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1. Introduction. A continuum (compact, connected, metric space) X is
said to be irreducible if there are points p and q in X such that no proper
subcontinuum of X contains both p and gq. The fundamental structure
theorem for irreducible continua was proved by Kuratowski (see [10], p.
200): If X is an irreducible continuum such that every indecomposable
subcontinuum of X has void interior, then X admits a finest monotone
decomposition whose quotient space is an arc, i.e., there is a monotone
mapping m: X -1 such that every other monotone mapping of X onto the
unit interval I can be factored through m. The continua m~'(t) for t in I are
called tranches or layers of X. In 1935 Knaster [8] gave an example of an
irreducible continuum K, each tranche of which is non-degenerate and such
that the canonical map m is open or, equivalently, the continuum-valued
map m~! is continuous. We will call such continua continuously irreducible.
Another well-known example is the Bing—Jones “arc of pseudo-arcs” (see [1]).
Both of these continua contain tranches which are indecomposable and
chainable (in the arc of pseudo-arcs every tranche is a pseudo-arc). The
question whether every continuously irreducible continuum must contain a
hereditarily indecomposable tranche was raised by Knaster [9]. Dyer [4] has
shown that every continuously irreducible continuum must contain an
indecomposable tranche and Oversteegen and Tymchatyn [13] have shown
that any such continuum must contain an indecomposable tranche (in fact, a
dense family of such tranches) containing indecomposable subcontinua of
arbitrarily small diameter. However, the general answer to Knaster’s question
is “no”, as we show below. In Section 2 we produce a fairly simple modification
of Knaster’s continuum, yielding a continuously irreducible continuum, every
tranche of which contains an arc. We then proceed to a more complicated
constru¢tion allowing us to modify any one-dimensional continuously irre-
ducible continuum into one, every subcontinuum of which contains an arc.

The latter construction derives in a sense from Janiszewski’s [7] famous
construction in which he inserts a sin(1/x)-curve “everywhere” in an arc to
produce -a rational curve containing no arcs. However, the method is
modelled directly on a construction of Cook [3], used to produce continua
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admitting no non-degenerate self-maps. Cook’s method has since been used
to produce a variety of examples in papers by Ingram [6], Mackowiak [11],
and the authors [12].

An essential ingredient in the main construction is the notion of an
atomic map, introduced by Cook in [3].

DerFiNiTION 1.1. Let X* and X be continua. A mapping g of X* onto X
is said to be atomic if for every subcontinuum L of X* such that g(L) is non-
degenerate we have L =g~ '(g(L)).

The canonical monotone map of a sin(1/x)-curve onto an arc is an
example of an atomic map. All atomic maps are known to be monotone (see
[5]). There is also an affinity between atomic maps, open maps and irreduc-
ibility, as the following lemmas show. The first is easy to prove.

LEMMA 1.1. Let X* be a continuum admitting an atomic map onto the
irreducible continuum X. Then X* is irreducible.

LEMMA 1.2. Let X and Y be continua and let m be a monotone open
mapping of X onto Y such that m™'(y) is non-degenerate for every ycY. Let
X* be a continuum and let g be an atomic map of X* onto X. Then mog is
an open map.

Proof. Let |y,! be a sequence of points in Y converging to the point y.
We must show that the sequence of continua L, =g~ !(m~'(y,)) converges to
the continuum L =g~ '(m™!(y)) in X*. Suppose not. Then some subsequence
of the L,s converges to a proper subcontinuum P of L. Without loss of
generality we assume that the entire sequence L, converges to P. Now since
m is open, the continua m~!(y,) converge to the continuum m~!(y). By the
continuity of g, it follows that g(P) = m~(y). But m~!(y) is non-degenerate
and L=g !(g(P)), so this contradicts the fact that g is atomic.

CoroLLARY 1.1. If X is a continuously irreducible continuum and X* is a
continuum admitting an atomic mapping onto X, then X* is continuously irre-

ducible.
2. Examples.

