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When investigating group theoretical properties (like commutativity
or the property of being noetherian) one soon makes the following ob-
servations: firstly it is possible to derive from these properties certain
characteristic subgroups and secondly these characteristic subgroups
play a central part in the study of these properties. This second pheno-
menon becomes even more noticeable if one investigates not a single
property but a whole class of properties. Then the clags under considera-
tion will have to be singled out in such a way that the derived charac-
teristic subgroups are in some sense amenable to treatment.

Let us illustrate this general remark by a fairly well-known example:
If ¢ is some group theoretical property, then the e-radical of a group &
is the product ¢’G of all the normal e¢-subgroups of . The property e
has been termed a radical property whenever ¢'G is likewise an e-group
(Plotkin [10] et alii).

Now ¢’ constitutes an example of what we have in mind when talk-
ing of group theoretical functions. Such a function f attaches to every
group G a subgroup {@ subject to the single rule:

(t¢)” = {(@7) for every isomorphism ¢ of @.

Then one may prove (Theorem 3.5): The group theoretical function f
has the form | = ¢’ for a radical property e such that normal subgroups
of e-groups are e-groups if, and only if,

fN = N ~ {G for every normal subgroup N of &.

It seems to the author that the characterization of the class of
functions is more satisfactory than that of the class of properties under

* Presented in a concise form to the Conference on General Algebra, held in
Warsaw, 7-11. I1X. 1964.
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consideration; and thus it may be advantageous to consider properties
and functions simultaneously, giving emphasis to that concept which
is more appropriate to the problem attacked.

We have shown in the above example how to derive a function from
a property. Naturally we need ways of deriving properties from funetions.
In our example the derived property { belonging to the function f is
defined by the rule:

The group G is an f{'-group if, and only if, ¢ = {G.

The prime objective of our investigation will be the discussion of
several possible relations between group theoretical properties and funec-
tions. Apart from the “derivations” already mentioned we shail be con-
cerned with the following operations:

If e is a group theoretical property, then

¢*G is the intersection of all normal subgroups N of ¢ with /N an
e-group (§ 3);

bG is the set of all elements ¢ of & such that {g, B! is contained in
an e-group whenever F is an e¢-subgroup of ¢ (§4);

“h.G is the intersection of all the normal subgroups N of ¢ such that
G/(N ~ X) is an e-group whenever /X is an e-group (§5).

If { is a group theoretical function, then the property f{* is defined
by the rule:

G is an f*-group if, and only if, {¢ =1 (§3, b).

It is necessary to make one aspect at the same time more general
and more precise. Our discussion will not be effected in the universe of
all groups, but in a class D of groups which will be the domain of defini-
tion. Important classes which may be chosen as @ — and have been dis-
cussed in previous investigations — are the class of finite groups or the
class of abelian groups and the like. The gain obtained this way may be
illustrated by the following example. ‘

A variety on D is a class v of groups in D, meeting the following re-
quirements :

v i§ inherited by subgroups and epimorphic images; and v is residual.

If D happens to be the class of all groups, then the varieties are just
the classes of groups defined by identical relations. If, however, D is
the class of all finite groups, then the finite p-groups, for p a fixed prime,
form likewise a variety on D. But the only class of groups defined by
identical relations, which comprises all finite p-groups, is the class of
all groups (see Baer [1], p. 205, Satz 5.1).

A last remark seems to be in order. Many of the ideas developped
here — and also some related ideas — can be applied in the theory of
rings and, more generally, in the theory of universal algebras. But the
acid test for all such methods will always be found in the theory of groups.
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The author is greatly indebted to -Dieter Held and Annemarie Schlette
for critical reading of this manuseript which led to various improvements
and prevented several blunders.

I. THE GENERAL SETTING

Our discussion will be conducted within the framework of a class
D of groups which will be subject to varying requirements and for which
class D the following classes will be typical examples:

the universal class of all groups;

the class of all finite groups;

the class of all noetherian groups (= groups by whose subgroups
the maximum condition is satisfied);

the class of all artinian groups (= groups by whose subgroups the
minimum condition is satisfied); and so on.

The examples indicate that these classes @ may be comparatively
large and may meet many requirements. These will be stated as need
arises; but we shall always require that 1 is a member of @ and that D
contains complete classes of isomorphic groups.

On D we shall discuss firstly group theoretical properties. If ¢ is
such a property, then a group in D is either an e¢-group or it is not; and
we shall always impose the following two requirements:

1 is an e-group and isomorphic images of e-groups are e-groups.

Thus group theoretical properties are essentially subclasses of @ meeting
various appropriate requirements.

On D we shall discuss secondly group theoretical functions. Such
a function f assigns to every group @ in © a uniquely determined sub-
group {7 =< @; and we shall always require the validity of

(16)° = {(G°) for every isomorphism o of G.

This implies in particular that the f-subgroup {@ is always a characteristic
subgroup of .

2. RESIDUALITY
GENERAL REQUIREMENT. D contains with any group all its epi-
morphic images.

NOTATIONAL REMINDER. If ¢ is a property, then a co-e-subgroup
is a normal subgroup X of G with e-quotient group G/X.

¢*@ = intersection of all co-e-subgroups of .

The characterization of residual properties is effected by means
of the following



288 R. BAE;Rr o 7

THEOREM 2.1. The following properties of the property ¢ (on D) are
equivalent:

) | (a) Intersections of co-e-subgroups are co-e-subgroups.
Epimorphic images of e-groups are e-groups.
ges o] e-groug group

(b)
(i) (a) e*G is for every G (in D) a co-e-subgroup of .
(b) Epimorphic images of e-groups are e-groups.

(iii) The normal subgroup N of G (in D) is a co-e-subgroup of (G if,
and only if, ¢*G < N.

(iv) {(a) G is an e-group if, and only if, ¢'G = 1.
(b) (e*G@)" = ¢*(GQ") for every epimorphism o of .

Properties ¢, meeting the equivalent requirements (i)-(iv), shall
be termed residual.

Proof. (il.a) is just a slightly weakened form of (i. a) so that (ii)
is a consequence of (i). If (ii) is true, and if N is a normal subgroup of ¢
with ¢*G' = N, then G/N is an epimorphic image of G/e*G so that N is
a co-e-subgroup of ¢; and now it is clear that (iii) is a consequence of (ii).
If (iii) is true, and if J is an intersection of co-¢-subgroups of ¢, then
¢*@ < J so0 that J is a co-e-subgroup of @, implying (i. a). If furthermore
G is an e-group, then ¢*@ =1 by definition; and it follows from (iii)
that every normal subgroup of @ is a co-e-subgroup of ¢ and that conse-
quently every epimorphic image of ¢ is an e-group. Hence conditions
(i)-(ili) are equivalent. ’

Assume next the validity of the equivalent conditions (i)-(iii). If &
is an e-group, then ¢*G = 1 by definition. If conversely ¢*G@ = 1, then we
deduce from (ii.a) that G is an e-group. Hence (iv.a) is true. If further-
more ¢ is an epimorphism of G upon H, then o induces an epimorphism
of G/e*G upon H/(¢*G)° so that H/(¢*G)” is by (ii) an e-group. Hence
¢*H < (¢*G)” by (iii). We form the inverse image (¢*H)s~' and note the
isomorphism & /(¢*H)” '~ Hje*H. Since the latter group is an e-group
by (ii.a), we may deduce ¢*@ < (e"‘H)"_1 from (iii); and now we find that

(¢*G)° < [(¢*H)™ 1" = ¢*H < (¢*G)",
showing the validity of (iv.b). Assume conversely the validity of (iv).
If ¢ is the canonical epimorphism of @ upon G [e*@, then we deduce from
(iv.b) that
e*(@e*F) = ¢* (G°) = (*G)” = ¢*G[e*G = 1;
and it follows from (iv.a) that G /¢*@ is an e-group, showing the validity
of (ii.a). If furthermore A is an epimorphism of the e-group ¢ upon the

group H, then we deduce ¢*G = 1 from (iv.a) so that ¢*H = 1 by (iv.b).
It follows from (iv.a) again that H is an e¢-group, proving (ii.b). Thus
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we have deduced (ii) from (iv), showing the equivalence of (i)
to (iv).

Prorosrrion 2.2. If the class D contains with any group all its sub-
groups, then the following properties of the residual property ¢ are- equi-
valent:

(@) Subgroups of e-groups are e-groups.

(b) ¢*8 < *G for every subgroup S of a group G in D.

Proof. Assume first the validity of (a) and consider a subgroup 8
of a group G in D. Then § ~ ¢*@ is a normal subgroup of S such that

SI(8 ~ ¢*G) =~ Se*G[e*G = Ge*G.

The last of these groups is an e-group by Theorem 2.1 (ii.a). Since e is
by (a) subgroup-inherited, & ~ ¢*@ is a co-e-subgroup of 8; and this
implies by Theorem 2.1, (iii) that

e*S = 8 ~ ¢'G < ¢*@,

showing that (b) is a consequence of (a).

That (a) is a consequence of (b), is immediately deduced from Theo-
rem 2.1(iv.a).

REMARK 2.3. If D happens to be the universal class of all groups,
then subgroup-inherited residual properties are just the properties de-
fined by identical relations; see, for instance, Baer [1], p. 183, Satz 1.1.
But the property of nilpotency, defined on the class of all finite groups,
is a subgroup-inherited residual property, though it is in no way related
to properties defined by identical relations. This fact is contained in
Baer [1], p. 205, Satz 5.1.

REMARK 2.4. There exists any number of residual properties which
are not subgroup-inherited. A simple example is obtained as follows:
Let D be the class of all finite groups and denote by ¢ the class of all
finite direct products of non-abelian simple groups. Then e is residual,
though not subgroup-inherited.

The group theoretical function | on D is termed residual if (fG)°
= {(G°) for every group @ in D and every epimorphism ¢ of G.

If § is a function on D, then we derive from | a group theoretical
property * by means of the following rule:

The group ¢ in D is an {*-group if, and only if, ¢ = 1.

These two definitions are clearly suggested by Theorem 2.1(iv).
This relation is made explicit by the following

THEOREM 2.5. The following properties of the group-theoretical

property e are equivalent: function § are equivalent:
(') e is residual. (L") § s residual.
(2) " s residual and e — **. (27) 1" 4s residual and § = {**.

Colloquium Mathematicum XIV 19
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Proof. If firstly e is residual, then we deduce from Theorem 2.1
(iv.b) that ¢* is residual. Furthermore a group @ is by definition an ¢*-
group if, and only if, ¢*G = 1; and it is a consequence of Theorem 2.1
(iv.a) that ¢*@ = 1 is necessary and sufficient for G to be an e-group.
Hence @ is an e-group if, and only if, @ is an ¢**-group, showing ¢ = ¢**.
Thus (2') is a consequence of (1').

Assume secondly the residuality of f. If ¢ is an {*-group and o an epi-
morphism of G upon H, then {H = (}{¢)° = 1 by residuality, showing
that H is an f*-group. Hence {* is epimorphism-inherited. If 2 is the ca-
nonical epimorphism of @ upon G/{G = L, then {L = (t¢)* =1 so that L
is an f*-group. If next N is a normal subgroup of ¢ with {¢ = N, then
G/N is an §*-group as an epimorphic image of the {*-group G/fG. If next
N is a co-f*-subgroup of @, then we get by residuality and the definition
of f* that

1 = {(G/N) = N-iG/N;

and this implies ¢ = N. Thus we see that the normal subgroup N of
@ is a co-f*-subgroup of G if, and only if, {¢ = N. Since {**¢ is the inter-
section of all the co-f*-subgroups of &, this implies {G < {**G. But G
is itself a eo-f*-subgroup of @ so that {**@ < {@; and we have shown that

f:f**

and that f**@¢ = @ is a co-{*-subgroup of G. Thus we have shown that
* meets requirement (ii) of Theorem 2.1; and hence we have deduced
(2') from (1"). .

