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1. Introduction. We shall survey a few problems, and fewer results,
concerning relations of dependence in the theory of groups. For the most
part there is little difficulty in extending these problems, if not their
solutions, to more general algebraic systems; we do not discuss such
extensions here. We are guided largely by analogy with two classical
theories of dependence: linear dependence in the theory of vector spaces
and algebraic dependence in the theory of fields. There arise also certain
analogies with the relation of dependence, or consequence, in mathematical
logic.

2. A first analog of linear dependence. Linear dependence in a vector
space V has two dual aspects. We may define a vector » to be dependent
on a set U of vectors if v is in every subspace containing U, or, alternatively,
if » vanishes under every homomorphism that annihilates U. If we take V
to be a group instead of a vector space, these two relations, that vegp U
(the subgroup of V generated by U) and that vengp U (the normal sub-
group of V defined by U), are no longer equivalent. We look first at the
relation vegp U.

One can parallel the introduction of matrices in linear algebra. Let F
be a free group of rank m, with basis X, and @ a free group of rank n,
with basis Y. The homomorphisms 7' from F into G are associated uni-
quely with the choice of values #;T = ¢;(yy, ..., ¥,) in G as images of the
elements x; of X. It is natural to regard the m-tuple M = <t,(&,, ..., &), ...
oy tm(€1y -ooy &) as an m-by-n matrix, where the &; are indeterminates,
that is, constitute a basis for a free group @. If H is a further free group,
of rank p and with basis Z, and § is a homomorphism from G into H
with «-by-p matrix N = (s,(&, ..., &), ..., 82(&1y ...y &,)D, then the
composite homomorphism 7S has the m-by-p matrix P = (p,, ..., p,>
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where each p; = t;(81(Exy ey Ep)yoovy SulEayoeny £,)). It is natural to
define the product to be MN = P.

It need hardly be remarked that we cannot view the matrix M as
a rectangular array, and there does not appear to be any reasonable
definition of a transpose of M, or of a group dual to the group @. In con-
sequence there is no metatheorem of duality between left and right in the
multiplicative theory of these matrices, but only an imperfect heuristic
principle.

The invertible m-by-m matrices form a group A4,, analogous to the
general linear group. This group, which is naturally viewed as the auto-
morphism group of the free group @, was studied by Nielsen [28], who
gave a description of it by generators and relations. There remains much
to be done by way of determining the structure of 4,,, either as abstract
group or, more interestingly, its geometrical properties as a group of
transformations of @. The richness of 4,, is indicated by the observation
that if @ is replaced by the free abelian group @/[@, @] then 4,, is replaced
by the unimodular group of degree m, which is indeed a quotient group
of A,,. More generally, if N is any characteristic subgroup of @, one may
enquire into the kernel and image of the natural map from A4,, into the
oroup of automorphisms of @/N. Among recent work in this area is that of
Andreadakis [1], Bachmuth [2, 3], and Mostowski [24].

Left equivalence of two m-by-n matrices M and N is defined by the
condition that N = PM for some invertible P. More intrinsically, left
equivalence of M = {t;,...,t,> and N = {s;,...,8,, means that,
in @, gp{tiy ..., b} = 2p{s1, ..., 8} Nielsen’s proof of the Subgroup
Theorem [29] provides a- complete and effective solution of the problem
of left equivalence. It also provides a reduction of arbitrary M to a (semi)
canonical form, N = (s, ..., 8, 1,...,1> where {s,,...,8,} is a basis
for a free group. Otherwise put, the r-by-n submatrix. N, = {8y, ..., 8,
is left independent in the sense that QN, = 0 iff ¢ = 0, where 0 denotes
ambiguously any matrix 0 = (1,...,1>. Indeed, Nielsen’s algorithm
enables one to determine all left annihilators QM = 0 of arbitrary M.

Right equivalence, N'= MP for some invertible P, means that
the m-tuple M = {t;, ..., t» can be carried into the m-tuple ¥ = (s, ...
...y 8> by some automorphism P of the free group @. The problem of
right equivalence, which is much more difficult than that of left, was
completely and effectively solved by Whitehead [43,44] (see also
[32, 11]).