ExampLE 2.1. A continuously irreducible continuum, every tranche of
which contains an arc. Let K be a copy of Knaster’s continuously irreducible
continuum [8], embedded in the upper half-plane (as in Knaster’s construc-
tion) in such a way that each of its tranches meets the unit interval [0, 1] on
the x-axis. Let

K* ={(x, y, 2)€ E*: (x, y)e K. y >0, and z = sin(1/y)}
v i(x, y,z)€E3: xe[0,1]nK, y=0, and —1<z<1}.
It is not difficult to verify that K* has the desired properties(}).

() Note in particular that K* admits an atomic mapping onto K. We also note
in passing that K* is chainable, and hence embeddable in the plane.
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ExaMmpLE 2.2. A continuously irreducible continuum, every subcontin-
uum of which contains an arc. The desired example is any continuum X* as
in the following theorem. X* is continuously irreducible by Corollary 1.1.

THEOREM 2.1. Let X be any continuously irreducible one-dimensional
continuum. Then there is a continuously irreducible one-dimensional continuum
X*, every subcontinuum of which contains an arc and such that X* admits an
atomic mapping onto X.

Proof. Let X be as above and let {X;, f/} be an inverse sequence of
finite graphs with piecewise linear, light bonding maps(?) whose inverse limit
is X. Let D ={p,, p,, ...} be a countable dense subset of X,. (Note that
then, for every n, (f~!(D) is countable and dense in X,.) To simplify the
discussion, we further assume that the points p, have been chosen so that, for
every n=1, 2, ... and for every xe(f{)”'(p.), x is neither a vertex nor an
endpoint of X, and there is a small open subinterval O, of X, containing x
such that, for every j =2, 3, ..., f{ is a homeomorphism on O,.

The space X* will be the inverse limit of a doubly infinite array of
continua X¥;. Roughly speaking, each X¥; will be a copy of the graph X;
with sin (1/x)-curves inserted at the points ()~ '(p), k=1, 2, ..., i. We will
define the space X¥; one row at a time. Let Xt be the graph X, with a
small interval containing p,, but no vertices or endpoints of X,, replaced by
two-sided sin(1/x)-curve. Let g, ;: X}, — X, be the natural atomic mapping
which sends the limit arc of the sin(1/x)-curve to p; and is one-to-one
elsewhere. Xt , is constructed from X, by inserting double sin(1/x)-curves in
small disjoint subintervals of X, containing the (finitely many) points
(/)" '(p,) and restricted to which, f? is a homeomorphism. g, ,: X¥,— X,
is the natural atomic map collapsing the limit arcs of the sin(1/x)-curves to
the points of (f3!)”*(p,) and one-to-one elsewhere. The sin(1/x)-curves should
be copies of sub-curves of the sin(1/x)-curve in X}, obtained by mapping
the subintervals of X, on which they are inserted into X, by f} and then
inverting under g, ;. Thus f*,: X¥, — X}, may be defined to be a homeo-
morphism on these curves making the diagram

X T.lTX 1.2
1,2
commute. (The intervals in X, may also be chosen so that the sin(1/x)-curves
“cross the x-axis” at their endpoints.) Finally, extend f}*, to the rest of X},
so that the above diagram continues to commute. The rest of the construc-
tion is very similar. The successive spaces X, are constructed by inserting

(?>) The bonding maps may be taken piecewise linear and light by Brown’s theorem [2].
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two-sided sin(1/x)-curves in X, at each point of the set (f{)”!(p;). The
insertions are made on little disjoint intervals containing no vertices or
endpoints of X, and restricted to which, f,' ; is a homeomorphism. Thus we
may define an atomic map g, ,: X} ,— X, which collapses the limit arcs of
the inserted sin(1/x)-curves to points and is one-to-one elsewhere and a map
fi*a: Xtn.— Xt,.-1 which is a homeomorphism on each of the inserted
sin(1/x)-curves and such that the following diagram commutes:

e
Xn—l n—1 Xn
1 f
91.n—1 | | 91,n
Xf,n—l ft X?,n
1.n

The successive rows are defined from the previous rows in a similar way.
Each space X¥; is obtained from X* , ; by inserting little sin(1/x)-curves at
each point of the set

