COLLOQUIUM MATHEMATICUM

VOL. XLVII 1982 FASC. 2

A DUAL SPACE CHARACTERIZATION
OF P,- AND P,-LATTICES OF ORDER ot

BY

W. ZAREBSKI (WARSZAWA)

It is known that prime ideals of a Post algebra (more generally, of
a P, lattice [6]) lie in disjoint finite maximal chains. This result was applied
by Epstein and Horn [2] to characterize certain classes of chain based
lattices. An analogous characterization has been given before (see [1])
in the case of generalized Post algebras with infinite chain base (but a finite
monotonic representation of each element). However, in generalized Post
algebras of order w™* a8 defined in [4], with infinite representations admis-
sible, the poset of prime ideals is a disjoint union of posets, each of the
form €+ D, where C i8 an w*-chain and D is some poset (possibly empty).
Very little is known about the structure of the posets .D. However, it turns
out that the just-stated weak condition imposed on the order structure
of a dual space of a Heyting algebra, together with certain natural con-
ditions concerning a topology of this space, is sufficient for a characteriza-
tion of P;- and P,-lattices of order w*. Such a characterization is the aim
of the paper.

1. Preliminaries. A poset (P, < is said to be a disjoint union of its
subposets P, (teT) if

P=UP, and oy forany xeP,, yeP, with ¢t %1t
teT
Let <4, U, N, 0,1)> be a bounded distributive lattice (with notation
zy for #ny). B(A) denotes the set of all complemented elements of A
(with complement of b denoted by ). A dual space of A (see [3]) is the set
o(A) of all prime ideals of A, partially ordered by inclusion and equipped
with a topology given by a subbase

{h(a): a € A}U{o(A)—h(a): a € A},

where h(a) = {J € ¢(4): a ¢ J}. The mapping h is an isomorphism of
A onto the lattice of all clopen decreasing subsets of o(A4) (a set X < o(A4)is
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decreasing if J €o(4), J < K € X imply J € X; an increasing set is defined
dually). It is easy to see that if a € A and h(a) is increasing, then a € B(4).

Now, let A be a Heyting algebra, i.e., a bounded distributive lattice
with operation — satisfying the following condition: z < # — y iff a2 < 9.
A chain 0 =¢,<¢; <...<¢, =1 in A is called a chain base provided
every element # € A has a monotonic representation, i.e.,

z = | J=;e; (infinite lattice join),
i=1

where 2; € B(A) and @, > #, > ... The lattice A is called a P,-lattice of
order w* (shortly, P,-lattice) if it has a chain base (¢;),;<, Satisfying e,
—e¢ =¢;(1 = 0,1,...); such a chain base is, in fact, unique. If, moreover,
for any s € A and ¢ = 1, 2, ... there exists D;(x) € B(A4) such that D,(z)
is the greatest element x; satisfying »;e; < #, then A is called a P,-lattice
of order w*. These definitions can be found in [8].

2. Prime ideals in P,-lattices. Let A be a P,-lattice with a chain
base (6;)o<i<o and let B = B(A). Obviously, for any J € o(A4) we have
JNB € p(B). Given I € o(B), denote by J,(I) the ideal in A generated
by Iu{e,_,} (k=1,2,...), and by X; the set of all prime ideals J € o(A)
such that JNB = I. Any ideal I € o(B) being maximal, it is easily seen
that the poset p(4) is a disjoint union of X; (I € o(B)). The structure
of X, is partially described by the following

LEMMA 2.1. If J, (I) is proper, then it i8 a unique member of X; containing
é,—, but not ¢,. It follows that X; i8 either a finite chain

Ji(I) € Jy(I) = ... = Jy(I),

where | = max{k: J,(I) is proper}>1, or an order sum C;3(X;—C;),
where C; is an w™-type chain, viz.

TD) € Tod) < ...  do(I) = UJde(D)

k=1
(¢.e., im this case, any member of X;— C; containg J,(I)).

Proof. Let J,(I) be proper. Since ¢, —¢€,_, = ¢,_,, this condition
is equivalent to e, ¢ J,(I). Given 2, y € A with monotonic representations
\U®;e; and | Jy,e;, respectively (in particular, # < ¢,_, VU, ¥ < €,_,V¥,,
i=1 jm=l
and x,y,¢, < ay), the conditions =,y ¢ J,(I) imply @, y; ¢ I, and hence
2, = &Y, ¢ 1, i.e., Z, €I, I being prime. Thus, the condition sy € J,(I)
would imply

€ = 2,6,V %6, < 2Y U Z € I, (I),

a contradiction, since ¢, ¢ J;(I). Therefore, J,(I) i8 prime, and it is easy
to see that J,(I)nB = I. On the other hand, if J € X;, ¢,_, € J,and ¢, ¢ J,
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then obviously J,(I) = J. For the converse inclusion, let # € J with the
monotonic representation as above. Since ¢, ¢ J and J is prime, we have
z,€d (v <xed), ie, w,eJNB =1 and zed, (I) (#<2,Ve_,).
The remaining part of the proof is immediate.

Let us put

T, = {I e o(B): X; is a k-element chain}, @.(4) = JX;.
IeTy,

If A is a P,-lattice, then it is easy to see that the set @,(4)V ... UQ,(4)
is the value of the isomorphism % assumed on D, ,, (¢;), and hence is clopen
(k =1,2,...). (Indeed, I €@,(A)V ... VQ,(A) iff J,,,(I) is not proper,
i.e., €., € (IU{e}], which, in turn, means that there exists b € I such that
€x11 < bUe¢,. The last condition is equivalent t0 b < Dy, (€), i-e., Dy, (€;,)
¢ I and, finally, I € h(D,,, (¢,)).) More generally, we have the following

LeMMA 2.2. Let A be a P,-lattice. Then
(i) A 48 a P,-lattice iff the sets Q,(A) are clopen (k =1, 2, ...);

(ii) A 48 a generalized Post algebra of order w™ (see [4]) iff @,(4A) = O
for k =1,2,..., i.e., o(A) does not contain finite maximal chains.

Proof. Let @,(A) be clopen (k =1,2,...) and let j > <. It is easily
seen that the clopen set @,(4)V ... UQ,(A4) is the greatest simultaneously
decreasing and increasing set Y satisfying YNh(¢;) = h(e;). