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Let X and Y be topological spaces. A mapping f: X > Y of X
onto Y will be called confluent if for each connected closed subset C of Y,
and points ze¢f ' (C) and yeC, the set f~'(C) is connected between {z}
and f~'(y). In this definition we slightly modify the concept of confluent
mappings, introduced recently by J.J. Charatonik, but nothing changes
if we restrict ourselves to mappings of continua (see [1], p. 213). On the
other hand, confluent mappings generalize the notion of quasi-monotone
mappings of locally connected continua, due to A.D. Wallace (see [6],
p. 138). Moreover, by a theorem of G.T. Whyburn, all open mappings
of compacta are confluent (see [7], p. 148).

Recall that a space X is said to be contractible relative to a space Y
if each mapping f: X — Y is null-homotopic. We shall denote by R the
set of all real numbers and by 8 the set of complex numbers with module
one. Since 0¢8 but 1¢8, we shall follow on the lines of Eilenberg and
Kuratowski in writing f~1 to state that a mapping f: X — § is null-
homotopic (see [4], p. 310). For an arbitrary topological space X and
a mapping f: X — 8, we have f~1 if and only if there exists a mapping
¢: X - R such that f(x) = ¢*™*® for xe¢X (see [5], p.39). Any such
continuous function ¢ will be said to be attached to the mapping f.

It is known that the contractibility of compacta, i.e. compact
metric spaces, relative to 8 is an invariant under monotone or open
mappings. Moreover, by a theorem of S. Eilenberg, if g: X - Y is
a monotone (or open) mapping of a compactum X onto a compactum Y
and f: Y - 8, then fg~1 implies f~1 (see [4], p. 331). In the present
note we shall generalize this Eilenberg’s theorem to confluent mappings.
Thus, for not necessarily locally connected continua, confluent mappings
seem to be a good analogue of both monotone and open mappings, like
the contractibility relative to 8 is an analogue of the unicoherence.

Suppose C is a continuum, i.e. a connected compactum, and f:
C — 8 is a null-homotopic mapping. Take a point x,¢C and a number
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t,eR such that f(x,) = €™, Then a function ¢: C — R attached to f
is uniquely determined by the condition ¢(z,) = ¢, (see [4], p. 309). It
follows that for a pair of points p, ¢eC the number ¢(p)—¢(q) depends

on neither z, nor t,.
If Y is a metric space, the distance between points p, ge Y will be

denoted by o(p, q). The open ball with centre peY and radius ¢ > 0

will be denoted by @Q(p,e). For a mapping f:Y — 8§, the symbols
firrnon~1 will mean that fnon~1 but f|C~1 for each closed proper

subset C of Y.

LeEMMA 1. Let Y be a continuum and f: Y — 8 a mapping such that
firrnon~1. If C is a proper subcontinuum of Y and ¢ > 0, then there exists
a proper subcontinuum K of Y and points p, qe K such that C =« K and

0Py <e, lp(@)—p(g) =35

where ¢ 18 a function attached to f|K.

Proof. Suppose on the contrary that there exists a number ¢, > 0
such that, for every proper subcontinuum K of Y containing C, and for
each pair of points p, geK, the inequality

e(py ) <&
implies the inequality

lp(@)—9 (@) <3.
Let n < 4¢o be a positive number such that if p, geY and

o(p,q) <n,
then

@) —f@) <V2—v2

(the number on the right side in the last inequality is the length of
a chord in the unit circle 8 that spans the angle }=). We can obviously
find a proper subcontinuum K, of Y such that C « K, and that there
exists, for each ye¢Y, a point peK, satisfying

1) e(p,y) <.

