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0. In [2] several combinatorial constants associated with finite
abelian groups were defined. All of them were connected with factoriza-
tion properties in algebraic number fields, arising as exponents of logz
and loglogz in various asymptotic formulas. We pursue now this topic
and consider the constant a,(A) which was defined as the maximal length of
a complex with a strongly unique factorization in a finite abelian group 4.
We obtain a simpler equivalent definition of it, improve the upper
bound obtained in [2], and compute the exact value for it in certain cases.

1. For convenience we repeat the needed definitions concerning
a,(A). Let A be a finite abelian group written additively. A sequence
b ={ay,..., a4} of its mnonzero elements is called a block provided
a,+... +a, =0. We identify two blocks which differ only in the ordering.
We define multiplication of two blocks by juxtaposition and call a block
irreducible if it cannot be written as a product of two blocks. Clearly,
a block is irreducible if and only if none of its proper subsums vanishes.
By a factorization of b we shall understand any surjective map

p: {1,...,k} > {1,...,8

with a certain positive ¢ = t(¢) such that for j =1,...,¢ the sequences
b; = {a;: p(i) = j} are blocks. If they all are irreducible, we speak about
an irreducible factorization of b. Obviously, we have b =b,... b,. Two
such factorizations ¢ and y are called strongly equivalent if t(p) = t(y)
(= t,say) and for a suitable permutation ¢ the sets {i: ¢(2) = j} and
{¢: 9(2) = a(j)} coincide forj =1, ..., ¢. A block is said to have a strongly
unique factorization if all its irreducible factorizations are strongly equi-
valent.

The reason for introducing these notions is explained by the following
result proved in [2]:
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PrOPOSITION 1 ([2], Proposition 7). Let a be an integer in an algebraic
number field K not divisible by a square of a nonprincipal prime ideal and
without principal prime ideal factors. Then a has a unique factorization in
K if and only if the block in the class group H of K formed by the ideal classes
containing the prime ideal factors of a (taken with multiplicities) has a strongly
unique factorization.

It follows that a,(H) gives an upper bound for the number of non-
principal prime ideals dividing an integer with unique factorization gen-
erating a squarefree ideal. Now we prove that here the square-freeness
is in fact irrelevant.

THEOREM. Let a be an integer of K with unique factorization and let
H be the class group of K. The principal ideal generated by a can be di-
visible by at most a,(H) distinct nonprincipal prime ideals and this bound
can be attained.

Proof. Write
a=p'...0,°I,

where p,, ..., p, are distinct nonprincipal prime ideals and I is a product
of principal prime ideals. Obviously, it suffices to consider the case I = 1.
Let p,',...,p,” be principal, p,’%',...,p,° nonprincipal, and let
g; € H be the class containing p, (for ¢ =1, ..., r), respectively p;* (for
i=r+1,...,8).
For each ¢ =1, ..., 8 choose a prime ideal ¢; from g¢g; and for
i =1, ...,r choose a prime ideal ¢; from g;' so that all obtained prime

ideals are different. This choice assures the principality of the ideal

J=qr- - -

Let b be any generator of J. We claim that b has a unique factor-
ization in K. Since J is squarefree, Proposition 1 will imply

s<8+r<qH).

Denote by m,; the order of ¢g; (¢ =1, ...,7), let =, be a generator
(clearly irreducible) of the principal ideal p;”, and let 4; = a;/m;. Then

the number
A A
a' = nll... ﬂrr

has a unique factorization, being a divisor of a. Hence the elements g,, ..., g,

r

generate independent subgroups. Indeed, if [] g:-‘ =1 with 0 < ¢, <my
i=1

(¢ =1,...,7) and for at least one 7 we had #; # 0, m,, then the ideal

I1 pi-" would be principal and any of its generators would be a divisor

=1 r

of a’ not of the form [J =% (0< B;< A4;, i =1,...,7). It is also clear
i=3
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that no nonunit product of elements g¢,.,, ..., g, can lie in the group gen-

erated by ¢,,...,9,. This shows that b cannot have another factorization
into irreducibles than that induced by

J =(0:1q) --- (¢:0) ---
To show that the bound is obtained it is enough to apply Proposition 1.

2. Now we show that it is possible to give a simpler definition of
a,(A). To do this, denote by S(b) for a block b = (a,, ..., a,) the set of
all possible sums a; + ... +a, (1 <4, <... <4< m). |

PROPOSITION 2. Let b = {ay,...,a4;} = by...b, and let the blocks
byy ...y b, be irreducible. Then the block b has a strongly unique factorization
if and only if for all disjoint subsets X, Y of {1, ..., r} we have

(1) S(g b) nS(I;I b) = {0}.