If next ¢ is a property meeting requirement (2'), then it follows from
the implication of (2) by (1”’) that ¢ = ¢** is residual; and from the im-
plication of (2') by (1') we deduce likewise that (2) implies (1"). This
completes the proof.

REMARK 2.6. If D is the class of all finite groups and ¢ the property
of being a cyclic group, then ¢*G = @' is for every finite group & the com-
mutator subgroup of ¢. Naturally ¢* is a residual function, but ¢** is the
property of being abelian so that ¢ # ¢**. This shows that the second part
of (2') is not a consequence of the first part. Consequently, it is indis-
pensable.

REMARK 2.7. Denote by @ some admissible class of groups. We define
the function f by the rule

1 if @ is abelian,

G = . . .
G if G i1s not abelian.

Then {* is the property of being an abelian group in D and {** is the
commutator subgroup. Tt is clear that most choices of D lead to a situa-
tion with f - {**, proving that the second part of (2") is not a conse-



GROUP THEORETICAL PROPERTIES AND FUNCTIONS 201

quenée of its first part and that therefore the second part of (2) is in-
dispensable.

REMARK 2.8. If { is a residual function and ® is subgroup-inherited,
then we deduce from Proposition 2.2 that the derived property {* is sub-
group-inherited if, and only if,

fA =fB for Ac B.

Such functions we have termed “functors” elsewhere (Baer (2], p. 179),
since they meet the requirement

(f6¢)* < fH for every homomorphism A of @ into H.

COROLLARY 2.9. The following properties of the group-theoretical func-
tton | are equivalent:

(i) i is residual.

(a) f(GfiG) = 1.
(ii) (b) {* is epimorphism-inherited.

() f=Ff"

(@)  §(@°) =1 #f, and only if, (1¢)° = 1 for ¢ an epimorphism
(iii) of G.

(b) f=f"

Proof. It is clear that (iii.a) is a consequence of the residuality of f;
and (iii.b) may be deduced from (i) by means of Theorem 2.5. Conditions
(ii.a) and (ii.b) are clearly contained in (iii.a) so that (ii) is a consequence
of (iii). If finally (ii) is satisfied by f, then we deduce from (a) and (c)
that {**@ is a co-f*-subgroup of G. Hence it follows from (b) and Theorem
2.1(ii) that {* is a residual property. Thus Theorem 2.5(2"), is satisfied
by f, showing the residuality of f.

3. CO-RESIDUALITY

GENERAL REQUIREMENT. D contains with any group all its normal
subgroups.

NOTATIONAL REMINDER. If ¢ is a property, then ¢'G is the product
of all normal e¢-subgroups of the group G in 9.

The characterization of co-residual properties is effected by means
of the following

THEOREM 3.1. The following properties of the property ¢ (on D) are
equivalent:
. f(a) Products of normal e-subgroups are e-groups.
(1) ,

\(b)  Normal subgroups of e-groups are e-groups.

.. (a) &G is (for every G in D) an e-group.
(1) - ,
(b)  Normal subgroups of e-groups are e-groups.



(1i1) The normal subgroup N of G is an e-group if, and only if, N < ¢'Gi.

qvy @ G i an egroup if, and only ¥, G = <G
(b) &N = N ~ ¢'G for every mormal subgroup N of @.
group .

Properties ¢, meeting the equivalent requirements (i)-(iv), shall
be termed co-residual.

Proof. It is clear that (ii) is just a slightly weakened form of (i).
It is a consequence of (ii.a) that ¢'G is an e-group. If N is a normal subgroup
of @ with N < ¢’G, then N is a normal subgroup of the e-group ¢'G; and
it is a consequence of (ii.b) that N is an e-group. Now it is clear that (iii)
is a consequence of (ii).

Assume next the validity of (iii). Since ¢'G is then an e-group, it
is easy to verify (iv.a). If N is a normal subgroup of @, then ¢'N is a cha-
racteristic e-subgroup of N and hence a normal subgroup of G' so that
¢'N < ¢'G. Next we note that N ~ ¢’G is a normal subgroup of ¢’G and
as such it is an e-group by (iii). It is furthermore a normal subgroup of N.
Thus it follows that

¢’Nc NA~eGdec N,

showing that (iv.b) is a consequence of (iii) too.

Assume finally the validity of (iv). If the group G is a product of
normal ¢-subgroups, then @ = ¢'G is an e-group by (iv.a), proving the
validity of (i. a). If furthermore N is a normal subgroup of the e-group &,
then

eN=N~¢G@ =N~ ~G=N

by (iv); and it is a consequence of (iv.a) that N is an e-group too,
showing that (i) is a consequence of (iv) and that therefore (i)-(iv) are
equivalent. :

COROLLARY 3.2. If ¢ is co-residual, then ¢'G contains every subnormal
e-subgroup of G.
Proof. If 8 is a subnormal e-subgroup of ¢, then there exist, by de-
finition of subnormality, finitely many subgroups S(¢) such that
8 = 8(0), 8(7) is a normal subgroup of S(i+4 1), S(n) = G.

Naturally 8 = ¢’S = ¢’§(0). Since ¢'S(¢) is a characteristic e¢-sub-
group of the normal subgroup S(z) of S(¢-+1), it is a normal e-subgroup
of S(i+1) so that ¢’S(¢) = ¢'S(i+1). It follows that

S =e¢80)c...ce’'S¢@) ce'S@E+1)c...ce'S(n) =G,

as we wanted to show.
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REMARK 3.3. A subgroup 4 of @ is termed accessible, if there exist
subgroups A, of G such that

A - AO? Aﬁ = G,
4, i3 a normal subgroup of A4, w19
A; = U4, for 4 a limit ordinal.

o<i

It is impossible to substitute in Corollary 3.2 for the word “sub-
normal” the word “accessible” as may be seen from the following example.

Let D be the universal class of all groups and let ¢ be the property *
defined by the rule:

The group G is an e-group if, and only if, every element in ¢ generates
a subnormal subgroup of G.

It is clear that subgroups and epimorphic images of e-groups are
e-groups.

If G is any group, then ¢’G is generated by its eyclic subnormal
subgroups. But the set of elements in a group, generating cyclic subnormal
subgroups, is always a characteristic subgroup; cf. Baer [6], in particular
p. 418, Satz 2. Consequently ¢'G is always an e-group. Application of
Theorem 3.1, (ii) shows that e is co-residual.

Let A be an infinite abelian p-group with A — A”. The group
arises from 4 by adjoining an element g, subject to the relations:

g

2’ = a'*” for every a in A.

Then 4 = cA is the centralizer of A and @ |4 is an infinite cyeclic group.
It is furthermore clear that 4 < ¢’G. If the element z in ¢ does not
belong to A, then A is generated by all the a 'z 'ax for @ in 4. This
implies {&%} = 4 {#}. Consequently {z} is not subnormal. Hence 4 — ¢'G.

The totality of elements @ in A with a»" = 1 is the n-th term 3l
of the ascending central chain of @. Tt follows that 4 — 3.0 and G = 3,,,G.
If U is any subgroup of @, then the chain of subgroups Us,G for 0 < o
= w41 shows that U is an accessible subgroup of G. In particular, every
cyclic subgroup of @ is accessible. It follows that ¢’G — 4 « @& does not
contain every accessible e-subgroup of @.

COROLLARY 3.4. Suppose that ¢ is a co-residual property.

(A) If D contains the epimorphic images of all groups in D, then epi-
morphic images of e-groups are e-groups if, and only if, (¢'QG)° < ¢ (G7)
for every epimorphism o of a group G.

(B) If D contains with any group all its subgroups, then subgroups
of e-groups are e-groups if, and only if,

S~ e'G < e'S for every subgroup S < @.
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Proof. If ¢ is epimorphism-inherited and if ¢ is an epimorphism of
@ upon H, then every normal e-subgroup of ¢ is mapped by ¢ upon a nor-
mal e-subgroup of H so that (¢'G)° = ¢'H. If conversely this condition
is satisfied by e, then we deduce from co-residuality (Theorem 3.1(iii))
that ¢ is epimorphism-inherited. '

If e is subgroup-inherited, and if 8 = @, then 8 ~ ¢'G is a normal
e-subgroup of 8 (since ¢'G is by Theorem 3.1(il.a) a normal e-subgroup
of @), so that 8 ~ ¢’G < ¢'S. If conversely this condition is satisfied by e,
then we deduce from Theorem 3.1, (iv.a) that e is subgroup-inherited.

The group-theoretical function f on D is termed co-residual, if

fN = N ~ i@ for every normal subgroup N of G.

If { is any function, then we derive from { a property ' by means
of the following rule:

The group ¢ in D is an {'-group if, and only if, ¢ = jG.
THEOREM 3.5. The following properties of the group-theoretical

property ¢ are equivalent: function | are equivalent:
(1’) e is co-residual. (1) T is co-residual.
(2') ¢ is co-residual and ¢ = e, (2'") § is co-residual and | = {".

Proof. If firstly ¢ is co-residual, then we deduce from Theorem
3.1 (iv.b) the co-residuality of ¢’. Furthermore a group G is by definition
an ¢’’-group if, and only if, ¢’G¢ = @; and this latter property is by Theo-
rem 3.1(iv.a) equivalent with the fact that ¢ is an e-group. Hence G
is an e-group if, and only if, & is an e¢’-group. Consequently e = e¢;
and we have deduced (2') from (1').

Assume secondly the validity of (1’'). If X is a normal {-subgroup
of G, then

¥ =§F =X 168 i@

This implies in particular ¢ = jG in case @ is the product of normal f'-
subgroups so that products of normal {'-subgroups are {’-groups. If further-
more N is a normal subgroup of the {'-group &, then we have

[N=NAf@=N~G=N

s0 that normal subgroups of {-groups are {-groups. Hence {’ is a co-re-
sidual property by Theorem 3.1(i). Since G is a normal subgroup of G,
we have

f(f6) = i6¢ ~ 16 =16

so that fG is a normal j’-subgroup of G; and this implies

fad = {'G.
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Since ' has been shown to be co-residual, G is always a normal
i’-subgroup of G. Hence {’G < {(, as has been shown before; and this
shows {G = {"'G for every @. Thus (2"') is a consequence of (1'").

That (2') implies (1’), is a consequence of the fact that (1'’) implies
(2""); and that (2"") implies (1’"), may be deduced from the fact that (1’)
implies (27).

4. PRE-LOCALITY AND LOCALITY

GENERAL REQUIREMENT. D contains with any group all its subgroups.

THE ¢-HYPERCENTER b,G of the group @ is the set of all the elements
¢ in G meeting the requirement:

{g, B} is, for every e-subgroup E of G, part of some e-subgroup of G.

Subsets of §,G will be termed e-hypercentral.

Clearly G = G if @ is an e-group. The falsity of the converse may
be seen from any number of easily constructed examples; see Example
4.3 below.