Since firr non~1, there is a function ¢, attached to f|K,. Take an
arbitrary point ye¢Y. If peK, and (1) holds, the radii from the centre
of 8 to f(p) and f(y) form an angle less than }r. Consequently, there is
exactly one real number ¢”(y) such that

lpo(P)— " ()] < }
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and
. fly) = &™),

Now let ge K, be another point satisfying inequality (1) with p = g¢;
then

o(p,q) <o(p,y)t+o(y,q) <29 <eg,
whence

19° () — ¢" (@) < 19° (%) — @o(P)] 190 (P) — @0 ()] + lpo(9) — ¢° (¥)]
<ititi=au
It follows from
e2m'w”(u) = f(y) = 6211:?392‘1(1!)
that ¢”(y) = ¢?(y) and the number

o(y) = " (y)

is well-determined, independently on points peK, satisfying (1). Thus

we get a function ¢: Y — R, and observe that ¢ is an extension of ¢,.

It turns out however that ¢ is attached to f, which contradicts the rela-

tion f non~1. In order to see this it remains to show that ¢ is continuous.
For an arbitrary sequence of points y;¢Y (j = 0,1, ...) with

Yo = limy;

o0

let us take points p;eK, such that

o(ps, ) <n

for j =0,1,... and an index j, such that

(%o, ¥5) <m
for j > j,. Then we have

lp(p))—e(¥)l < 3
for j =0,1,... and

0(Poy Pi) < 0(Poy Yo) + 0(Yor ¥5)+ 0(¥5, 1) < 31 < &
for j > j,, whence
lP(¥0) — )| < l9(Yo) — (o)l + o (Do) — @ (P)| + l(25) — @ (9))]
<ititi=m

Colloquium XV, 15
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for j > j,. It follows from
&) = f(y,) = limf(y;) = Lim ™0

—>00 J—>00
that
®(Yo) = }imw(%)-

LeEMMA 2. If Y 48 a continuum and f: Y — S is a mapping such that
firrnon~1, then there exist proper subcontinua Y,, Y,, ... of Y and poinis
Yoy Y15 Y2y ... Such that for each j =1,2,... we have y,,y;eY; and

Yo =limy;,  1g;(¥o) — @1 (%) >y
1—>00
where ¢; is a function attached to f|Y;.

Proof. We first define proper subcontinua C, =« 0, = ... of Y and
a sequence of points a, p,, p,, ... converging to a in Y, such that for
l=1,2,... we have p;e(; and each function ¢ attached to f|C;,,
satisfies the inequality

(2) lp(P) —@(Dr41)] = 3.

Indeed, applying successively Lemma 1 we get an increasing sequence
of proper subcontinua C; of ¥ and points p;, ¢;eC; such that

o0y, 1) <11, le(p)—o(d)| =3,

where I =1, 2, ... and ¢ is a function attached to f|C;. Since Y is a com-
pactum, we can assume the points p;, ps, ... converge in Y. Let us denote
their limit by a. Thus ¢, ¢;, ... also converge to a. Put p, = p; and
suppose p; is already defined. If ¢ is a function attached to f|C;,,, then
9 (P1) = @(@141) |+ l@ (@) — 9 (@111)] = 19 (B141) — 9 (@142)] >3

and therefore (2) holds for p,,, equal to p;,, or.g;,,. We define p,,,
accordingly.

Let » > 0 be a number such that if p, geY and po(p, q) < 7, then

@) —f@) <Ve—v3

(the number on the right side is the length of a chord in § corresponding
to the angle %11:). Hence, for each closed proper subset C of Y containing p
and ¢ with o(p, ¢) < 7, a function ¢ attached to f|C must satisfy

lp@)—e@ <z o lp(»)—e(@) >g.

The continua C; are closed proper subsets of ¥ and form an increas-
ing sequence. Thus we see that, for a given function y, attached to f|C,,
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there is a unique extension y; of v, such that y; is attached to f|C;. In
the sequel we shall use the symbol ¢ to denote any of the functions
t=1,2,...).

Choose points g;eC; such that

limg; = limp, = a +# ¢; # py

7'—»00

for j, 1 =1,2,... We can assume that all the points p; and ¢; belong
to the ball Q(a, {n). Let C;; be the connected component of the set

01\@(%’9 o(p1, Qi)/k) y

to which the point p; belongs, for ¥ = 1, 2, ... Then there is a common
point 7y of Cpy and the boundary of the ball Q(g;, o(p:, ¢5)/k). It follows
that

(3) o(q;, i) = o(p1, @5) /%
for j,k,1=1,2,...and

o(P1y Tim) < 0(P1s @) +0(q) Tira) < 20(p1,y @5) < 7,
whence

lp(P)—prm)l <3 or  lp(p)—e(rm)l > 5.

