢ on S satisfies (M), we deduce 2F(z) = Z,(x)
for every xeS. Also, if g, and o, satisfy (M) and (E,), then .@g coincides
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with @R if and only if o, and p, are associated. A similar characteriza-
tion for 0, and ¢, to be similar can be given. Since, for an A-dependence
relation o on §,

2éX A Xef, = ([, X]eo = X © (2)¢S,),

the mapping .@f is uniquely determined by the corresponding family
of p-independent sets .#,: :

XedB (@) o JIT < X A agl A let, A L o (2)¢S5,).

For a mapping ¢ of P8 into PS8, define the subfamily . = PS
of C-independent subsets by

(C — #) Ief, > Y X(X <1 A lcOX) = X == I}.
If the four énnditions
() C(X)e U o,
FcX
FeF
() X,c X, = CX,) € C(Xy),
(e,) Xef, A 1y GC(JY v (25))\O(X) = e O0(X © (2y)),
and
(t) X € 0(X),

are fulfilled, then € is called the A-dependence closure operation in 8.
Then, #, is an A-independence net of S. Also, for such an 4-dependence
closure operation
cH=I1ov U Ivl(x)
Iu(x)es,

holds for every Ie#,; hence, C is uniquely determined by .. on ...

The following theorem extends the previous results and describes
the relation between any two of the following concepts of the A-depend-
ence structure (S, o), (8, C) and (8, ), where o, ¢ and .# are an A-de-
pendence relation on S, an A-dependence closure operation in § and an
A-independence net of S, respectively.

TarorEM. To any A-dependence relation o on S there corresponds
a well-defined A-independence net 5, of 8. On the other hand, to any A-in-
dependence net of S there corresponds a set of (associated) A-dependence
relations on S which form, under the natural operations of join and meet,
a lattice L with infinite joins and O. The lattice L splits into convex sublat-
tices of similar relations, the greatest element of each of these sublattices
being the corresponding proper relation. The correspondence, in which every
element of such sublattice is mapped into the corresponding greatest element, is
a lattice-homomorphism of L onto the sublattice L, of all proper relations
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with the ideal of all regular relations. Denoting by 1 , O, and O the greatest
element of L, the least element of L, and L, respectively, we have
Dy () = 2% (@) o (PS\F) w L(2),
Do, (®) = Z¥(x) w P (2),
Do (@) = 2"(2),
where & (x) is the subfamily of all subsets X such that xeX.
As a consequence, for any A-independence net of 8, there is a wniquely
determined proper regular A-dependence relation on S.
' To any A-dependence closure operation C in S there corresponds
o well-defined A-independence net #, of S. On the other hand, to any
A-independence net of S theve corresponds a lattice of A-dependence
closure operations in S which is isomorphic to the correspoding lattice
L, of all proper A-dependence relations. The least eleinent of this lattice
is the corresponding Schmidt’s “mehrstufiger Austauschoperator” (see [11]).

Now, let us consider a (fixed) A-dependence structure (8, .#) with
the closure operation O, :

Coly =1o U Io(a)

for every [e#(U,(I) is the greatest subset X of S such that / < X and
IS X cX= X¢F) (). Define the subfamilies % and *¢ of the canonic
and strongly canonic subsets by

(6) 1e€ < IS AYX[XeF AT < O(X)A X cC) = C() e O(X)]
and
(*%) [ - TefAYX[Xeh AT = O(X) = 0(]) € O(X)],

respectively. Clearly, "¢ = ¢ < .#; in general, ‘¢ ~ €. Also, define
the family .# of all mawimal subsets of 8§ by

(A) leh < 1es A C(I) =8,
and the family # of all bases of § by
(#) B=M~C =M "F.
Let us introduce, moreover, the relation ¢ = # x.# defined by
(&) [Iy, Ly]ee = 1, = C(L,) A I, < O(1,).

When restricted to % x%, the corresponding partial relation &g
is evidently an equivalence.