[We take this occasion to sharpen the statement of Whitehead’s
theorem as given in [11]. For this we view the ¢; and s; as cyclic words
(or as conjugate classes in @), and write L(M) for the sum of the lengths
of the ¢; (minimum length of an element in the conjugate class), with
L(N) analogous. Suppose that N = MP for some automorphism P,
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and that L(N) has its minimum value for all N related thus to M. Then,
for some k > 0, we have P = P,...P, where

(1) each P; is a Whitehead automorphism: for some fixed h, each
&P; is one of &;, & &, fﬁlfj, Ei{lfj Ens

(2) the integers L(MP,...P;), 0 < i < k, decrease strictly until the
value L(XN) is attained, and thereafter remain constant.]

The concept of a right independent matrix M, such that M@ = 0
iff ¢ = 0 is rather trivial, but the problem of determining all right an-
nihilators of M is that of finding all solutions ¢ = <{¢,,...,¢,> in a free
group of the system of m equations ¢;(&,,...,&,) =1, 1 <7 << m, which
will be mentioned later. The question of the existence of solutions ¢ of
the corresponding non homogeneous system, M@ = N, that is, of ex-
tending Whitehead’s results from automorphisms to endomorphisms,
has been undertaken by P. Schupp(*). We shall return also to the related
question of solving M¢) = M, that is, of determining the subgroup of 4,
leaving fixed the m elements ¢, ..., t,.

Two sided equivalence, N = PM@ for P and ¢ both invertible,
means that the two subgroups of @, generated by the {¢; and by the s;,
are equivalent under an automorphism of @. I know of no work on this
problem, which was mentioned to me by M. Hall, neither do I know of
any work on the perhaps more tempting problem of similarity, N = PMP ',
that is, on the classification of endomorphisms of a free group.

Thus far we have considered only the multiplication of matrices.
It is clear that we should define the sum of two m-by-n matrices M = ;>
and N = ;> to be M+ N = <t;s;>. Under this non commutative ad-
dition the set R,, of all m-by-m matrices becomes a near ring. This near
ring R (for m infinite) and its ideal theory have been studied extensively
by the Neumanns [26, 27] and independently by Smelkin [39], in con-
nection with the semigroup of varieties (or equational classes) of groups.
"There are two essential points in this connection. First, for an arbitrary
group (&, let V;;(G) be the normal subgroup of G generated by all instances
(homomorphic images) of the ¢; in G, and let Vj,; be the variety of all
such that Vg (G) = 1. Then the two sided ideal RMR = (M) consists
of all N = <s;> where the s; range independently over V,,(®). Second,
the product of two such ideals is the (principal) ideal (M)(N) = (P)
where the variety Vp is the product V,Vy = Vp of the varieties V
and Vy, comprising all extensions of a group ¢ in Vy by a group H in
V. The central result of their work is a unique factorization theorem for
varieties: the semigroup of all varieties of groups is a free unitary semigroup
with zero.

3. A second analog of linear dependence. We write U ->» for this
relation, that v engp U, to stress the similarity to the consequence relation
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in logi¢. Indeed, if we take a set of generators for the containing group @
as logical constants, the study of this relation is just the restriction of
the study of the elementary theory of @ to the special class of those sen-
tences that have the form of an equation. However, general methods from
logic carry over very little, and even simple appearing propositions re-
quire considerable specific machinery from group theory for their proof.

The study of this relation is most naturally concerned with free
groups, although there are reasons for trying to carry results over to re-
latively free groups, to free produects, or to groups with perhaps a single
special defining relation.

It was shown by Magnus [23] that the relation u — v is decidable.
He showed also [22] that w < » is equivalent to conjugacy of u with »
or v '. Karrass,- Magnus, and Solitar [13] showed that » — " has no
unexpected solutions. The well-known result of Novikov [30] and Boone
[6] is that the relation U — v is not decidable, even for certain fixed and
fairly small U.

We formulate two basic results in a slightly unfamiliar way, in order
to emphasize their analogy with logic as well as the more obvious analogy
with linear algebra. The first is the theorem of Schreier [37] on the ex-
istence of free products with amalgamation. Let the free group F have
as basis the disjoint union of sets A, B, and (. Let U < gp(4 < B),
V < gp(B o 0), and suppose that ngp U and ngp V have the same inter-
section with gpB. If w isin gp(4d v B) and U o V > w, then U > w.
A corollary of this is the following analog [19] of a theorem of Craig [9].
For U and V as before, suppose that U7 — V. Then there exists W < gp B
such that U - W and W — V.