The wide range of this construction is best seen from the following
two instances:

A. Let ¢ be commutativity. Then b, = 3 is just the center.

B. Let © be the class of all finite groups and let ¢ be nilpotency.
Then b, = b is just the hypercenter; for a proof see Baer [3], p. 42,
Theorem 3.

LeMMA 4.1. The e-hypercenter is always a characteristic subgroup.

Proof. Clearly 1 is an e-hypercentral element of the group G. If
a and b are e-hypercentral elements of ¢, and if ¥ is an e-subgroup of @,
then there exists an e-subgroup A4 of G with

{a, B} c A.
Likewise there exists an e-subgroup B of G with

{b, A} c B.
Hence
{ab™', B} < {a, b, B} < {b, A} = B,

proving the e-hypercentrality of ab~'. Hence G is a, necessarily cha-
racteristic, subgroup of G.

LemmA 4.2. If e is subgroup-inherited, then

(a) the element g in G is e-hypercentral if, and only if, {g, B} is an
e-group for every e-subgroup H of G.

(b)) U~ bG < bU for every subgroup U of G-
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(¢) If F is a finitely generated subgroup of b,G and if E is an e-sub-
group of G, then {F, E} is an e-group.

Proof. If g is an element in G and ¥ is an e-subgroup of @, then
there exists an e-subgroup 8 of & with {¢g, B} = 8. But e is subgroup-
inherited and so {g, E} is an e-group. This proves (a); and (b) is a fairly
immediate consequence of (a).

If ¥ ={g,,..., 9. is a finitely generated subgroup of bG, then we
let

Fo=1, Fi={hywistily Fp=DPL,

It K is an ¢-subgroup of G, then {#, F,} = F is an e-subgroup of G;
and thus we may make the inductive hypothesis that i < » and {FE, F,)
is an e-group. Now

£, Py iy = {{E F‘lngw-lj

1s an e-group by (a), since g, ., is e-hypercentral. Hence it follows (by
complete induction) that {¥, F'} = {E, F,} is an e-group, proving (c).

Exampre 4.3. If D is the universal class of all groups and ¢ = fg
is the property of being finitely generated, then

(%) bG = G for every group @

and ¢ 1s not subgroup-inherited. Hence property (b) of Lemma 4.2 is
not sufficient for subgroup-inheritance; and ¢ need not be an e-group
if G =D& (cf. however Proposition 4.4). Note furthermore that many
properties ¢ meet requirement (x). Hence ¢ is, in general, in no sense
determined by the nature of §,. But see Theorem 4.6(a) for a particular
instance where ¢ is determined by b,.
PRE-LOCALITY: THE FIRST STAGE. This will be described by the
following
ProrosittonN 4.4, The following properties of the property ¢ are equi-
valent:
() { a) e is subgroup-inherited.
b) G is an e-group if, and only if, G = bG.
|
|

(
(b)
(a) U~ bG < b U for U c@.
(
(

(11) b) G is an e-group if, and only if, G = h,G.

f(a) U~ bG<hU for U c@.
(111)
| (b) b,G is always an e-group.
A property ¢ meeting the equivalent requirements (i)-(iii) will be
termed first stage pre-local.
Proof. It is a consequence of Lemma 4.2(b) that (i) implies (ii).
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If (ii) is true, then we apply (ii.a) on U = bh,G to obtain

beG - I)cG m I)eG = be [beGJ = I)eG

so that §,G = b,[b,G] is an e-group by (ii.b). Hence (ii) implies (iii).
Assume finally the validity of (iii). If U is a subgroup of the e¢-group
G, then

U=Tr~G= Um[)cGEI)cUE U

so that U = b U is an e-group. Hence ¢ is subgroup-inherited; and the
validity of (i.b) is contained in (iii.b).
We term the function | on D first stage pre-local, if

UnfGes iU for Uc6ly

and we recall that the group X is an {'-group if, and only if, X = {X.
LeMMA 4.5. If the function | on D is first stage pre-local, then ' is
subgroup-inherited and G is always an {-group.

Proof. If U is a subgroup of the {’-group @, then
U=U~G@=U~GcilUcU
so that U == fU is likewise an {’-group. Likewise
it =16 ~ i¢ = (i6) < 16

S

-
e

that {G¢ = {(f@) is an {'-group.
THEOREM 4.6. (a) The property ¢ is first stage pre-local if, and only

if, the function b, is first stage pre-local and ¢ = (b,)".

(b) The function | on D with | = by is first stage pre-local if, and only
if, the property {' is first stage pre-local.

Proof. If ¢ is first stage pre-local, then we conclude the first stage
pre-locality of b, from Proposition 4.4 (ii.a); and from (ii.b) we deduce
the sequence of equivalences:

G is an e-group; G = bG; G is an (b,)-group.

Hence ¢ = (b,)’. If conversely b, is first stage pre-local and ¢ = (b,)’,
then condition (ii) of Proposition 4.4 is satisfied by e so that e is first
stage pre-local.

If next | is a function on D with | = by then we let ¢ = { so that
i =>5, and ¢ = § = (b,)’. Application of (a) shows that e is first stage
pre-local if, and only if, b, is first stage pre-local and ¢ = (b,)’. But the
last condition is satisfied by hypothesis so that ' = e is first stage pre-
local if, and only if, b, = b, = { is first stage pre-local.
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RuMARK 4.7. Let D be any class of groups containing some non-
abelian groups whose center is not 1; and let

i@ G, if G is abelian,
N 1, if @ is non-abelian.
Then f is first stage pre-local. Next a group is an f'-group if, and
only if, it is abelian; and consequently

b = 3 (= center).

It follows that a group G is an f-group if, and only if, G = b.G.
Thus {’ is first stage pre-local. But | = b showing the impossibility of
deriving the general hypothesis f = b. in Theorem 4.6(b) from its other
parts.

As a second example consider the class D of all abelian groups (or
that of all abelian torsion groups) and let

G, if @ is cyelic,
@ = N :
1, if ¢ is not cyelic.

Then f is first stage pre-local; and a group is an f'-group if, and only
if, it is eyclic. If & is a group of Priifer’s type p*, then every pair of ele-
ments in ¢ generates a cyclic subgroup so that G = byG. But G is not
cyclic and hence not an {'-group showing that |’ is not first stage pre-
local. This shows the impossibility of omitting the general hypothesis
f = b in Theorem 4.6(b).

PRE-LOCALITY: THE SECOND STAGE. This will be described by the
following _

ProOPOSITION 4.8. The following properties of the property ¢ are equi-
valent:

(a) ¢ is subgroup-inherited.

(i) (b) The subset 8 of G is part of bG if, and only if, {8, K} is an
e-group for every e-subgroup B of G.

a) U~ bG <= b U for Uca@.

b) be[U'beG] == beU'beG fOT Ucsé.

c¢) b.G is an e-group.

)
a) e s subgroup-inherited.
b) E-9G is an e-group for every e-subgroup E of @.

Properties meeting these equivalent requirements (1)-(iii) shall be
termed second stage pre-local.
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Noris. If we let 8§ =@ or b and =1 in (i. b) or just £ =1
in (iii.b), then we see that (i) as well as (iii) implies condition (i) of Pro-
position 4.4. Likewise we see that (ii) implies condition (iii) of Proposition
4.4. Consequently each of the conditions (i)- (iii) implies that e is first

stage-pre-local.

Proof. Assume first the validity of (i). Then e is first stage pre-local
(as has been noted just now) and (ii.a) and (il.c) follow from Proposition
1.4. Consider next any subgroup U of G and let V = U-)G. Then we
deduce

(1) beG =V A I)eG < l)eV
and
U~bhVechHU

from (ii.a). Application of Dedekind’s modular law shows that

(2) 0.V =0V AV =0V ~ U-bG =hG[U ~ b, V1< 5G-HU.

Consider now an e-subgroup E of V. Apply (i.b) with § = bG to
see that E-pG = F is an e-subgroup of V. Because of

bhGccFcV=UbhG
we may apply Dedekind’s modular law to show
F =[U~ F1bG.

From (i.a) we deduce that U ~ F is an e-subgroup of U. Apply (i.b)
to show that (U ~ F)-b,U is an e-subgroup of U; and a second application
of (i.b) shows that

{#,9U} < {F,5U} = (U ~ D UIHG

is an e-subgroup of @ (and V). Since {#,b,U} is an e-subgroup of V
for every e-subgroup F of V, another application of (i.b) shows

bU € b, ¥.
Combine this with (1) and (2) to show that
beU'beG = beV = I)eU'beG7

proving the validity of (ii.b).

Assume next the validity of (ii). Then e is first stage pre-local (as
noted before) and ¢ is subgroup-inherited by Proposition 4.4. If next E
is an e-subgroup of @, then F = b F (as before); and we deduce from
(ii.b) that

b,[E-9G] = b.E-bG = E-HG.
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Hence E-b,G is by (ii.c) an e-group; and thus we have deduced (iii) from (ii).
Assume next the validity of (iii). If 8 is a subset of b,G and F is
an e-subgroup of @, then

(8, B} = E-b,6.

The latter group is an e-group by (iii.b) and thus {§, K} is an ¢-group
by (iii.a). If conversely S is a subset of & such that {8, B} is an e-subgroup
of & for every n-subgroup E of @, then {s, K} is for every s in S an
e-group (by (iii.a)) so that every s in 8 belongs to bG. Hence (i.b) is a
consequence of (iii), proving that (iii) implies (i).

REMARK 4.9. Let D be any class of groups which contains also non-
countable groups and denote by e the property of being countable.
Then b,G = @ for every group @. Thus (ii.a) and (ii.b) are satisfied. But
in general b,(7 is not going to be countable so that (ii.c) is not a conse-
quence of (ii.a) and (ii.b).

COROLLARY 4.10. Suppose that the property ¢ is second stage pre-local.

(1) The normal subgroup N of G is a part of .G if, and only if, BN is
an e-group for every e-subgroup E of @.

(2) b.G is the set of all the elements g in G such that E{¢°} is an e-group
for every e-subgroup E of Q. ‘

(3) DG is the product of all the normal subgroups X of G such that
EX s an e-group for every e-subgroup E of G.

(1) is an obvious special case of condition (Lb) of Proposition 4.8.
If we note that the element g belongs to the characteristic subgroup
bG if, and only if, {§°} = .G, then we see that (2) is a consequence of
(1). Property (3) finally is easily derived from (1) and (2).

It is worth noting that (1) is a special case of Proposition 4.8(i.b)"
and that Proposition 4.8(iii.b) is a Special case of (1).

The function f on @ will be termed second stage pre-local, if

(a) Unid cfU for Ucg@
and
(b) flU-{¢) ={U0.i1G for U c@.

It is clear that such a function is likewise first stage pre-local.

COROLLARY 4.11. The property ¢ is second stage pre-local if, and only
if, the function b, is second stage pre-local and ¢ — (b)'.

Proof. If ¢ is second stage pre-local, then we deduce from Pro-
position 4.8, (ii) that b, is likewise second stage pre-local. Furthermore @
is an e-group if, and only if, ¢ = 0,G; and this is equivalent with ¢ — (b.)'.
If conversely b, is second stage pre-local, then conditions (ii.a) and (ii.b)
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of Proposition 4.8 are satistied. If furthermore ¢ = (b,)’, then application
of Proposition 4.4 shows that e is first stage pre-local and that therefore
h@ is always an e-group. Hence Proposition 4.8(ii.c) holds true and ¢
is second stage pre-local.