Case 1. There exists j, such that, for each %, there exists [} > j°
such that, for each ! > I, we have

9 () — @ (ryga)] < 13-
If the inequality
9 (@,) — ()| < 7
held for ! > l;, we should get
o (p)—9(as,)] <5

for 1 > I, and consequently
P () — (D)l <3
which contradicts (2). Thus there exists m; > Il such that
9 (21,) — @ (Tygemye)] > T2
according to the condition

Q(qfo’ rfokﬂlk) < Q(p'ch’ Qfo) < 77
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which follows from (3). We define
Yo = igy Yk = Tigkmyy  Yi = COmy,

for k. =1,2,... Since my =1, > j,, we have y,eY, for k =1,2,...
Moreover y e Y, and (3) yields -

0(Yos Yi) = 0(Pmy,» Qio)/k

for k =1, 2, ... Hence the points y,, ¥,, ... converge to y,, the numbers
(Pmy» ¢;,) being less than or equal to the diameter of Y. If we take
@r = ¢|Cp, for £ =1,2,..., we obtain

@k (Yo) — P (W) > 1.

Case 2. For each j, there exists k; such that, for each 1 > j, there
exists m; > 1 such that

lp (pnﬂ) - ¢(rfkjnjl)| > :—; .

The space Y is a compactum, and so we can assume the sequence
of points Tikmy (L =7J,j+1,...) converges in Y. We define

Yo=a Y= Elgrikjnjlr Y; = E:Soo'fk,nﬂ
for j =1,2,... Since n;; >1 for Il =3, j+1,..., we have
}ijgpn,, = a,
whence y,eY; for j =1,2,... Moreover y;¢Y; and (3) yields
(Yo, Y1) = liri}e(a, Tiiejnjy)
< ¢(a, %H‘}ilg (@) Tikpmy)
= e(a, !If)-i—ll_ifge(z’nﬂ, ) [k;

= o(a, ¢;)+ o(a, @) /%; < 20(a, ¢;)

for j =1, 2,... Therefore the points y,, y,, ... converge to y,. But we
also have

Yf < IEEO[C’””\Q(Q"’ Q(P'nﬂ’ qf)/kf)]

c Y\Q(Qh e(a, g;)/%;),

which gives ¢;¢Y; for j =1,2,... Consequently Y,, Y,,... are proper
subcontinua of Y, whence f|Y;~1 for j =1, 2,... It follows that there
exist open subsets G; of Y such that Y; < G; and f|G;~1 (see [4], p. 311).
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Let ¢; be a function attached to f|@;. For almost all indices I = j, j+1, ...
the continuum ka,-n,-, lies in G; and contains the points Pn;; and Tikejngy
Since these points converge to y, and y;, respectively, the inequality

195 (Pay) — @5 (Titgni)| > 13
implies, for j = 1,2,..., the required inequality
91 (¥o) — 95 (¥3)| = 55
THEOREM. If g: X — Y is a confluent mapping of a countably compact
space X onto a metrizable space Y and f: Y — 8 is a mapping of Y into
the circle 8, then fg~1 implies f~1.
Proof. Let us suppose the contrary, i. e. that fg~1 but fnrnon~1,

and let ¢: X — R be a function attached to fg. Since Y is countably com-
pact like X, i.e. Y is a compactum, we can find a continuum Y < Y

such that
fI1 Y irr non~1

(see [4], p- 325), and then we can apply Lemma 2 to Y’ and f|Y’. Take
proper subcontinua Y,, Y,,... of Y’ and points y,, ¥,, ¥z, ... according
to Lemma 2. Thus y,, y;¢Y;, the points y; converge to y, and we can

assume that
11

(4) ¢ (Yo) — 9 (¥7) = 1>

where j = 1, 2, ... and ¢; is a function attached to f|Y;. In order to get
the last inequality it suffices first to choose an infinite subsequence of
the sequence ¥,, ¥,,... such that the difference on the left side of the
inequality has a fixed sign. We may agree the subsequence is the all
sequence and the sign is “plus”, the further proof for “minus” being
quite similar. The set