1) Since there is no danger of confusion, we simply write C(I), €. ¢. &
8 Pl
instead of Cy(I), %y, €y, .#45 cte.
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For any I, and [,e# with I, < O(l,), there exists I, = I, [,
such that I, v Iye.# and [I, v Iy, I,]ee. From here the first part of the
following lemma, which can be interpreted as a generalization of the
Steinitz’s Exchange Theorem, follows readily:

LEMMA. I, efAleIN[I,I,]ee >

(1) Volpe NIy = J1,(0 # I, = I, I, A|(I, (@) v Iy, L] €e)|;

(ii) eard (I, I,) < card(I,\ I,).

[Mence, we get immediately the following theorem and corollary:

THEOREM. [,ef A 1,e€ A I, = C(1,) = card(]l,) < card([,).

COROLLARY. I e A I e A Iye# = card(l,) < card(l,) = card(I,).

As a consequence, we are able to define the rank of any A-dependence
structure whose family of bases is non-empty as the common cardinality
of its bases. In accordance with [1] and the “classical” theory of linear
independence we define GA-dependence structures and LA-dependence
structures in the following way: (8§,.7) is said to be a GA-dependence
structure if there exists a subfamily #* of ¥ such that €* ~ 2 = €* ~ #
# O and

L,el, a I, = I,¢%".

If, moreover, # = .#, then (8§, ) is called a LA-dependence structure.
In fact, in view of the following theorem, the mere assumption # — #
implies that (S, .#) is a LA-dependence structure.

THEOREM [4]. B = M = € = °C = 4.

Let us point out that the A-dependence structure (8,.#,), where g
is an A-dependence relation on S satisfying

(T,) ¢ Xy A XpeIy A XeF, A [2y, X]ep A YVa(reX = [, X,]e0) =
= [@y, Xoleo,

is a LA-dependence structure. In particular, the A-dependence structure
(S, ;) corresponding to a linear dependence relation 6 ([12] and a series
of papers generalizing the theory to infinite case), i. e. a proper regular
A-dependence relation ¢ on S satisfying (T,), is a LA-dependence structure.
On the other hand, to any LA-dependence structure (8§, .#) there exists
a lattice of A-dependence relations with (T,) and a uniquely determined
linear dependence (in the correspondence described in our first theorem).
There is a similar correspondence between GA-dependence structures
and GA-dependence relations of [1].

The LA-dependence structures can be characterized in various
ways. Some of such characterizations (cf. [4], [6], [9], [10] and [13])
are included in the following theorem the proof of which is — on the basis
of our theory — quite simple.
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THEOREM. For a given A-dependence structure (S,.7), the following
conditions are equivalent:

(#€)
(%)
(F°%)
(°6)
(FN)

(A7)

(")
(#3)

(™)
(H3)

ﬁ == (g'

;
I ~F S,

;

Lef A" F AT o()dédF AT o (X)dF A By Xy N Xgel =

= (I (25)) w (#) v ()¢5

Ted AT o ()¢5 AT O (@)4F A&y # @y A gel = (I (55)) v
w (@) v (@) ¢S5

lief ~nF A lyeI ~F A card(l,) < card(l,) =

> Ju(rel, NI, A I, o (®)ef);

Iied A lyed Acard(l)) < card(l,) = Ju(zel, I, A I, w (x)ef);
lLief " F AN Lyef "F A [1,I]ee A 2yel, N1, >

=> Jaa(@aeI, NIy A (Iy\(21)) w (T5) ef) (%);

Lief A Liesf A [Iy, Is)ee A @el, I, = J@s(wael,NI; A

(L (1)) w (22) eF) (2);

Liedt A Lyl N wyely = Jug(wgel, A (I (2y)) © (@) )5
Leth A Tyetd A X, I, =

= JX,(X, = I, A card(X,) = card(X,) A (I,\X,) v X,c.#);
Iiedt Nyedl Aayel, Iy=Jas(weels™ T, A (T (2))) © (2,) € M);
lie#l A Iyed N X, I, 1, =

= JX,(X, € I,~ I, A card(X,) = card(X,) A (I; X,)v X,edl);
Liel ANlgedd Axyely Iy=Jay(@weely~ Iy A () w (I (wz))e./ﬂ);
Lie# N Iyedd N X, € 111, =

= J XX, I, I, A card(X,) = card(X,) A X, v (I,\ X,)eM).