LuMMA 4.12. (1) If the function T on D is second stage pre-local, then
i< by

(2) The function | on D is second stage pre-local if, and only if,

(@) Unf@cilU for Ucs@
and

(b) U < f[U-{G] for U < 6.

Proof. Assume that f is second stage pre-local. If g belongs to @
and K is an f’-subgroup of G, then ¥ = {F and hence

{J’E} === 197 E) TE fG = frE f(*]

so that {g, B} is, by Lemma 4.5, part of an f’-subgroup of G. Hence g
belongs to 9.6, proving (1).

It is clear that second stage pre-local functions meet requirements
(2.a) and (2.b). Assume conversely that the function f on D meets these
requirements (a) and (b). If U = G, then by (a)

(%) ¢ =16 ~ [U-16] = f[U iG]
so that by (b)
(%) iU i@ < f[U-1G].

Applying (a) again we find that
UnfLU-fG] < {U.
Application of (¥) and Dedekind’s modular law shows that
f[U-f¢] ={6[U ~ {(U-i@)] < 1&-fU.
Combination with (%) gives
flu-ia] =iv-ia,
proving the validity of (2).

PROPOSITION 4.13. The following properties of the function § on D are
equivalent:

(i) i is second stage pre-local and b < .
(ii) The property § is second stage pre-local and by = §.

(a) The element g in G belongs to {G if, and only if, g belongs to
(iii) f{g, B} for every Y-subgroup E of G
(b) fU = f{[U-1G] for U = @.



32  woeaEr

Proof. If (i) is true, then we derive from Lemma 4.5 and Lemma
4.12(1) that

fG is always an f-group and f < b;.

It follows that f = b,. Hence ¢ = |’ meets requirement (ii) of Pro-
position 4.8 and is consequently second stage pre-local. Thus (ii) is a con-
sequence of (i).

Assume next the validity of (ii). According to Proposition 4.8, (i.b)
the element g in @ belongs to b6 if, and only if, {g, B} is an {-group
for every {-subgroup E of G.

But if £ is an {'-group, then

E)f’[E'I)f’{g7 E}] = E-b. g, K}

according to Proposition 4.8, (ii.b). If {¢g, K} is an {’-group, then ¢ belongs
to {g, B} = j{g, E}. If conversely g belongs to {{g, K}, then

{ga By = K-i{g, B} = E'I)i’{gy B} = bf'[E'I)f‘{gy E}]

is an {’-group according to Proposition 4.8(ii.c); and thus we have shown
that g belongs to ¢ = b, if, and only if, g belongs to f{g, B} for every
f’-subgroup ¥ of @. Hence (iii.a) is a consequence of (ii); and it is a conse-
quence of Corollary 4.11 that (ii) implies (iii.b).

Assume the validity of (iii). If U < ¢ and g belongs to U ~ @, then
g belongs to f{g, B} for every {’-subgroup F of U so that g belongs to
fU. Hence

UnfGciU for Ucd.

From (iii.b) and Lemma 4.12(2) we deduce now that { is second
stage pre-local.

Consider next an element g in b,G. If E is an {’-subgroup of @, then
{9, E} is an {'-subgroup of @ too (Corollary 4.10(2)). Thus g belongs to
{9, B} = i{g, E}; and it follows from (iii.a) that ¢ belongs to fG. ‘Thus
we have shown that

by@ < 16,

and we have derived (i) from (iii).
CONSTRUCTION 4.14. If ¢ is a subgroup-inherited property on D,
then we define a function ¢™ on @ by the rule:

G if ¢ is an e-group,
etd = )
1 if ¢ is not an e-group.

Consider a subgroup U of @.

Case 1. G is not an e-group.
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Then ¢"G =1 and we have
Un~net@=1ce'U,
et[U-et@] = ¢t U = et U 076G

Case 2. G is an e-group.
Then 17 is likewise an e-group so that G =e¢'G, U = ¢"U and

Unet@=U~G=TU=¢"T,
et[U-¢7G] = ¢ [U-G] =e™G@ =G = e"U-¢7G.

Thus we have shown that ¢ is second stage pre-local.
It is obvious that

e = (e™)'.

There exist, however, many properties ¢ (see, for instance, Remark
4.6) such that "
1cbG c6G for some G,
implying

¢ # Doty

and this shows the indispensability of the second half of condition (i)
of Proposition 4.13.

REMARK 4.15. Suppose that D is the class of all finite groups and
denote by {@ for every finite group & its Fitting subgroup. This is at the
same time the product of all nilpotent normal subgroups of G and the
most comprehensive nilpotent normal subgroup of G. Then

(1) { is just nilpotency.
(2) U~fGcilU for Uc @G,

since U ~ {G¢ is a nilpotent normal subgroup of U.
If g belongs to @ and FE is a subgroup of @, then we deduce from (2)
that ¢ belongs to {g, B} ~ {G = f{g, F}. Hence we have:

(3) If g belongs to {G and K < @, then g belongs to f{g, £}.

Assume next that g belongs to f{g, «} for every « in G. Then g is
a so-called Engel-element of {g, z} for every # and hence g is an Engel-
element of @, proving that ¢ belongs to the Fitting subgroup {G of G;
cf. Baer [4], p.2b7, Satz L’. Thus we have shown:

(4) If g belongs to f{g, «} for every & in G, then g belongs to fG.
Properties (3) and (4) together imply:

()  Condition (iii.a) of Proposition 4.13 is satisfied by f{.
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If p and ¢ are primes such that p = 1 modq and if @ is the essentially
uniquely determined non-abelian group of order pq, then {G is its subgroup
of order p. Tt @ is any subgroup of order ¢, then ¢ = -fG and

i[Q-i67 = i6 < @-16 = {Q-i6¢ — ¢

Thus condition (iii.b) of Proposition 4.13 is not satisfied by f, showing
its indispensability. Combining this last remark with (2) we see that

(6) T is first stage, but not second stage pre-local.

It g belongs to b, then {g, #} is nilpotent for every z in G; and it
is well known that this property characterizes the elements in the hyper-
center b@ of @; see Baer [3], p. 42, Theorem 3. The converse holds too;
see Baer [3], p. 42, Theorem 3. Consequentlv

(7) by = b = Hypercenter.

Since the hypercenter is nilpotent, but ig, in general, not equal to the
Fitting subgroup, we may say:

(8) b = §.

This shows that in Lemma 4.12(1) it does not suffice to assume that f
is first stage pre-local.

PRE-LOCALITY: THE THIRD STAGE. The property e will be termed
third stage pre-local, if it meets the following two requirements:

(a) e s subgroup-inherited.

(b) Ewery e-subgroup of G is part of a maximal e- subgroup of G.

If, for instance, all groups in D are noetherian, then a property is
third stage pre-local if, and only if, it is subgroup-inherited.

Prorosrrion 4.16. If ¢ 4s third stage pre- local, then

(a) DG is for every group @ in D the intersection of all maximal ¢-sub-

groups of G
and

(b) ¢ is second stage pre-local.

Proof. Let G* be for every & in @ the intersection of all maximal
e-subgroups of G. If § is a subset of @* and E is an e-subgroup of G, then
there exists a maximal e-subgroup M of @ which contains E. From G* ¢ M
we deduce {S, B} = M and {S, E} is an e-group, since M is an ¢-group
and e is subgroup-inherited. Thus we have shown:

(1) If 8 is a subset of G* and ¥ is an e-subgroup of @, then {8, K} is
an e-group.

If we apply (1) in particular upon the one-element-subsets of G*,
then we deduce from the definition of the e- -hypercenter that

(2) ¥ < b,G.
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If ¢ is an element in b,G and M is a maximal e-subgroup of @, then
{g, M} is an e-group by e-hypercentrality; and we deduce M = {g, M}
from the maximality of M. Thus g belongs to M. Consequently e-hyper-
central elements belong to every maximal ¢-subgroup of G; and we have
shown:

(3) bG < G*.

From (2) and (3) we deduce @* = §,G; and this is just our property (a).

If we combine (a) and (1), then we obtain property (i.b) of Proposi-
tion 4.8; and since e is subgroup-inherited, we have shown that ¢ is second
stage pre-local.

THE FOURTH STAGE: LOCALITY. This will be described by the following

Prorosition 4.17. The following properties of the property ¢ are equi-
valent:

(i) G is an e-group if, and only if, every finitely generated subgroup
of G is an e-group.

(a) ¢ zs subgroup-inherited.
(ii) (b) G is an e-group, if there exists a set of e-subgroups of G con-
taining {X, Y} with X and Y and covering G.

(a) e s third stage pre-local.

(iii) (b) If every finite subset of G is part of an e-subgroup of G, then
there exists at most one maximal e-subgroup of G.

(a) U~ bG<hU for Uc@.

(b) @G is always an e-group.

(¢) If the element g in G belongs to b,{g, E} for every finitely
generated e-subgroup E of G, then g belongs to H,G.

(iv)

((a) The element g in G belongs to b,G if, and only if, g belongs
(V) to b.{g, I'} for every finitely generated subgroup F of G.
(b) K == (be),-

A property e, meeting the equivalent requirements (i)-(v), will be
termed a local property.

Proof. Assume first the validity of (i). If U is a subgroup of the
¢-group @, then every finitely generated subgroup of U is — as a finitely
generated subgroup of the ¢-group @ — an ¢-group; and so U is an e¢-group:
¢ is subgroup-inherited. Assume furthermore the existence of a set 0
of e-subgroups of ¢ which covers ¢ and which contains {X, Y} with X
and Y. Then every finite subset of G is part of a subgroup in 0, as may
be seen by complete induction. Since ¢ has been shown to be subgroup-
inherited, finitely generated subgroups of G are e¢-groups; and so G itself
is an e-group. Hence (ii) is a consequence of (i).

Colloguium Mathematicum XIV 20
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Assume next the validity of (ii). Consider an e-subgroup £ of ¢ and
denote by € the set of all e-subgroups of G containing E. Then E itself
belongs to €. Consider a tower 0 of subgroups of ¢ which is part of €.
If X belongs to 0, then X is an e-group containing F; and if X and Y
belong to 0, then X < Y or Y < X. The join J of the subgroups in #
is consequently a subgroup of G; and 0 covers J and contains with X
and Y also {X, Y} (= X or Y). Application of (ii.b) shows that J is an
e-group. But F = J < G so that J belongs to €. Consequently we may
apply the Maximum Principle of Set Theory on €. Hence there exists
a maximal element in € and this is a maximal e-subgroup of G which
contains K. Thus we have shown that e is third stage pre-local. Assume
next that every finite subset of G is contained in an e-subgroup of G.
Then every finitely generated subgroup of & is an e-group (subgroup-
inheritance); and an immediate application of (ii.b) shows that @ is an
e-group and as such @ is its one and only one maximal e¢-subgroup. Hence
(iii.b) is true too; and we have derived (iii) from (ii).

Assume next the validity of (iii). If ¢ is an e-group, then so is every
subgroup of . In particular every finitely generated subgroup of G is
an e¢-group. Assume conversely that every finitely generated subgroup
of G is an e-group. Then we deduce from (iii.a) and (iii.b) together that
there exists one and only one maximal e-subgroup M of G. If ¢ is
an element of G, then {g} is an e-group and as such {g} is part of
a maximal e-subgroup V of G (by (iii.a)). Since M is the only maximal
e-subgroup of ¢, we have M = V so that g belongs to M and G = M
is an e-group. We have derived (i) from (iii) and shown the equiva-
lence of (i)-(iii).