Proof. The “only if” part of this proposition is contained in Lemma 1
of [3], so let us assume that condition (1) is satisfied. If » = 1, then the
implication holds, as b is irreducible; so we may assume that r > 2 and
the implication holds for all smaller values of r. Define ¢ = {1, ..., k}
- {1,...,r}by (i) =jifa;eb, . Let y = {1, ...,k} - {1, ..., s} be another
irreducible factorization of b. We have to show that it is strongly equiva-

lent to ¢. (We may assume that 8 > 2, as otherwise b would be irreducible.)
Put

A;(p) ={j: 9(§) =4} and A,(y) = {j: v(j) =1}.

If A;(p) = 4;(y) for some %,4’, then the block b,...b,_;b;,;...b,
would satisfy (1) and have two strongly inequivalent factorizations, con-
trary to our choice of r. Thus, in particular, we must have 4,(y) # 4,(p),
1< » <, and, of course, 4,(y) = A;(y) (for some %) is also excluded. Thus
we may find j, # j, and k, # k, such that

(k) =Jji, @(ks) =Jay (k) = p(k) =1;

hence the sets B = A4, (p)n4,(y) and C = A, (9)\B are both nonempty.
As

we have
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and
— = Za, €8(by...by s bjyy.nby) =T,

reC
but 7 is closed under inverses, whence finally
£e8(b)nT = {0},

a contradiction.

Observe that in Proposition 2 we can replace condition (1) by the
following:

(2) S8(b)n8(by...b;_1b;,...0,) ={0} (t=1,...,7).
In fact, assume that (2) holds and we have the equality

(3) a."l‘l" cee +a1'k == ajl+ cee +ajl #0
with
a,-menb,-, ajne”b,— (m=1,...,k; »=1,...,1)

i€d i€B
for A, B disjoint.

We may assume that no subsum of the left-hand side of (3) vanishes,
as in that case we could remove it. Not all of the elements 4, , ..., a; can
lie in the same irreducible block, so we may assume that a, , ..., a;, € by,
whereas Bipr1y ey By ¢ b,. Then

0 #all"*‘ coe —I—a,-p=aj1—|- cee +ajl_(arip+l+ ces +a1k) ES(bl)ﬂS(bz...b,).

3. In [2] it was shown (Proposition 8) that a,(4) does not exceed the
cardinality of A. Without much trouble one can show that a,(4) = |A]|
holds if and only if either A is cyclic or A ~ C?%. Now we shall give another
upper bound for this constant, involving the constant of Davenport,
and this will enable us to compute a,(4) for groups C; and C}.

Denote by D(A) the Davenport constant of A, i.e. the smallest integer
n with the property that from each sequence of n elements of 4 one
can extract a subsequence with vanishing sum. Olson [3] proved that
if A is a p-group and

.A = @Cph{’

i=1

then

D(4) =1+ Y (8" -1).

The analogue fails for arbitrary abelian groups (cf. [1]).



FINITE ABELIAN GROUPS. 1I 119

PROPOSITION 3. For all finite abelian groups A we have
a,(4) <2(D(4)-1).

Moreover, if b is a block in A with strongly unique factorization,
b =b,...b, (b; — irreducible), then b can contain at most D(A) -+ r —1 elements.

Proof. Delete one element from each block ;. The sequence obtained
cannot have a subsequence with vanishing sum because of Proposition 2.
Thus it contains at most D(A4)—1 elements. As we delete r elements,
the second part of our proposition holds. To obtain the first part it suffices
to note that the deleted elements also form a sequence without a subse-
quence with vanishing sum.

COROLLARY 1. a,(C3%) = 2n.

Proof. By Olson’s result, D(C3) = 1+n, and a,(C%) > 2n by Propo-
sition 9 of [2].

COROLLARY 2. a,(C%) = 3n.

Proof. Regard (7 as an n-dimensional space over GF(3). If b = b,...b,
is a block with strongly unique factorization and we take one element
from b;, then the obtained set is linearly independent in view of Proposi-
tion 2. Thus » cannot exceed %, and as D(C}) = 1+2n, we obtain a,(4)
< 3n. The converse inequality follows from Proposition 9 of [2].

It can be also seen that if ¢ is a prime power, then a, (Cf," ) cannot exceed
2N (¢—1), but the lower bound in this case is Nq and there remains a gap
to be closed.

The following proposition describes the behaviour of a,(4) under
homomorphisms.

PROPOSITION 4. If 0 > H — @ L A -0 is an exact sequence of finite
abelian groups, then

a,(G) = a,(4)+a,(H).

Proof. Let b = b, ... b, be a block with strongly unique factorization
in A with a,(A4) elements, and let ¢ = ¢;...¢; be such a block in H. If
b, = {#y, ..., z,}, then we can select elements v,, ..., ¥, in G with

2?];‘=0 and  f(y;) = ;.