The second basic result is the Freiheitssatz of Dehn and Magnus
[21]. Its simplest form says that if every word equivalent to the element u
of F' contains a certain generator a, then every non trivial consequence
of u contains a. By Schreier’s theorem this can be greatly extended [21,
19]. For the next simplest case, let @ and ¢ be among a set of generators
for F, and w and v elements of F such that » does not contain ¢ while
every conjugate of u contains a and that v does not contain a while every
conjugate of v contains ¢. If {u, v} — w where w does not contain ¢, then
% — w. A refinement of this and related theorems, by Cohen and Lyndon
[8], presents a close analogy with proof theory. The relation U/ — » holds
iff » has a representation = as a product of factors p,, ..., p,, where each
pi is conjugate to u or « ' for some w in U; it is natural therefore to call
7 a proof that U — v. There are certain obvious transformations [31, 33]
that carry any proof into a new proof of the same conclusion. Now, for «,
v, and w as before, suppose given a proof x that {u, »} — w. Then, by such
transformations, = can be carried systematically into a proof z’ that
u —v. A related result is that, if w — », then there exists, up to such
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rearrangements, only one proof of the fact. Theorems of this sort can be
viewed as a sharpening of results concerning dependence in certain mo-
dules, and have cohomological implications.

4. Equations and forms in groups. Apart from the classical question
of solutions of the equation 2" = g, for given @ and ¢ in @, the question
of solving equations in groups stems, so far as I know, from the question
raised by Tarski of the decidability of the elementary theory of free
groups. With one exception, all results that T know of concern free groups.
As a simple case of Tarski’s problem, Vaught asked whether, for elements
x, Y, and 2z of a free group, x*y*%? = 1 implies that xy = yx. It has been
shown [15, 4, 34, 38, 40, 20] that, for any m, n, p > 2, the equation z™y"2”
= 1 implies zy = yx. We shall come in a moment to a result of Baumslag
which contains this.

We have mentioned already that the question of existence of solutions
of a homogeneous system M@ = 0 is essentially trivial. Apart from the
trivial solution, = 0 = (1, ..., 1), there will exist nearly trivial com-
mutative solutions, with all the ¢; in a cyclic group, provided that the
matrix of the exponent sums e¢; of the & in the ¢; has rank less than n.
One wants some account of the complexity of the set of all solutions,
but a full account seems no more possible in general than a full geometric
description of an arbitrary algebraic variety. At least one can define
an analog of dimension: we define the rank r(M) of the system M to be
the maximum of the ranks of free subgroups gp{q,, ..., ¢.} of ®, generated
by the components of a solution @ of M@ = 0. In the case of a single
equation t(¢,,...,&,) =1, we write »(f) for the rank of the system.
Since r(?) is altered if we view ¢ as depending vacuously on another ge-
nerator &, , it is sometimes preferable to pass to the nullity n(t) = n—r(?),
which is an invariant of the word ¢ alone, and can be thought of as mea-
suring the number of degrees of constraint imposed by ¢.

Unless t(&,, ..., &) reduces to the trivial element of @, elements
41y ---5 Qn satisfying the relation #(q,,...,¢,) = 1 cannot, by Nielsen’s
argument [29], generate a subgroup of rank as great as »n, whence n(t) > 1.
On the other hand, if ¢ is primitive, that is, a member of some basis for
@, then setting ¢ = 1 and leaving the remaining elements of this basis
unchanged yields a solution of rank n—1, whence n(f) = 1. Steinberg
[42] has shown that n(tf) = 1 iff u — ¢ for some primitive %. The solution
of Vaught’s problem was first obtained in the equivalent form of showing
that, for ¢t = £2£2£8 one has n(f) > 1. '

Baumslag’s result [5] deals with a word of the form ¢ = s(&,, ...,
£._1) EE, where s is neither primitive nor a proper power, s = u", h > 1,
of another word, and where k > 1, and asserts then that m(t) > 1. An
extension in turn of Baumslag’s result has been obtained by Steinberg
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[42], and rests on an interesting lemma, giving broad conditions under
which a relation # —t(83(E11y vy E1p)y oovs 8u(Epay ooy Enp)) implies that
u has the form % = u (&, ..., &up) = 0(8y, ..., 8u).