Assume next the validity of the equivalent properties (i)-(iii). Then
¢ i8, by (iil.a), third stage pre-local; and it follows from Proposition 4.16
that e s second stage pre-local.

Application of Proposition 4.8 (i) and (ii) shows now the validity of
(iv.a, b) and of the subgroup-inheritance of e.

Consider an element g which belongs to b,{¢, E} for every finitely
generated e-subgroup K of G. Then {g, £} = E-b,{g, E} for every fini-
tely generated e-subgroup E of G. But ¢ is second stage pre-local. Apply
Proposition 4.8 (iii.b) to see that

() {g, E} is an e-group for every finitely generated e-subgroup
E of G.

Consider an e-subgroup 8 of . If F is a finitely generated sub-
group of {g, 8}, then there exists a finitely generated subgroup E of §
with F < {g, E}. Since e is subgroup-inherited, F is a finitely generated
e-subgroup of G¢. From (%) we conclude that {g, £} is an ¢-group. Hence F
is an e-group (subgroup-inheritance). Now we may apply (i) to see that
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{g, S} is an e-group. Hence {g, S} is an e-group for every e-subgroup
8 of G.

Application of Proposition 4.8 (i.b) shows that ¢ belongs to b,G.
Hence we have derived (iv.c) too, showing that (iv) is a consequence
of the equivalent properties (i)-(iii).

Assume next the validity of (iv). If firstly ¢ belongs to b,G, then ¢
belongs, by (iv.a), to

{g,8} ~bG < b{g,8; for Sc@.

If secondly ¢ belongs to b, {g, F} for every finitely generated sub-
group F of G, then g belongs in particular to b, {g, E} for every finitely
generated e-subgroup F of G; and ¢ belongs to b& by (iv.e). Thus (v.a)
is true. \

If ¢ is an e-group, then G = h,G (by definition of b,). If conversely
G = b6, then G is an e-group by (iv.b). Hence @ is an e-group if, and only
if, ¢ = bG; and this is equivalent to ¢ = (b,)’, proving the validity
of (v.b).

Assume finally the validity of (v). If § is a subgroup of the e-group G,
then ¢ = b, by (v.b) (or the definition of b,). If s is an element in S
and F' is a finitely generated subgroup of ¢ = b,G, then s belongs to
b.{s, F'} by (v.a); and a second application of (v.a) shows that S = p,S.
Apply (v.b) to see that S is an e-group. Hence ¢ is subgroup-inherited.

Consider next a group ¢ all of whose finitely generated subgroups
are e-groups. If ¢ is an element of G, and F is a finitely generated subgroup
of G, then {g, F'} is an e-group as a finitely generated subgroup of G.
Consequently ¢ belongs to {g, F} = b,{g, F} by (v.b) (or the definition
of ,). Apply (v.a) to see that g belongs to b,G. Hence ¢ = §,G is an e-group
by (v.b); and thus we have derived (i) from (v) and completed the proof
of the equivalence of (i)-(v).

REMARK 4.18. Let © be the class of all abelian groups and let e
denote the property of being a finitely generated abelian group. Then

bd = A for every A in D.

Clearly ¢ meets requirements (iv.a, ¢) and (v.a) of Proposition 4.17.
But there exist abelian groups which are not finitely generated. Hence ¢
is not a local property, showing the indispensability of conditions (iv.b)
and (v.b) of Proposition 4.17.

The function f on D is termed a local function, if it meets the follow-
ing requirement:

The element g in G belongs to 1G if, and only if, g belongs to f{g, F}
for every finitely generated subgroup F of @.
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Then it is nothing but a restatement of the equivalence of conditions
(i) and (v) of Proposition 4.17, if we say:

The property ¢ on D is local if, and only if, b, is local and ¢ = (b,)".
This may serve as a justification of our definition of local functions.
LeEMMA 4.19. Suppose that § is a local function. |
(a) | is first stage pre-local.

(b) f is second stage pre-local if, and only if, {U < f[U-{G] for U = @G.
Proof. If U < G and if g belongs to U ~ {@&, then g belongs to f{g, F'}

for every finitely generated subgroup F of (G and) U. Hence g belongs
to fU so that :

U~nf@ciU for Uc@,

proving (a); (b) is a fairly immediate consequence of (a) and Lemma
412 (2).

PROPOSITION 4.20. The following properties of the function f on D
are equivalent:

(i) " is local and | = b;.
a) f ¢s local.

(ii) b) fU < f[U-{G] for U < G.
c) by = §.

a) | is second stage pre-local.
b) If the element g in G belongs to §{g, {S} for every subgroup S
of G with finitely generated §S, then g belongs to {G.

(
(
(
(
(

(iii)

Proof. If (i) is true, and if we let ¢ = {/, then e is local and f = b,
so that

e =1 = (bc),'

Application of Proposition 4.17 (v.a) shows that h, = f is local and that
¢ is third stage — and by Proposition 4.16 (b) — second stage pre-local.
Application of Proposition 4.8 (ii.b) shows then that

iU =b.U < b,[U-hG] ={[U-i]

for U = (G. Hence (ii) is a consequence of (i).

Assume next the validity of (ii). Then Lemma 4.19 (b) shows that f
is second stage pre-local; and we deduce f< by from Lemma 4.12 (1).
Thus f = by ; and letting ¢ = ' we have: b, = f is local and (b))’ ={ =e.
Hence ¢ = {' is local (as pointed out when introducing local functions)
and we have deduced (i) from (ii).

Assume the validity of the equivalent conditions (i) and (ii). Then
we deduce from (ii.a, b) and Lemma 4.19 (b) that f is second stage pre-
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local. If we let {' = ¢, then e is a local property and f = b, by (i). Consider
now an element ¢ in G with the property:

(*) ¢ belongs to {{g, {8} for every subgroup § of G with finitely gen-
erated fS.

If F is a finitely generated e-subgroup of @, then K = {F = b .F
[by ' = e and | = b,] and application of (*) shows that g belongs to
f{g, fE} = b.{g, B}. Since ¢ is local, we may apply Proposition 4.17
(iv.c) to show that g belongs to h,G = {G. Hence (iii) is a consequence
of the equivalent conditions (i) and (ii).

Assume finally the validity of (iii). If g belongs to ¢, and if F is
a finitely generated subgroup of G, then g belongs to

{9, F} ~ 16 < T{g, F}
by (iii.a). Assume conversely that g belongs to {{g, F} for every finitely
generated subgroup F of G. Then ¢ belongs to {{g, 8} for every S = &
with finitely generated S; and application of (iii.b) shows that g belongs
to fG. Hence f is local, proving (ii.a).

The validity of (ii.b) is an immediate consequence of (iii.a). Suppose
now that the element g belongs to by G. Then {g, E} is by Lemma 4.2 (a)
an {-group for every {-subgroup E of @; and {S is always an f’-group
(Lemma 4.5). Hence g belongs to {g,{8} = i{g, {8}. Application of
(iii.b) shows that g belongs to f¢. Hence b = fG; and we have derived
(ii) from (iii).

REMARK 4.21. Assume that every group in D is finitely generated —
this implies, of course, that every group in D is noetherian. If the function
f on @ is local, then we deduce from Lemma 4.19 (a) that

(1) U~f@ciU for Ucf.

Assume conversely that | meets requirement (1). If the element g
in G belongs to @, then we deduce from (1) that g belongs to

{ng}’“ngf{gaX} for X c@.

If g belongs to f{g, I} for every finitely generated subgroup F of
¢/, then we recall that @ itself is finitely generated so that g belongs to
f{@. Hence we have shown:

(1*)  fis local if, and only if, { is first stage pre-local.
Combine this with Lemma 4.12 (2) to see that

(2) i is second stage pre-local if, and only if, { meets requirements
(il.a) and (ii.b) of Proposition 4.20.

Construction 4.14 shows now that (ii.c) is not a consequence of (ii.a)
and (ii.b); and the indispensability of (ii.a) and (ii.b) is fairly obvious.
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THE FIRST CLOSURE OPERATOR. If ¢ is a property (on D), then we de-
fine its (first) closure e by the rule:

The group G (in D) is an e-group if, and only if, G = b,G.

We note that ¢ = ¢ whenever ¢ is pre-local or local. Furthermore
e-groups are always e-groups, since G = §,G for e-groups & by the defi-
nition of b,.

LEMMA 4.22. If ¢ is subgroup-inherited, then

(a) bE = bea

(b) e is first stage pre-local.

Proof. If 8 is a subgroup of the e-group @, and if s is an element
in § and F an ¢-subgroup of 8, then {s, K} is an e-group, since s belongs
to ¢ = b,@ (Lemma 4.2, (a)). Hence s belongs to h,S; and we have shown
that § = b,8 is an e-group. Thus

(b’) ¢ is subgroup-inherited.

Congider now an arbitrary group G' and an element ¢ in h;G. If H
is an e-subgroup of @, then E = b, F is likewise an e-subgroup of & so
that {g, B} is an e-group. Hence {g, ¥} = b, {g, £}. But then ¢ is an
e-hypercentral element of {g, £}; and as F is an e-group, we find that
{g, B} is an e-group (Lemma 4.2 (a)). Hence g belongs to b.G; and we
have verified h,G < .G (i. e. (a)).

If @ is an e-group, then G = h,G by the definition of b;. Assume
conversely that G = b;G¢. Application of (a) shows that

G=kache=a.
Hence G = hG is an e-group; and we have shown.

(b"") G is an e-group if, and only if, G = b;@Q.

Because of (b’), (b”") condition (i) of Proposition 4.4 is satisfied by e.
Hence ¢ is first stage pre-local. ‘

Exavrre 4.23. Let D be the class of all groups. A group G has the
property ¢ if, and only if, :

(1) there exists a finite central chain connecting 1 and ¢ (i.e. @
is nilpotent of finite class), and

(2) there exists a positive integer n with G" = 1 (i. e. (7 is of finite
(positive) exponent).

It is clear that ¢ is subgroup-inherited.

If ¢ is an abelian torsion group, then one verifies G = b, without
any difficulty. On the other hand, there exists any number of abelian
torsion groups not meeting requirement (2). Hence ¢ is not first stage
pre-local.

Since ¢ is subgroup-inherited, its closure ¢ is first stage pre-local
(Lemma 4.22).
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It is well known that there exists a p-group G with the following

properties:
(a) G possesses a countably infinite normal subgroup 4 with

1 =A" = A", A=A,

Here as always ¢U denotes the centralizer of U in G.
(b) There exists a countably infinite elementary abelian p-subgroup B

of G with
G = AB, '1=AnNB.

(¢) If U is an infinite subgroup of B, then A ~ ¢U = 1 and in part-
icular 3G = 1.

(d) Finite subsets of (7 generate finite p-subgroups of G.

If @ + 1 is an element in 4, then A ~ {a, B} is a normal subgroup,
not 1, of {a, B} which does not contain a center element, not 1, of {a, B}.
Hence a is not e-hypercentral so that

A A DG =1.

It follows in particular that the normal subgroups 4 and bG of G
centralize each other. But 4 = ¢4 so that
g =1.