=1

Write B = {§,,...,Yn} and consider the block B = B,...B,,,
where for + =8+1,...,t+8 we have B; = (,,; in @. We claim that it
has a strongly unique factorization. Indeed, the blocks B; are obviously
irreducible, and if for a nonempty set A < {1, ..., 84t} the intersection

S(QB,-)nS(QBi)
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contains a nonzero element a, say

M N P Q
(4) “=251—Z’71=251+2%
j=1 j=1 j=1 j=1
where
fjean éjE”Bi’ ] Ean ﬁjenBu
i i i 4
then
M P
flay= D' f&) = D'f&) e8([]v) n8([]5) = {03
S -
Thus

{F(&s s Flla)} = byenbyy  {F(ED)y s F(E)} = byl

with suitable %, ..., %, j1, ...y J;, Showing that

{61y..y Eu) = By ...By, {&1,..., &} = B, ...B,,

and
M P
Z 5,‘ =0 = ij
j=l1 j=1

Now (4) gives

N P
a = _2"71 = 12:77; eS(n ot'—a) "‘S(n"i-a) = {0},
ji=l1 =1 i€4d ied

i>8
leading finally to a = 0.
The next propositions are useful for computing a, (@) for given groups.
PROPOSITION 5. If b = b,...b, is a block with strongly unique factoriza-
tion in G, 1 < t < r, andthere is a subgroup H of G such that S(b,,,...b,)nH
= {0}, then

|bgyr... 0, < @, (G/H).

Proof. Let f be the canonical map of G onto G/H and consider the
block b" = f(b,,¢)...f(b,) induced in G/H by f. Observe first that the
blocks f(b;) are for ¢ = 14-%, ..., r irreducible. In fact, if b; = {g,, ..., 9.}
and if f(g;)+ ... +f(g,) =0, then g; + ... +g, liesin 8(by,... 5 )nH
= {0}, thus {¢y,...,%} ={1,...,8}

To show that b’ has a strongly unique factorization assume that there
is @ nonempty proper subset 4 < {1-+¢,2+4¢,...,r} such that the inter-
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section

S([[r@)ns( [] f®a)
ted ‘?{Il
contains an element a. Then we can write

k ]
a=D'flg,) =D fh)

with

ied i=t+1
{¢A4

{900 -1 95} enbn {hiyy ooy by} € n b;.
¢
As all sets S(B) are closed under inverses, the element

k l
Zg‘u— Zh‘v

u=1 v=l

belongs to S(b,,,...5,)nH = {0}, i.e.
k l
20, = Ym,e8([Jo)ns( [ v) =10},
U=1 v=1 1ed i%:;t

and we have a = 0. The proposition results now immediately.

PROPOSITION 6. Let b = b,...b, be a block with strongly unique factor-
ization in a group of N elements and let 8; for i =1, ..., r be the number
of elements in the irreducible factor b, of b. Then 3,...8, < N.

Proof. Observe that if b, = {a;,..., a4} (¢ =1,...,7), then all

81...8, SUMS8
r U

D Ve (1<4<s)

- t=1 j=1
are distinct.
COROLLARY 1. For all abelian groups A of order N we have

logN
log2

a,(4) < D(4)+ 1.

Proof. Note that 2"<s,...s, < N holds by Proposition 6 for all
blocks with strongly unique factorization and apply Proposition 3.

COROLLARY 2. If A i3 an abelian group of order N and m is the maximal
order of an element in A, then

—1.

1
al(A)<m(1+ ogN) logN

logm log2
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Proof. In [1] it was proved that

D(A)<m(1+ 1°gN);

logm

hence it suffices to apply the preceding corollary.

Using the above propositions one can without trouble compute the
value of a,(A) for small groups. The results lead to the conjecture that if

N
A =£Dl Oni (ny|ng|...|ny),

then a,(4) = n,+ ... +n,5. It was observed in [2] that the inequality
a,(4) = n,+ ... +n,5 always holds, but the converse inequality was
proved only in particular cases. The corollaries to Proposition 3 show that
the conjecture is true for 4 = O and CY, and using Proposition 6 one
can also establish it for A = C¥Y@C, and CY@C:. This can be done in
the following way: if b = b,...b, is a block with strongly unique factor-
ization in 4 = CY@C? having more than 2N 49 elements, and s; denotes
the number of elements in the block b,, then from s; > 2 and s,...s, < 2N+
we infer that r < N +4. On the other hand, D(A) = N 47 and Proposi-
tion 3 shows that 2N +9< N +6 +r, whence » > N +3. Thus, finally, either
r = N+3 or r = N-+4. In the second case all s,’s have to be equal to
2, 80 b contains 2N 48 elements, and in the first case we can notice that
all solutions of 8,...8y_, < 2¥** with s, > 2 satisfy s, + ... +8y_; < 2N +8.
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