As to the applications, our theory covers besides the classical con-
cepts and theories of dependence in algebra and geometry also the con-
cepts of dependence in abelian groups (discussed in [1] and [2]) and in
lattices, as well as the Marczewski’s concept of independence introduced
in [8]. It can be applied also to the study of linear combinations — e. g.
in abelian groups — bringing some results on generating systems. Also,
on the basis of our theory, the rank of a (non-commutative) group &

(%) In fact, [(I; (@) v (xy), f{]ee.
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can be defined (cf. [7]) provided (i) there is a subset K in G such that
{K}y = (, and (ii) for every ge K, {g}» does not contain an infinite direct
product of non-trivial normal subgroups of G (here {K}y and {g}y denote
the normal subgrups of G generated by K and g, respectively). Perhaps
the following two results deserve to be mentioned here, too; they represent
a part of an application of our theory to modules (see [3]) which generalizes
the results of Kertész [7] and Fuchs [5]. Let R be an (associative) ring
with identity and M a (left) module over R. A subset X of M is said to
be independent if every relation -

n
Nz =0  with L eR and ze X
A

=1

implies Z;x; = 0 for each ¢ = 1,2, ..., n. The family of all independent
subsets of M is an A-independent net and thus every module over an
arbitrary ring R is in this way an A4-dependence structure. A ring has
the property that every module over R is a (GA-dependence structure
if and only if, for every proper left ideal L of R, there exists o¢ L such that,
the quotient ideal L: ¢ is irreducible. Finally, a ring R has the property
that every module over R is a LA-dependence structure (and thus, any
two its maximal independent subsets have the same cardinality) if and
only if every left ideal L of R is irreducible, i. e. if and only if the family
of all left ideals of R is a chain.
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APPENDIX

In her lecture, Miss K. Szodoray (this volume, p. 360-361) has pre-
sented an attempt to give an axiomatization of an (infinite) LA-depen-
dence structure in terms of bases (i.e. maximal independent sets).
Here we offer the following solution of this problem (to be published
under the title Axiomatic treatment of bases in arbitrary sets in Czecho-
slovak Mathematical Journal):

Let 8 be a given set. A non-empty family .# of subsets of 8 is called
an A-independence covering of S if .# possesses the following properties:

(#,) No proper subset of an element of .# belongs to .Z.

(M) A set which is not contained in any element of .# possesses
a finite subset with the same property.

The concepts of an A-dependence structure (8, .7), where .# is an
A-independence net of S, and the concept of an A-dependence structure
(&, A), where .# is an A-independence covering of S, are equivalent,
the equivalence being established by the mappings

(F — MH) Meitly, = MeI A YX(X2 M = XdF)
and
(A — F) . ledy<=>JM(M=21 A Med).

The A-dependence structure (S, .#) is said to be a LA-dependence
structure if (S, .# ,) is an LA-dependence structure.

Now, let (§,.7) be an LA-dependence structure. Then, moreover,
My satisfies (#), (M*), (A**) and (M), H}), (A}¥) of the preceding
paper where, instead of .#, .# ; should be read. On the other hand, the
following theorem can be proved:

Let A4 + O be o family of subsets of S satisfying the properties of one
of the following groups:

(1) (A1), (#y), (A);
(1) (A1), (Ms), (My);
(iii) (A,), (A7T);
(iv) (), (M3);
(V) (As), (A™);
(Vi) (Ay)., (477).
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Then (S, .#) is an LA-dependence structure (and, hence, .# satisfies
all the other properties).

The following two results (see my paper The réle of the “finite character
property”™ in the theory od dependence, Commentationes Mathematicae
Universitatis Carolinae b, 1 (1965), p. 97-104) relate to one of the problems
mentioned by Prof. R. Rado in his lecture (this volume, p.257-264):

Let a relation o on 8 satisfy (1), (E,), (T,) and (M). If a finite maximal
o-independent set exists, then all maximal p-independent sets are finite
and have the same number of elements. On the other hand, a family
(2L,), ., of infinite cardinal numbers being given, there is a set § and a re-
lation ¢ on 8 satisfying (1), (E) and (T) ((E) and (T) are the properties
(E,) and (T,), respectively, without the restriction Xe#, and X,e4,)
such that a family (M,),., of maximal p-independent sets exists with

card(M,) =2, for each yel.

¥ ¥

Regu par la Rédaction le 6. 2. 1965
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