Application of Lemma 4.22 (a) shows
G =1,

In particular, @ is not an e-group. But @ is locally an e-group (by (d))
and hence locally an e-group. Consequently ¢ is mot a local property.
Naturally A4 as an abelian group is an e-subgroup and hence an e-
subgroup of @. If § is a subgroup of G with 4 = §, then we distinguish

two cases:
1. 8/A 1is finite.
Then S is of finite class and hence an e-group.
2. 8/A is infinite.
Then we see as before that

b8 = b8 =1.

Hence S is not an e-group.
Since /A is an infinite elementary abelian p-group, there does

not exist a maximal finite subgroup of G/A. If follows that A is not part
of a maximal ¢-subgroup of G. Consequently, e is not third stage pre-local.
We have not been able to decide whether ¢ is or is not second stage

pre-local (P 534).
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THE SECOND CLOSURE OPERATOR. If e is any property on D, then
the property le (= locally e) is defined by the rule:

The group @ is an le-group if, and only if, every finitely generated
subgroup of G is an e-group.

This important construction has been much used and investigated.

If § is a subgroup of the le-group @, then every finitely generated
subgroup of § is an e-group as a finitely generated subgroup of G. Con-
sequently, [¢ is subgroup-inherited.

If every finitely generated subgroup of ¢ is an le-group, then every
finitely generated subgroup of @ is an e-group so that G itself is an le-
group. In toto: we have shown that le is a local property.

ProrosiTION 4.24. If

(a) e-groups are finitely generated
and

(b) finitely generated subgroups of e-groups are e-groups,
then

(1) le is a local property;

(2) a group is an e-group if, and only if, il is a finitely generated
le-group;

3) be = ble5
(4) DG is the intersection of all the mazimal le-subgroups of G.

Proof. We have shown before (without use of hypotheses (a) and (b))
that le is always a local property.

If ¢ is an e-group, then @ is, by (a), finitely generated and, by (b),
all its finitely generated subgroups are e-groups. Hence G is a finitely
generated [e-group. That conversely every finitely generated le- -group
is an e¢-group, is an immediate consequence of the deflmtmn of le. This
shows the validity of (2).

If g is an element of §,G and if ¥ is an le-subgroup of @, then consider
a finitely generated subgroup S of {g, E}. Clearly there exists a finitely
generated subgroup 7 of F with

S<ci{g, T}.

Since 7' is a finitely generated subgroup of the le-group &, it is an e-group-
Since g belongs to h,G and T is an ¢-group, {g, T} is an e-group. Since 8
is a finitely generated subgroup of the e-group {g, T}, it is an e-group.
Thus every finitely generated subgroup of {g, B} is an e-group. Hence
{9, E} is an le-group for every le-subgroup E of G. Consequently, g belongs
to I)le

Assume conversely that ¢ is an element in b,G. If X is an e-sub-
group of @, then X is, by (2), a finitely generated [e-subgroup of . Hence
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{g, X} is a finitely generated [e-group. This implies, by (2), that {g, X}
is an e-group for every e-subgroup X of G. Hence g belongs to b, G. Thus
we have shown:

The element ¢ in & belongs to b,@ if, and only if, g belongs to b, G-

This assertion is equivalent with b.G = b G, proving (3).

(4) finally is an immediate consequence of (1), (3), Proposition
4.17 (iii.a) and Proposition 4.16 (a).

REMARK 4.25. Consider properties a and b meeting the following
requirements:

(a) a-groups are finitely generated b-groups;

(b) finitely generated subgroups of a-groups are @-groups;
(¢) b-groups are la-groups.

Then it follows from Proposition 4.24 (3) that

(d) ba - I7[a'

Suppose now that the element ¢ in G belongs to hyG. If A is an a-
subgroup of G, then 4 is, by (a), a b-subgroup of ¢. Hence {g, A} is a b-
group. It follows from (c) that {g, A} is a finitely generated la-group.
Hence {g, A} is an a-group. Consequently ¢ belongs to h,G. This proves

(e) bb = ba'

It is impossible to prove equality in (e), as may be seen from the fol-
lowing example: Let © be the universal class of all groups. Denote by
a the property of being a finitely generated group of finite class. Thus
a-groups are exactly the noetherian groups G possessing a finite central
chain connecting 1 and G. Finally define the property b by the rule:

The group ¢ is a b-group if (and only if) every epimorphic image
H #1 of G possesses a center 3H + 1.

It is well known that these properties a and b meet the requirements
(a), (b), (¢); see Baer [5], p. 322, Satz 1. Note furthermore that la =1b
is the “local nilpotency” property. In Example 4.23 a group G has been
discussed with the properties

G:bny 1:bh

AN APPLICATION. The following result may be useful in various
situations.

PROPOSITION 4.26. If ¢ is a local property and if the set X of subgroups
of the group G (in D) is ordered by inclusion, then the compositum of all the
subgroups b, X with X in X' is an e¢-group.

Proof. Consider first a finite subset X* of X. Then we number the
subgroups in X* in such a way that

=X c..eXicXinc...c X,
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Let

be the ordered complex product of the b, X; with 1 < ¢ < j. We prove
by complete induction that each ¢; with 1 <j <n is an e-subgroup
of G. This is certainly true for j = 1. Hence we may assume that 1 < j<mn
and that C; is an e-subgroup of G. Naturally €, is an e-subgroup of
X; € X;,,. But e is a local property and as such ¢ is second stage pre-
local. Application of Proposition 4.8 (iii.b) shows that

Of{)eXHJ = Vil

is an ¢-subgroup of X; ;. This completes the inductive proof of the fol-
lowing fact:

(x) If X* is a finite subset of 2, then the composition of the subgroups
b X for X in X* is an e-subgroup of G.
(Note that we have proved slightly more than claimed in (%)).

Denote now by € the compositum of all the §, X for X in X. If F
is a finite subset of C, then there exists a finite subset 2* of X such that ¥
is contained in the compositum C* of the b, X for X in X*. But O* is by
(*) an e-group. Since e is subgroup-inherited (by Proposition 4.17 (ii.a)),
the subgroup {F} of C* is likewise an e-group. Hence every finitely ge-
nerated subgroup of ¢ is an e-group so that ¢ is, by Proposition 4.17
(i), an e-group.

5. PRE-CO-LOCALITY AND CO-LOCALITY

GENERAL REQUIREMENT. © contains with any group all its epi-
morphic images.

Co-¢-SUBGROUPS are normal subgroups H of @ with e-quotient group
G[E. ‘

THE co-e-HYPERCENTER. The normal subgroup N of & is termed
co-e-hypercentral, if N ~ X is a co-e-subgroup of G for every co-e-subgroup
X of G.

Since X = G is always a co-¢-subgroup of @, every co-e-hyper-
central subgroup is also a co-e-subgroup.

It A and B are co-e-hypercentral subgroups of @, and if X is a co-e-
subgroup of G, then B ~ X is a co-¢-subgroup of G so that 4 ~ (B~ X)
= (4 ~ B) ~ X is likewise a co-e-subgroup of ¢. Hence 4 ~ B is co-e-
hypercentral. By an obvious induction we see that the infersection of fin-
itely many co-e-hypercentral subgroups is likewise co-e-hypercentral.

This leads to the following definition:

The co-e-hypercenter “°b,G of the group G is the intersection of all the
co-e-hypercentral normal subgroups of G.



GROUP THEORETICAL PROPERTIES AND FUNCTIONS 315

Naturally this is a well determined characteristic subgroup.

PRE-CO-LOCALITY: THE TFIRST STAGE. This will be characterized
by the following

PrOPOSITION 5.1. The following properties of the property ¢ are equi-
valent:

(i (a) ¢ is epimorphism-inherited.
4 (b) °b,@ is always co-e-hypercentral.
(a) e is epimorphism-inherited.
(ii) (b) There exists always a minimal co-e-hypercentral normal

subgroup.

The normal subgroup N of G is co-e-hypercentral, if (and only if)
G < N.

Properties meeting these equivalent requirements will be termed
first stage pre-co-local.

Proof. If (i) is valid, then b @ is, by definition and (i.b), the minimal
co-¢e-hypercentral subgroup of G. Hence (i) implies (ii).

Assume next the validity of (ii) and denote by M some minimal
co-e-hypercentral normal subgroup of ¢. Then we deduce

“pGd = M

from the definition of ®p,. If N is any co-e-hypercentral subgroup of G,
then M ~ N is co-e-hypercentral as we have pointed out before. Hence
M = M ~ N = N by the minimality of M; and this implies that M is
part of the intersection of all co-e-hypercentral subgroups of G. Con-
sequently

M < °b,G;

and thus we have shown that °°),G = M is co-¢-hypercentral, proving
the equivalence of (i) and (ii).

Assume next the validity of (i) and consider a normal subgroup N
of G with ®°p,¢ < N. If X is a co-e-subgroup of @, then we have

() X ~ GOI)EG c X N

and we deduce from (i.b) that X ~ °°b,G is a co-e-subgroup of G. Hence
G)(X ~ °°h,G) is an e-group; and we deduce from (i.a) and () that
@/(X ~ N) is an e-group. Hence X ~ N is a co-¢-subgroup of G so that
N is co-e-hypercentral; and we have deduced (iii) from (i).

Assume the validity of (iii). Then °°h,G is always co-e-hypercentral
so that (i.b) is a consequence of (iii). If & is an e-group, then 1 is a co-e-
subgroup and 1 is even co-e-hypercentral. Hence “°h,G = 1. Consequently
€)@ = N for every normal subgroup N of @, and it follows from (iii)
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that every normal subgroup of ¢ is co-¢-hypercentral. This implies in
particular that every normal subgroup of ¢ is a co-¢-subgroup of @ and
that therefore every epimorphic image of G is an e-group. This proves
(ia) and completes the proof of the equivalence of (1) - (iii).

REMARK 5.2. The interest of (ii) stems from the fact that (ii.b) is
certainly satisfied whenever the minimum condition is satisfied by the
normal subgroups of the groups in D. In this case first stage pre-co-lo-
cality reduces to epimorphism-inheritance.

ExAMPLE 5.3. Assume that D is the class of all abelian groups and
¢ the property of being a countable (abelian) group. Then ¢ is clearly
epimorphism-inherited. If 4 and B are co-e-subgroups of the group @,
then G /(A ~ B) is isomorphic to a subgroup of the direct product (G/A4)
®(G/B) of the countable groups G/4 and G[B so that G)(A ~ B) is like-
wise countable. Hence 4 ~ B is a co-¢e-subgroup of @, if A and B are co-e-
subgroups; and now it follows that

(x)  the subgroup § of @ is a co-e-subgroup of & if, and only if, 8 is
a co-e-hypercentral subgroup of @.

If ¢ #1 is an element in @, then there exist subgroups of ¢ which
do not contain ¢ and among these a maximal one, M. One verifies that
G /M is a torsiongroup of rank 1 and hence countable. Using (x) it follows
that M is co-e-hypercentral and consequently

(#x) DG =1 for every G.

But if ¢ is not countable, then °°h,@ is not a co-e-subgroup and
a fortiori not co-e-hypercentral.

Thus conditions (i.b) and (ii.b) of Proposition 5.1 are not conse-
quences of epimorphism-inheritance.

COROLLARY 5.4. Assume that the property ¢ is first stage pre-co-local,

(@) G is an e-group if, and only if, °b,G =1.

