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1. In the first edition (1930) of his Moderne Algebra [10] van der
Waerden developed, in § 28, the theory of linear dependence over a field
and, in § 61, the theory of algebraic dependence over a field. In § 33 of
the second edition (1937) he lists four basic properties of the relation:
“an element z depends on a set 4 of elements” and shows that these imply
all he requires, both in the case of linear dependence and of algebraic
dependence. He wverifies his basic properties in both these cases. Thus
the axiomatic theory of linear dependence seems to have originated between
1930 and 1937. Independently, in 1935, H. Whitney published the fun-
damental paper [11] in this field in which he investigates various ap-
proaches to the theory. In what follows I shall discuss (i) methods of
defining LI (= linear independence)-structures, (ii) some general theorems,
(iii) the representation problem and other open questions.

2. § is a fixed set of cardinal |S|, finite or infinite. The letters =,
y, z denote elements of S, and A, B, O subsets of 8. The relation 4 == 8§
means that 4 < B and |[4] < 8,. The symbol {z,,...,#,_}., and sim-
ilarly {z,, ..., Zn_;}., denotes the set {x,, ..., #,_;} and, at the same time,
expresses the fact that x, # x, or », < x; (for r << s < n) respectively.
Unless the contrary is stated, all systems x,, x,, ... are finite.

I shall define, in various equivalent ways, an LI structure on 8.

(a) Van der Waerden: The basic relation is | (¥gy ...y Yn_1) (@
depends on ¥y, ..., ¥n_1), whose negation is denoted by @1 (vgy ...y Yn_1)-
It satisfies the axioms:

1) Y | Yoy -y Yna) (v < 1)

(ii) If n =1 and @ | (Yoy -+ Yu-1) ond 2f(Yy, ..., Yn_1), then y, | (z,
Yiy-oe9 Yno1)-

(iii) lf 4 | (?/05 ) .I/n—l) and Y l (ZO’ ) zm—l) fO’I” v, then
B} (B s 9 By
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(V) If @ | (Wor o-vs Yo 1), them x| (Yags <+ Ya, ) for every permuta-
ton v — a,.
(b) Whitney, slightly modified:
(b1l) Basic notion: The set I = [(8) the elements of which are finite
systems (xg, ..., x, ;) or finite subsets of 8. Axioms:
(@) (@5 oo o5 Bay)el <> {Dy5 < 0oy Buy} €l
(ii) If A = Bel, then Ael.
(iii) Del.
(iv) If A, Bel and |A|+1 = |B|, then A < {x}el for some wxeB—A.
(b2) Basic notion: A function f (= I-function) such that f(4), f(x,, ...,
Xy 1)€{0, 1}, defined for 4 cc 8; x4, ..., %, €8.
Axioms:
(i) f(CL', x) = 0.
(i) If A = {2y, ..., 2y 1}, then f(A) = f(aq, ..., &0 )
(iii) f(@oy ...y Tu_1) = f(®gy «ory Tn_yy Tn).
(iv) f(mm ooy Ba_ ) Yoy ooy Yn) < Ef(xm coey Tn_yy Yo
(b3) Basic notion: The rank o(A), a non-negative integer, defined
for A cc 8.
Axioms:

0

(i) o(4) < o(4d v {#}) < o(4)+ 1.

(iii) If o(4) = o(4d w {@}) = o(4A v {y}), then ¢(4) = o(4 © {=, y}).

(b4) Basic notion: The set p(8) whose elements are subsets of §
(the bases, i. e. maximal independent subsets). Here it is assumed that
IS] < N,

Axioms:

(1) If A = s Befi(N), then A¢p(N).

(ii) If A, Bep(S) and xeA, then (A —{x}) o {y}ep(S) for some yeB.

(b5) Basic notion: The set y(8) whose elements are finite subsets
of 8§ (the circuits, 1. e. minimal dependent subsets).

Axioms:

(1) If A =« # Bey(8), then Ady(8S).

(i) If A, Bey(N); xedA ~ B and yeA —B, then there is Cey(S) such
that x¢C; yeC.

3. 1t is possible to pass, by formulae obviously suggested by the
terminology, from any one of the structures (a), (b1l)-(bb) to any other,
and the stated axioms are necessary and sufficient to ensure the logical
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equivalence of all these structures. Thus each of the six sets of axioms
defines the same structure called an LI-structure. Let us extend and mo-
dify van der Waerden’s notation in (a) by writing A | B to express the
fact that if xed and B = {yy, ...y Yn_1}., then @ | (yo, ..., Yn_1). Also,
A = B means, by definition, that A | B and B | 4.

Lazarson [5] has made a thorough study of LI-structures. I shall
now describe three ways in which, according to [5], a LI-structure is
determined, provided that |S| < R,.

() The LI-structure is determined by the set

2(8) = {(Ad, B): A = B}

of pairs of equivalent sets.