(gi—l.j)_l O(gi—z‘j)_lo'ﬂo(gl,j)_l o(f)~ 1 (p)-
gij: X¥;— XX, ; is the natural atomic map which collapses the limit arcs of
the newly inserted sin(1/x)-curves to points and is one-to-one elsewhere. The
sin(1/x)-curves are inserted on intervals so that the map f*: X} — X¥_,
may be defined to be a homeomorphism on them and so that in general the
following diagram commutes:

o
* ¢ 1,j
Xi—l.j—l : X?—l.i
I 1
9i,j—1 '91‘.1'
X?,‘j—l I X:J

ij

Note that no new insertions are ever made in the limit bars of the previously
inserted sin(1/x)-curves (unlike the constructions of Janiszewski and Cook)
so that all bonding maps on components of pre-images of these arcs in
factor spaces farther out in the inverse limit system are homeomorphisms.

It is straightforward to show that the inverse limit X* of this array
admits an atomic map g: X* — X such that the inverse image of each point
is either an arc or a point. Moreover, let L be any non-degenerate subcon-
tinuum of X*. Then L must have a non-degenerate projection in some factor
space X¥;. If L projects into the limit arc of some inserted sin(1/x)-curve,
then, by the last sentence of the previous paragraph, L is an arc. Otherwise,
some projection of L in a factor space X%, ; will contain a sin(1/x)-curve
and, by the same reasoning, L will contain a homeomorphic copy of the limit
bar of this sin(1/x)-curve.

3. Generalizations and questions. The construction in Theorem 2.1 can
be used to insert not only arcs, but any continuum K “everywhere” in any
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one-dimensional continuum X. And if K has some hereditary property (e.g.,
hereditary unicoherence, atriodicity or is a pseudo-arc; the hereditary proper-
ty in 2.1 was “is an arc”), then every subcontinuum of the new continuum X*
will contain a continuum with that property. One may also ask whether
various properties of X will be preserved by X* as was the property of
continuous irreducibility in our example. We offer a theorem, without proof,
summarizing some fairly straightforward results.

THEOREM 3.1. Let X be a one-dimensional continuum and let X* be a
continuum constructed from X by inserting continua, as in Theorem 2.1. If X
and each of the inserted continua has property P, where 2 is any of the
following, then X* will also have property 2. arclikeness, treelikeness,
atriodicity, span 0, hereditary unicoherence.

The reason that X must have dimension 1 in our construction is that in
order for our construction to yield inserted continua in every subcontinuum
of X*, the factor spaces X; must have the property that each of their non-
degenerate subcontinua (in particular, projections of non-degenerate continua
in X*) has non-void interior. However, two of the above properties will be
preserved by any continuum X* admitting an atomic map onto any other
continuum X, where X and every non-degenerate point inverse have proper-
ty 2; namely, treelikeness and span 0. In light of the above remark, we may
ask:

QuestioN 3.1. (P 1330) Is there an inverse limit construction for atomi-
cally inserting a continuum in every subcontinuum of a continuum X of
arbitrary dimension?

A fairly radical type of atomic map is one in which every point inverse
is non-degenerate. For example, the Bing-Jones arc of pseudo-arcs admits an
atomic mapping onto the unit interval such that every point inverse is a
pseudo-arc. The following question seems quite hard. We note in particular
that the space $* would have to have dimension 1.

QuEesTiON 3.2. (P 1331) Does there exist a continuum S* admitting an
atomic mapping onto the 2-sphere, such that every point inverse is a pseudo-
arc?
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