(b) Epimorphisms map co-e-hypercentral subgroups upon co-e-hyper-
central subgroups.

(c) “b.(G°) = [*D.G] for every epimorphism o of G.

(d) If the epimorphism o of G induces an isomorphism in “°h,@,
then

C()be(Gﬂ) — [OObeG]G.

Proof. If ¢ is an e-group, then 1 is a co-e-subgroup of ¢ so that 1
is co-e-hypercentral. Hence 1 = °°p G. If conversely 1 = °°p,@#, then we
note that °“°h,G is co-e-hypercentral and hence a co-e-subgroup so that 1
is a co-e-subgroup and hence G an e-group, proving (a).

Consider an epimorphism ¢ of & upon H. If N is a co-¢-hypercentral

subgroup of @ and X a co-e-subgroup of H, then X° ' is a co-e-subgroup
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of @, since ¢ induces an isomorphism of ¢ /X"~l upon H/X. Hence N ~ X =
is a co-e-subgroup of G. Since o induces an epimorphism of G/[N ~ X"_l]
upon H/[N ~ X""l]‘7 and since ¢ is epimorphism-inherited, [N ~ X’fl}“
is a co-e-subgroup of H. Since

[N~ X ' FPeN A (X)) =N~ X,

and since e is epimorphism-inherited, N° ~ X is likewise a co-e-subgroup.
Hence N° is co-e-hypercentral, proving (b). In particular, ®b, & is co-e-
hypercentral and thus [*hG]° is by (b) likewise co-e-hypercentral. Ap-
plication of the definition of °°H, shows (c).

Assume that the epimorphism ¢ induces an isomorphism in b G
If we denote by K the kernel of ¢, then this hypothesis is equivalent to

(1) ” K ~ “h G =1;

and we may assume without loss in generality that o is the canonical
epimorphism of G upon G/K. Denote by J the uniquely determined
normal subgroup of G which contains K and satisfies

(2) J|K = ) (G|K).
Then (e) implies
(3) K cJ < K-°),G;

and application of Dedekind’s modular law shows

(4) J = K[J ~ b @Q].
Assume now by way of contradiction that

(+) W =dJ ~ ®hG < °°b,G.

Then W is a normal subgroup of @ which is not co-e-hypercentral.
Consequently there exists a co-e-subgroup X of G such that W~ X is
not a co-e-subgroup of G. Since ), G is co-¢-hypercentral, ¥ = X ~ “b, @
is a co-e-subgroup of G; and

WAY=WA®DGAX=WnX

is not a co-e-subgroup of G. Since ¢ is epimorphism-inherited, YK is like-
wise a co-e-subgroup of @. Hence K Y /K is a co-e-subgroup of G/K. Since
J|K is (by (2)) a co-e-hypercentral subgroup of G/K, it follows that

(KY/|K) ~ (J|K) = (KY ~ J)|K

is a co-e-subgroup of G/K. Hence KY ~ J is a co-e-subgroup of G. Ap-
plication of Dedekind’s modular law, (3), and (+) show

KYA~Ad =K[Y~AJ]=K[YA~®)GA~J]=K[Y~ W]
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Since “°b, @ is co-e-hypercentral and K[Y ~ W] is a co-e-subgroup
of @, it follows from Dedekind’s modular law, (), and (1) that

DG~ K[Y A~ W] =[Y A WI[K ~b,G] =Y ~ W

is a co-¢-subgroup of G. This is the desired contradiction, derived from (+).
Hence

©hG = J ~ b, G;

and it follows from (4) that
J = K-°“h,G.
Apply (2) to see that

“b(G7) = b (G|K) = J|K = [K-“bG][K = [“b,G]",

proving (d).

ExXAMPLE 5.5. Denote by D the class of all finite groups and by e
the property of being a (finite) eyclic group. Application of (Proposition
5.1 or) Remark 5.2 shows that ¢ is on D first stage pre-co-local. If G is
an elementary abelian group of order p2, then every subgroup, not 1,
of (7 is a co-¢-subgroup of G; but 1 is not a co-¢-subgroup of G. It follows
that “°b,G = G. If K + 1 is some cyclic subgroup of @, then G/K is cyclic
of order p. Letting o be the canonical epimorphism of & upon the ¢-group
G/K, it follows that

“b,(6") = 1 < GIK = [*h,6];

and this shows that the extra-requirement, imposed by (d), is indispens-
able.

The function f on D is termed first stage pre-co-local, if

(a) 1(G°) = (G)° for every epimorphism o of G
and

(b) F(G°) = (YQ)" for every epimorphism o of G which induces an iso-
morphism in {G.

We remind the reader that the group @ (in D) is termed an {*-group
if, and only if, @ = 1.

PropositioN 5.6. The following properties of the property ¢ are equi-
valent:

(1) ¢ is first stage pre-co-local.
(i) {(a) b, is first stage pre-co-local.
(b) e = [“b]".
Proof. If (i) is satisfied by e, then we deduce (ii.a) from Corollary
a4 (e,d), and (ii.b) is a restatement of Corollary 5.4 (a).
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Assume conversely the validity of (ii). We note that (ii.b) may be
restated as
(b*) @ is an e-group if, and only if, “hG = 1.
Jonsider an epimorphism o of the e-group . Then
Gobe(GU) c (GODCG)G — 1

so that G° is, by (b*), an e-group. Hence ¢ is epimorphism-inherited.
Consider next some group & (in D) and a co-e-subgroup X of G. Let

H = G/[X ~ “hG7;

and denote by o the canonical epimorphism of ¢ upon H. Let J be the
uniquely determined normal subgroup of G with

X~®,Gcd and b H =J[[X ~ “bh,G].
Then

JIX ~ Q] = “bH = “p (@°) = (°°b,G)° = b, G[[X ~ “°b,G]
s0 that
(%) J < b6

Denote next by v the canonical epimorphism of H upon G/X. If
an element ¢ in “°p, H is mapped upon 1 by 7, then we note first that
t=j[X ~ b G] with j in J. But ¢ =1 is equivalent with jX =1 so
that j belongs to

J~Xc CODQG ~ X

by (*); and this implies ¢ = 1. Thus an isomorphism is induced by =«
on b, H; and this implies (by (b) of the definition of first stage pre-co-
locality) that

[“°b H]" = D, (H') = “h (G| X) =1,

since X is a co-¢-subgroup of @, so that ¢/X is an e-group and “b,(G'/X)
= 1 by (b*). Since 7 induces an isomorphism on “h, H, our last result
implies

(’:ObeH — 1;
and it follows from (b*) that H = G/[X ~ “b,G] is an e-group. Hence

X ~ ), G is a co-e-subgroup of G for every co-¢e-subgroup X of @, so
that

“p, G is co-e-hypercentral.

Thus we have shown that ¢ meets requirement (i) of Proposition
h.1. Hence ¢ is first stage pre-co-local; and we have derived (i) from (ii).



REMARK 5.7. When proving that a property e is epimorphism-in-
herited if it meets requirement (ii) of Proposition 5.6, no use was made
of condition (b) of first stage pre-co-locality of functions. We pointed
out in Remark 5.2 that epimorphism-inheritance of a property implies
its first stage pre-co-locality provided some weak sort of minimum con-
dition is satisfied by the groups in D. In such a situation condition (b)
of first stage pre-co-locality of funetions is not needed for the validity
of Proposition 5.6.

COROLLARY 5.8. If

(a) D (G°) = [*°D.GQY for every epimorphism o of G,
then the following properties of ¢ are equivalent:

(i) G s an e-group if, and only if, “°b,G = 1.

(ii) G/°°b.G is always an e-group.

(iii) G is an e-group, if “°h,G = 1.

Proof. Assume the validity of (i) and denote by ¢ the canonical
epimorphism of G upon G/°b,G. Application of (a) shows

“Be (G, G) = D, (") = [, G]" = D G/*°D, G = 1;

and it follows from (i) that G/, @ is an e-group. Hence (ii) is a conse-
quence of (i); and it is clear that (ii) implies (iii).

It is a consequence of the definition of “°h, that °°h,G@ = 1 whenever G
is an e-group. Consequently (iii) implies (i).

REMARK 5.9. Condition (i) of Corollary 5.8 is a restatement of the
condition

¢ = [*,"
and (a) and (i) together imply that e is epimorphism-inherited.

REMARK 5.10. We have been unable to decide whether condition (b)
of the definition of first stage pre-co-locality of functions can be omitted
in Proposition 5.6 (ii.a), though it seems unlikely. (P 535)

We want to describe one of the difficulties arising when trying to
solve this problem. The counter-examples of Example 5.3 had the feature
that “p,G was not always a co-e-subgroup. This suggests — dualising
the first closure operator of §4 — to introduce the following derived
property:

If e is a property, then the group @ is an e-group if, and only if,
DG =1.

But this construction does not seem to be satisfactory, as may be
seen from the following example:

Let D be the class of all abelian groups and ¢ be the property of being
an abelian group of positive exponent. Thus an abelian group A is an
e-group if, and only if, there exists a positive integer » with 4™ = 1.
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Naturally ¢ is epimorphism-inherited (and subgroup-inherited and
extension-inherited); and one verifies that

The subgroup X of the abelian group A is co-e-hypercentral if, and
only if, X is a co-e-subgroup of A.

From this remark one deduces:

coh 4 — [} A"
f=1

It follows that ¢ is the property of being free of elements = 1 of
“infinite exponent”; and this property is not even epimorphism-inherited.

LeMMA 5.11. If | is first stage pre-co-local, then §G is always a co-f*-
hypercentral subgroup of G and “°b;. < .

Proof. Assume that X is a co-f*-subgroup of G. This is equivalent
to f(¢/X) =1. Let ¥ = X ~ ¢ and denote by JJ the uniquely deter-
mined normal subgroup of ¢ with

YedJ and {(@/Y)=J]Y.

Denote by « the canonical epimorphism of G upon /Y and by g
the canonical epimorphism of /Y upon G/X. Then

JIY =§(@]Y) = {6 = ()" = Y-iG|Y ={G|Y
s0 that
YecdJciG.

If b is an element in f(@/Y) with b® — 1, then b = Yt and 1 = b°
= Xt so that t belongs to X. But b belongs to {(G/Y) = J/Y so that ¢
belongs to

XndcXAfG=Y

implying b = 1. Hence p induces an isomorphism in {(G/Y) and this
implies
L ={(@[X) =§(6]¥)'] = [{(@/V)) = XJ|X
80 that
YecdJcs XA{Gd =Y.

Hence J = X ~ fG@ proving
HG/IX A 6D = )X ~F6] =1

Hence X ~ {¢ is a co-f*-subgroup of G so that {@ is a co-f*-hypercentral
subgroup of . This implies
(eubf* (Tv [ f('r

as was to be showu.
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PROPOSITION 5.12. The following properties of the function f on D
are equivalent:
(a) T is first stage pre-co-local.
(b) If N is a normal subgroup of G with N < {G, then there exists

@ a normal subgroup W of G such that W c i@, {(G|/W) = 1,
f(G/IN ~ W]) #1.
(ii) f is first stage pre-co-local and f < “b..
(a) 1(G°) < (fG)° for every epimorphism o of G.
(i) (b) 1G @s always a co-{*-hypercentral subgroup of G.
(¢) F € By,
(iv) i* is first stage pre-co-local and f = “°b;..