Quadratic words ¢, in which each &; occurs exactly twice, with ex-
ponent +1 or —1, provide a manageable generalization of the case
t = &£ It is easy to see that each such word is equivalent either
to a product of squares or to a produet of commutators, and, from this,
that »r(t) = [n/2]; see [45]. Steinberg [41] has extended these considera-
tions to free nilpotent groups. Analogy with the classical groups suggests
examining the subgroup B of A, leaving fixed ¢ = II}& or t — IIF[&;, 5]
for » = 2k. Whitehead’s algorithm provides in principle a method for
determining the group B leaving fixed any m-tuple M = {,, ..., 1,).
Zieschang [46] has determined B for a single ¢t = &1... &, provided all
e; > 2; in the most interesting case, that all e; are equal, B is essentially
the Artin braid group. He has also determined the group B, leaving
fixed ¢t = &£ &5, where a new generator appears in addition to those to
be expected from the case ¢; > 2. Frisch is investigating the conjecture,
based on examination of analogous B, and B,, that no further unexpected
generators appear for large n (2).

An extension of the problem of solving M¢) = 0 involves equations
with constant coefficients, for example, to solve t(ay, ..., ax; &, ..., &)
= 1 in a group @, where a,, ..., a; are given elements of ¢. This has been
solved [16, 17] in the case that G is free and n = 1. For a simple case,
let t = a,&,a; "4 " where a, is a member of a basis for G; then the general
solution ¢, is ¢, = a;, for » an arbitrary integer. In the general case men-
tioned, the full solution is given by a finite number of expression, each
containing a finite number of parameters ranging over the integers. For ¢
a Lie group, certain conclusions of this general nature follow from the
work of Gerstenhaber and Rothaus [10].

5. The problem of adjunction. The last matter we shall discuss is the
solution of a system of equations ¢;(a,, ..., ax; &, ..., &), with coefficients
a; in a group G, in some group G’ containing ¢. It follows from Schreier’s
theorem that one can always adjoin a root, that is, solve an equation
£ — a, provided & # 0. A theorem of Higman, Neumann and Neumann
[12] shows that any isomorphism between two subgroups of G can be
effected under conjugation by an element of a larger group; in particular,
a, & a, 67" = 1 has a solution iff @, and @, have the same order. The broad-
est result in this area was obtained by Gerstenhaber and Rothaus [10]
by topological means. If G can be embedded in a compact connected
Lie group, then » equations in # unknowns have a solution, provided
the determinant of the exponent sums ¢;; of the &; in the ¢; does not vanish.
Levin [14] has given a group theoretic proof for the case that n =1
and ¢ contains &, only with positive exponents.
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A natural approach to the problem of adjunction, say for m = n =1,
is to form the free product P = G« of G with an infinite cyclic group
on generator ¢, to let N be the normal closure in P of the element #(a,, ...,
..., az; ¢), and to ask whether N has trivial intersection with &. The theo-
rem of Gerstenhaber and Rothaus suggests that G ~ N =1 provided
the exponent sum e,; does not vanish. The example ¢ = a,qa,q ', where
e,;, = 0, and G ~ N need not be trivial, shows that we cannot expect for
free products a literal analog of the Freiheitssatz; however, this is essen-
tially the only counterexample that I know of. Schiek [35, 36] has studied
the case of exponent sum zero, where a further reduction is possible.
In this case t lies in the free product of a certain finite set of the groups
1, = ¢ "Gq", and one wants to know whether ¢ has any non trivial con-
sequence lying in the free product of any proper subset of these groups.
Schiek has observed that a solution exists in case the indices & on the
factors of t, in order of occurrence in ¢, fall into two separable blocks.
In various other cases, suitable hypotheses on the indices h enable one
to deduce the existence of a solution by a theorem of Britton [7]. In all,
however, it does not seem likely that the methods available at present
can yield a full solution of the adjunction problem.
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Footnotes (added in proof)

(1) Even the general question of whether given w is an instance (endomorphic
image) w = t(q1, ....qn) of given (&, ...,&n) seems very difficult. A simple, but
not obvious, answer for the case that ¢ = [&1, &], a simple commutator, is given
in the following paper: M. T. Wicks, Commutators in free products, Journal of the
London Mathematical Society 37 (1962), p. 433-444. Schupp has extended this to
obtain a method for deciding if given w is an instance of a given compound com-
mutator f.

(3) As pointed out by Zieschang, further information on these groups may be
derived from the following papers:

W. B. R. Lickorish, Homeomorphisms of mnon-orientable lwo-manifolds, Pro-
ceedings of the Cambridge Philosophical Society 59 (1963), p. 307-317,

W. B. R. Lickorish, A finite set of generators for the homeotopy group of
a 2-manifold, ibidem 60 (1964), p. 769-778.