F = ‘Pg_l(?/o)

is compact in R. Let ¢, be the minimum number which belongs to F,
and z,eg~'(y,) a point such that ¢(z,) = {,. Setting
X; =97'(Yy)
we have zyeX; for j =1,2,... Consider the continuous function y :
X; > R defined by the formula
v (@) = o(@) — @19 (w) +@;(Yo) — 1o

for x¢ X;. The functions ¢ and ¢; are attached to fg and f| Y;, respectively,
and so
e2rtiqp(:c) —_ fg ( (U) —_ ezniwja(z)
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for zeX;. But, since y, = g(x,) and #, = ¢(x,), we get
e2niw]-(a:) =1
for zeX;, i. e. the function y; is integer-valued. However, the mapping g

is confluent, thus the set X; is connected between {w,} and g '(y;).
Consequently, it follows from

vi(w) = 0

that there exists a pOiIlt x;eg " (y;) satisfying

vi(z;) = 0,
whence, by (4), we obtain
(5) to— (@) = i (Yo) —@i19(2)) > 13
for j =1,2,... Since the space X is countably compact, there exists
a cluster point # of the sequence x,, x,,... The points g¢(x;) = y; con-

verging to y,, it must be g(z) = y,, and therefore ¢ (z)e F. But (5) implies

to— () > 1,

whence ¢ (%) < t,. This shows that ¢, is, in fact, not the minimum in F.

COROLLARY 1. The contractibility of compacta relative to the circle is
tnvariant under confluent mappings.

A question of J.J. Charatonik is answered by Corollary 1 (see [1],
p. 219).

COROLLARY 2. Each confluent mapping f: X — Y of a compactum X
onto a compactum Y induces a monomorphism

f* HY(Y) - H' (X)

of cohomology groups (we take here the Cech cohomology based on arbi-
trary open coverings and with integer coefficients).

To deduce Corollary 2 from our theorem it suffices to apply a classical
theorem of N. Bruschlinsky, modified by C. H. Dowker, which establishes
a relation between the elements of 1-dimensional Cech cohomology group
and the mappings into S, for paracompact normal spaces (see [3], p. 226).

Remarks. First observe that, for compacta, all monotone mappings
are confluent. This, of course, need not be true for a space which is not
a compactum.

(I) Evidently, each mapping f: X - Y of X onto Y induces
a monomorphism

f*: H'(Y) - H'(X).
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(IT) Although there are confluent mappings f: 12— 82 of the
square I? onto a 2-sphere 82 for instance a monotone mapping that
sends the boundary of I2 into a point of S2, none of them can induce
a monomorphism

f*: H* (8% — H*(I?).

(IIT) The condition that the space X is countably compact cannot
be omitted in our theorem. Really, take X = R, ¥ = 8 and f: § > 8§

the identity mapping. Define g: R — § setting g(x) = ¢™ for wxeR;
then fg~1 but frnon~1.

(IV) The condition that the space Y is metrizable also cannot be
omitted in the theorem. One sees it from an example which follows.

Example. Denote by 2 the minimum uncountable ordinal and
consider the set A consisting of all ordinals a << £ with the order topology.
Thus 4 is a compact space. Let I be the unit segment on the real line E.

Take the quotient mappings

h: AXI - AXI|AXx{1} = B,

g9': B— B[{h(R2, 0), h(2,1)}
and a mapping

f': B[{h(£2,0), h(£2,1)} > 8
defined by the formula
(6) fy) = e,

where y: AXI — I is the projection y(a,t) = ¢ In order to see that
the funection f’ is genuinely defined, i. e. that f'(y) is a point for each
yeg'h(A xI), it suffices to observe that yh~'¢'~'(y) is a one-point set
for y # p, where

p =g'h(2,0) =g'h(2,1),

and that yh~'¢'~'(p) = {0,1}. The continuity of the function f' now
follows, since h and g’ are closed mappings. Put