Proof. Assume first the validity of (i). Then it follows from Lem-
ma 5.11 that fG is co-{*-hypercentral. Consider a co-f*-hypercentral
normal subgroup H of G. Then — as has been shown in the beginning
of this § 5 — H ~ {G = N is likewise co-f*-hypercentral. Assume by way
of contradiction that N = {G. Then N < {G; and we deduce from (i.b)
the existence of a normal subgroup W of G with W < @, {(G/W) =1,
f(G/[N ~ W]) # 1. But the last two statements are equivalent with the
assertions:

W is a co-f*-subgroup of ¢ and N ~ W is not a co-{*-subgroup of .

This contradicts the fact that N is co-f*-hypercentral; and this con-
tradiction shows that {¢ = N < H.. It follows that G = “h,.@, since
“b;u @ is the intersection of all the co-f*-hypercentral subgroups H of 6.
Hence (ii) is a consequence of (i).

Assume next the validity of (ii). Then the validity of (iii.a) and (iii.c)
is immediately clear; and the validity of (iii.b) is a consequence of Lem-
ma 5.11.

Assume next the validity of (iii). Then we deduee

“bG = fG¢  for every @

from (iii.b) and the definition of “b,.. Combining this with (iii.c) we
obtain
(*) i f — Uobft.

If F is an {*-group, then {F = 1. Hence it follows from (iii.a) that
fH =1 for every epimorphic image H of F. The property f* is conse-
quently epimorphism-inherited. Since “b.G is by () and (iii.b) always
co-f*-hypercentral, condition (i) of Proposition 5.1 is satisfied by the pro-
perty f*. Consequently
(#+)  §* is first stage pre-co-local.

Combination of (%) and (xx) shows the validity of (iv).
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If (iv) is satisfied by f, then e = f* is first stage pre-co-local. It
follows from Proposition 5.6 that

(+) unbe - cobf‘ - f

is first stage pre-co-local, showing the validity of (i.a). Assume now
that N is a normal subgroup of ¢ with N < {¢. Because of (4-) this ¥
cannot be co-¢-hypercentral. Hence there exists a co-e-subgroup V of G
such that V ~ N is not a co-e-subgroup of G. Let W = V ~ {G. Then
W < {G = °°h,& by (). Since e is first stage pre-co-local, °°h,G is co-e¢-
hypercentral (Proposition 5.1 (i.b)). Consequently W is with V a co-e-
subgroup of G. Since

WAN=VAGAN=VAN,

the normal subgroup W of G meets all the requirements of (i.b). Thus
we have shown he equivalence of (i)-(iv).

CONSTRUCTION 5.13. Denote by ¢ some epimorphism-inherited pro-
perty on @ and define the function f =e, on D by the rule

i 1, if ¢ is an e-group,
B G, if G is not an e-group.
it is easily checked that {* = ¢ and that { is first stage pre-co-local.
If we assume furthermore, as we may, that e is actually first stage pre-
co-local, then all the requirements of Proposition 5.12 are satisfied with
the possible exception of (i.b) and

(%) fe “bu.

But (+) will, in general, be false, as may be seen from many easily
constructed examples. The simplest one is obtained as follows:

Let @ be the class of all finite groups and ¢ be the property of being
finite and nilpotent. Then “b. = b, is just the terminal member of
the descending central chain; and thus we shall have

1 Ccobt¢GCG _—-fG'

whenever the group @ is soluble, but not nilpotent.

Thus we have shown the indispensability of (i.b), (iii.c), and of the
second part of condition (ii) of Proposition 5.12.

PRE-CO-LOCALITY : THE SECOND STAGE. The property ¢ will be termed
second stage pre-co-local, if

(a) ¢ is epimorphism-inherited
and

(b) every co-e-subgroup of G contains a minimal co-e-subgroup of G.
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The terminology is justified as may be seen from the following
ProrosiTioN 5.14. If the property e is second stage pre-co-local, then
(A) ¢ s first stage pre-co-local
and
(B) “°b,G is the product of all minimal co-e-subgroups of .
Proof. Denote by P the product of all minimal co-e-subgroups of @G.
If M is a minimal co-e-subgroup of &, and if X is a co-e-hypercentral

subgroup of G, then M ~ X is a co-e-subgroup of @. Apply the minimality
of M to show

M=MA~XgcX.
Apply the definition of °°h, to show

M < “°b,G;
and now it follows from the definition of P that
(1) P < *h,@.

If X is some co-¢-subgroup of @, then X contains (by (b)) a minimal
co-¢-subgroup Y of G. It follows that
and since e is, by (a), epimorphism-inherited, X ~ P is likewise a co-e-
subgroup of G. Hence
(2) P is co-e-hypercentral.

Combining (2) and the definition of “°h, we find that
(3) “ha = P.

Now (B)is a consequence of (1), (3). Because of (2) and (B) (and (a)),
condition (i) of Proposition 5.1 is satisfied by e, proving (A).

We are now in a position to improve slightly Corollary 5.4 (d).

COROLLARY B5.15. If the property e is second stage pre-co-local, and
if the epimorphism o of G induces an isomorphism in XY whenever X and
Y are minimal co-e-subgroups of @, then

(+) o maps minimal co-¢-subgroups of G wpon minimal co-e-subgrowps
of G° and

(++) “b(67) = [“DGT.

Proof. Suppose that 4 is a minimal co-¢-subgroup of . Then o
induces an epimorphism of the e-group /A4 upon G°/A’. Since ¢ is epi-
morphism-inherited, A" is a co-e-subgroup of G°. Suppose that X is a
co-e-subgroup of G with X = A% If ¥ = X° ' is the inverse image of X,
then G/Y is isomorphic to the e-group G°/X. Hence Y is a co-e-subgroup
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of G. Since ¢ is second stage pre-co-local, there exists a minimal co-e-
subgroup B of ¢ with B c Y. Clearly

B"c Y = X°c 4°.

By hypothesis, an isomorphism is induced by ¢ in AB. Thus B < 4
may be deduced from B’ < A°. Since B is a co-e-subgroup of ¢ and 4
is a minimal co-¢-subgroup of G, we conclude that 4 = B and that the-
refore X = A°. Hence A° is a minimal co-e-subgroup of G°, proving (+).

It is an immediate consequence of (--) and Proposition 5.14 (B)
that [*D,G1° is a product of minimal co-e-subgroups of G° and that
therefore

[co_be G]a & c.nt)e (Ga).

Combination .of Proposition 5.14, (A) and Corollary 5.4 (¢) gives

u()be (Ga) c [e()beG]o,
proving (+ ).
THE THIRD STAGE: CO-LOCALITY. The principal property of co-lo-
cality is described by the following

LEMMA 5.16. The following properties of the property ¢ on D are equi-
valent:

(1) If 6 is a set of normal subgroups of G such that every intersection
of finitely many subgroups in 0 is a co-e-subgroup of @, then (N X is a co-e-
subgroup of @. _ el

(ii) If 0 is a set of co-e-subgroups of G such that X < Y or Y = X for

X, Yin 0, then ([ X is a co-e-subgroup of G.
Xeb

The proof of this well-known equivalence may be indicated for the
convenience of the reader. It is firstly clear that (ii) is just a weak form
and hence a consequence, of (i). If conversely (i) is false, then there exist
sets 0 of normal subgroups of ¢ such that

(a) every intersection of finitely many subgroups in 6 is a co-e-
subgroup of G
and

(b) (M) X is not a co-e-subgroup of 6.

Xel

Among these sets 6 there is one u of minimal cardinality. v is in-
finite because of (a) and consequently there exists a set @ of subsets of »
with the following three properties:

-

((') = E EII = ’

or 5 ¢ E for 5, B in &,
(d) v = |J & is the join of the sets 5 in &.

-
HeD

(e) Every set in & meets requirement (a) and has cardinality less
than the cardinality of .



Because of (e) and the minimality of y we have

(f) () X is a co-¢-subgroup of G for every Z in C.
Xe=E

If we denote now by @ the set of all the () X for Z in &, then
XeE

it follows from (¢) and (f) that every subgroup Y in @ is a co-e-subgroup
of @ and that X ¢ ¥ or ¥ < X for X, Y in @. Because of (d) we have
(X=X
Xe® Yey
But this is, by (b), not a co-e-subgroup of G; and so (ii) is not satisfied
either. Hence (i) is a consequence of (ii).
The property e is termed co-local, if
(1) e is epimorphism-inherited
and
(2) ¢ meets the equivalent requirements (i) and (i) of Lemma 5.16.
It is clear that (2) may be omitted whenever the minimum condi-
tion is satisfied by the co-e-subgroups of the groups in D.
PROPOSITION 5.17. The following properties of the property e on D
are equivalent: '

(i) e 18 co-local.

(a) e is second stage pre-co-local.
- (b) If the group G possesses a set O of co-e-subgroups such that 6
(i1) contains X ~ Y with X and Y and such that 1 = () X, then

Xeb
the number of minimal co-e-subgroups of G is finite.

Proof. Assume first the validity of (i) and consider a co-e-sub-
group F of the group . Denote by € the set of all co-¢-subgroups X of ¢
with X < E. Because of Lemma 5.16 (ii), the Maximum Principle of Set
Theory may be applied — as a Minimum Principle — on €. Hence there
exists a minimal subgroup in € and this shows that ¢ is second stage
pre-co-local. Suppose next that 6 is a set of co-¢-subgroups of & such that
X ~ Y belongs to 0 whenever X and Y belong to 6 and () X = 1.

Xe0
If X,...., X, are finitely many subgroups in 0, then it follows by
(2
complete induction that (1) X; belongs to 6 and is consequently a co-e-
i=1

subgroup of G. Application of Lemma 5.16 (i) shows that 1 = () X is
Xeb

a co-e-subgroup of G. Hence ¢ is an e-group so that 1 is the one and only
one minimal co-e-subgroup of G. Thus we have derived (ii.b) and hence (ii)
from (i).

Assume conversely the validity of (ii). Then ¢ is, by (ii.a), epi-
morphism-inherited. Consider next a set 6 of co-e-subgroups of G such
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that X € Y or Y € X for every pair of subgroups X, YV in 0. Let

J=MNX and H=G/].

Xebl

Denote by 6* the set of all subgroups X /J with X in 6. Because of
G| X ~(G/NH(X[J) for X in 0,

every subgroup in 6* is a co-e-subgroup of H and we have U< V or
Ve U for U, V in 0*. Furthermore it is clear that

1 =fW.
Web*

Application of (ii.b) shows that the number of minimal co-e-subgroups
of H is finite. Denote by M,, ..., M,, the totality of minimal co-e-sub-
groups of H. Assume by way of contradiction that none of the M; belongs
to all the subgroups in 0*. Then there exists to every i a subgroup &;
in 6* which does not contain M;; and among the S; there is one T with
T < 8, for every i. Clearly 7' does not contain any of the ;. But T is
a co-e-subgroup of H and as such it contains by (ii.a) a minimal co-e-
subgroup of H. This is a contradiction proving that one of the min-
imal co-e-subgroups of H, say M, belongs to all the subgroups 8 in 6*.
Then

McsNS=1,

Seb*

proving that 1 is a co-e-subgroup of H = G/J and that therefore J is
a co-e-subgroup of G. This shows the validity of Lemma 5.16 (ii) and we
have shown the co-locality of e.
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