(8) Define a closure operation 4 —~ A’ by putting A" = {x: x| A}.
In fact, A ¢ A" = A"". A subspace is a set, B such that B’ = B. Then the
LI-structure is determined by the set

o(8) ={A": A < §}
of all subspaces.
(y) The set A is called separable if there is a partition 4 = B U (
such that B,C #0; B~ C =0; o(4) = o(B)+ 0(C). Then the LI-
structure is determined by the set

p(8) = {A: A separable}

of all separable sets provided, however, that all one-element sets are
independent.

The problem of finding necessary and sufficient conditions on a set
of pairs of subsets of S in order that it should equal z(S) for some LI-
structure is still open, and similarly in the cases (B) and (y).

4. I now turn to some general theorems on LI-structures. We suppose
that I(8) is given and that the axioms under (bl) hold. If [S8] = R,
then I adjoin to I(S8) all infinite 4 such that B c < A implies Bel, and
then all transfinite sequences (x,, #;, ...) such that {x,, x,,...}.el. Si-
milarly, the relation A | B is extended to infinite sets, and now f(S)
denotes the set of all maximal elements of the extended set I(S). I write /
for I(8). The LI-structure is called a natural structure if § is a subset
of a vector space over a division ring R, and the abstract linear inde-
pendence coincides with linear independence over R.

I begin by stating the exchange theorem which is often named af-
ter E. Steinitz but which was already published earlier in Grassmann’s
Ausdehnungslehre.

THEOREM 1. If (%g, ..., Xm )el and x, | (Yoy--vy Yn) Jor u <m,
then there are indices ay << ... << ap_; << n such that

({yoa ey Ynod)— {y“o’ cees ya,,,__l}) v 1@y ey e 1} = Yoy +-+3 Yn_}-
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THEOREM 2. (1) If Ael, then A.c Bep(8) for some B.

(2) If A| B and B|C, then A|C.

(3) If A, Bef(8), then |A| = |B].

(4) If A, Bel and |A| < |B|, then thereis C el suchthat A < ¢ = A U B
and |C| = |B].

These results have been well known for some time.

The unique number |A4|, for A eS(S), is called the rank of 8 and de-
noted by o(S). The simplest proof of (3) is one based on a method due
to H. Lowig, quoted in [4], p. 240. The first proof seems to be that in [8].

TuroreEM 3. Let k be a positive integer. Then there is a partition S
= 8o v ... v 8, such that S, ..., Si_, eI if and only if, whenever A =< 8,
then |A] < ko(A).

This result, in the special case of natural LI-structures, was first
proved by Horn [2]. His argument can be adapted so as to yield the more
general version of Theorem 3.

Hall [1] proved the following result. Let » be a positive integer
and Ag, ..., 4,_, be n sets. Then it is possible to select x,e4,, for » < n,
such that z, # 2; for a < f < m, if and only if P: IR A,p_ol =p
whenever », << ... <, ; < n. The following theorem [7] is a generali-
sation.

THEOREM 4. Let m be a positive integer and A,, ..., A, _, = S. Then
it is possible to select x,e A,, for v < n, such that (zg, ..., ®,_,)el, if and
only if o(4, U...u Avpvl) = p whenever vy < ... < v,_; <N

It is shown in [7] that, vice versa, I-functions are the only functions
with values in {0, 1} which satisfy f(x, #) = 0 and for which the assertion
of Theorem 4 holds.

In the next theorem n denotes any ordinal number; its cardinal
is |nl.

THEOREM 5. Let, for v <mn, A,¢I and \J(u < v)A, ~ A, el. Then
o(U(r < m)d,)+In| < U < n)4,l.

Originally this was only proved [9] and in a somewhat weaker form,
for natural LI-structures, and the proof did not appear to be capable
of an extension. But Ingleton [3] found an argument which establishes
the more general proposition as stated in Theorem 5.

The next theorem is most easily stated by using the obliteration
operator A whose effect consists in removing the symbol above which
it 18 placed. Again, n denotes an ordinal number, and o denotes the least
infinite ordinal number. On the assumption that S is well ordered a cer-
tain base, the minimal base, is characterised by certain extremal pro-
perties [9].



ABSTRACT LINEAR DEPENDENCE

THEOREM 6. Let 8 be well ordered.

(i) There is exactly one ordinal n and one set {by, ..., b,} <f(8) such
that (byy ..., b,y 2)dI for v < m; @ < b,.

(ii) If » < min(n, w), then b, is the least x, such that, for suitable
Loy oey By we have {Tgy ..., T} el

This ts false if v = o < n.

(iii) If » < w and {@g, ..., Tn_ 1} €l, then x, = b, for v < n.

(iv) S—{bg, ..., by} s the set of all maximal elements of ecircuits,
1. e. of elements of y(8).

5. Representations. Let 17 be a vector space over a division ring R.
A representation of an Ll-structure is a one-one map § — V which takes
the given LlI-structure into a natural LI-structure over V. If such
a representation exists we say that I(S) is representable over R. 1t is con-
venient to call |S| the order of every LI-structure over S.