A" ={ara < Q) = A\{2}
and define spaces X, Y and mappings
g: XY, f:Y->8
by means of the formulas
X =hwd'xI), g=ygl%X,
Y = ¢'(X), f=rx.
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The space A’ being countably compact, so are A’ xI and X (see [2],
p. 185). Let
I, = gh({a}xI)

for a < 2. Then we have
Y=UI

a<$l
and each I, is an are, since gh topologically maps {a}xI onto I,, for
a < £. The point p is a common end point of all arcs I, which are
mutually disjoint outside p. Suppose C is a connected closed subset of Y.
It readily follows that each set C ~ I, is connected. If p¢C, the set C
is a subset of some I,. If peC, the set C is the union of connected sets
having a point in common. But the mapping g being clearly one-to-one,
its inverse g~' is a homeomorphism on each arc I,, for a < 9. Conse-
quently, in both cases the set g~!(C) is connected, and we have shown

-that ¢ is a confluent mapping.
The space X is topologically a cone over A'. Thus X is contractible

relative to itself, and we get fg~1. However, we are going to prove that
fron~1.

Suppose, on the contrary, f~1 holds. Hence there exists a mapping
¢: Y — R such that

(7) f') =fy) = ™0
for yeY. Let a < 2 be an ordinal. Put ¢, = ¢|I, and take a mapping
Y.t I, > R defined by the formula
Ya(y) = 2h7'g ' (y)
for yeI,. This is a genuine definition because ¢’, like g, is one-to-one on X,
and y sends the set A4 x {1} into 1. Writing
4. = ¢'h(a, 0),

we have y.(¢,) = 0 and y,(p) = 1. Since the funections ¢, and y, are
both attached to the function f’|I,, by (6) and (7), and since I, is a con-
tinuum, we obtain

P(P)—9(¢a) = Pa(P)—Pa(ga) = ¥a(P)—Va(ga) =1
for a < 2. Therefore the point ¢g'h(£2,0) = ¢(p) does not belong to
the closure of the set
eg'h (4" x{0}) = {p(¢.): @ < 2}

in R, which contradicts the fact that the point {2 does belong to the
closure of the set A’ in A.
The following problem has been suggested by B. A. Pasynkov.
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P3558. Let X and Y be compact Hausdorff spaces, and ¢g: X — Y,
f: Y — 8, where g is confluent. Does fg~1 imply f~1%

Finally, we propose an analogue of confluent mappings in higher
dimensions. Denote by S™ the n-dimensional sphere (n = 0,1,...). In
particular, 8° is a two-point set and S* = §. Furthermore, in order that
a mapping g: X - Y of X onto Y be confluent it is necessary and
sufficient that if C =« Y is a closed subset contractible relative to S°,
yeC is a point, and h: g~'(C) — 8° is a mapping, then h|g~—'(y)~1 implies
h~1. For a given integer n = 1,2, ... let us say a mapping g: X - Y
of X onto Y to be n-confluent provided that if C = Y is a closed subset
contractible relative to 8™ (where 0 < m < n), yeC is a point, and h:
g~ (C) - 8™ (where 0 < m < n) is a mapping such that h|g~'(y) is null-
homotopic, then A is null-homotopic. Thus “l-confluent” means “con-
fluent”.

P 5359. Let X and Y be compacta, and g: X - Y, f: Y — 8", where g
18 m-confluent, for a given integer n = 2,3, ... Is it true that if fg is null-
homotopic, then f is null-homotopic?

For » =1 an answer to this question follows from our theorem.
Note, however, that the analogue of Corollary 2 for n = 2 would not be
true, as is indicated by the Hopf fibering f: 8% — 82

Added in proof. A negative solution of P 559 for » = 2 has been
found by J. W. Jaworowski. Namely, take the projective plane P2? and
the mapping g: 82 - P? which identifies the antipodal points in 82
Then g is 2-confluent, and there exists a mapping f: P2 — 82 which is
not null-homotopic. Since

g*: H*(P?) — H*(82)

is zero, 80 is (fg)* = ¢*f*, and thus fg is null-homotopic.
9
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