Whitney formulated the problem of deciding whether every LI-
structure of finite order is representable over some field, and he was
particularly interested in the real and the complex number field. He
constructed an LI-structure which is representable over the finite field
GF(2) but not over the reals, and he established necessary and sufficient
conditions for representability over GF(2). Lazarson [6] proved the fol-
lowing two theorems.

THEOREM 7. R is a division ring with prime characteristic p, and V
a vector space over R. Let x,, ..., x, be p+1 linearly independent elements
of V, and ® = xg+...+ x,. Then the natural LI-structure, of order 2p-- 3,
over the set

(1) {:v(,,...,;vﬂ,,w—xo,...,m—mp,w}

is only representable over division rings of characteristic p.

THeoREM 8. There is an LI-structure of order 16 which is not represen-
table over any division ring.

To deduce Theorem 8 from Theorem 7 we need only apply Theorem 7
to the primes 2 and 3 and consider the LI-structure which is, in the ob-
vious sense, the direct sum of natural LI-structures on two disjoint sets
(1) corresponding to the two primes. The order of the sum-structure is

18] = (2p,+ 3)+ (2p,+3) = 16.
Also, o(8) = (p,+ 1)+ (p,+1) = 7. If we replace 2 and 3 by any

-

two large successive primes we find, in the same way, a non-representable
structure on a set § such that

(2) o(8) > (1 —2)|8],

where ¢ is any preassigned positive number.



Using the existence of finite projective planes in which (i) Desar-
gues’ theorem fails, or (ii) Pappus’ theorem fails, and defining abstract
linear dependence of triples of points by means of collinearity, Ingleton
[3] has proved the following result:

THEOREM 9. (i) There is an LI-structure of order 10 which is not re-
presentable over any division ring.

(ii) There is an LI-structure of order 9 which is not representable over
any field.

In contrast to Lazarson’s construction, Ingleton’s examples of non-
representable LI-structures are of bounded rank, in fact of rank 2, and
his method cannot lead to any higher rank since in every finite projective
space of dimension greater than 2 the theorems of Desargues and Pappus
hold.

To formulate the next theorem most easily we introduce, for finitely
many sets A4,, the notation

3® 4, = {a: |{p: wc 4} {1, 3,5, ...}

The theorem that follows contains positive results on representa-
bility some of which are taken from [9] whilst others are well known.
Here |S| < N,, and we are given an LI-structure on 8.

THEOREM 10. (i) If o(S) < 2 or o(S) = |S|—1, then the structure is
representable over every field.

(i) If |S| < 6, then the structure is representable over the rational
field, and there is a structure of order T which is only representable over
division rings with characteristic 2.

(iii) A mnecessary and sufficient condition for representability over
GF(2) is: Whenever A, ..., A, _1ey(8S) and YDA, O, then YA 41.

(iv) If the structure is representable over a field F, then it is also re-
presentable over some simple algebraic extension of the prime field of F;
if, in addition, F is of characteristic zero, then there is ¢ > 0 such that, for
every prime p = c and every integer k = ¢, the structure is representable
over GF(p*). Furthermore, under the same conditions, it is representable
over GF(p) for infinitely many primes p.

6. Open questions. (2) It seems that of the axioms (i)-(iv) of (b2),
the condition (i) causes most of the difficulties. Is there an algebraic struc-
ture, in some sense related to that of a subset of a vector space, which in
a natural way gives rise to a funetion f satisfying (ii)- (iv) of (b2) and not
necessarily (i)? (P 530).

(b) Ingleton [3] put forward the conjectures that every Ll-structure
of order k& is representable over some division ring if k¥ < 9, and over some
field if & < 8. These conjectures are still open. If true, they are best pos-
sible.
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(¢) In the existing theory of LI-structures linear independence
is a property of finite character. It would be of interest to construet
a non-trivial theory which does not present this restriction. (P 531)

(d) It would be of interest to investigate whether the constant %
is best possible in § 5, (2). (P 532)

(e) It is well known that for every mnatural LI-structure, and the-
refore for every representable LI-structure, of finite order, we have

(3) o(Ad o B)+ (A" ~ B') = o(4)+ 0(B)

for A, B < 8, where 4 > A’ is the closure defined in § 3 (ii). The method
of proof shows that for non-representable LI-structures we have, for
A,Bc 8,

0(A o B)+o(A" ~ B') < o(4) +eo(B).

From here a simple consideration leads to the following result:

TaroREM 11. Let |8| be arbitrary, and let there be given a representable
LI-structures on S. Then there is an extension of this structure into a set T,
where 8 = T and

T = max (|8, Ro),

such that (3) holds for A, Bcc T. _

It would be of interest to decide whether in .this theorem repre-
sentability is a necessary hypothesis. This might well be a first step
towards a solution of the central problem in this field, that of finding
an intrinsic representability condition for LI-structures. (P 533)
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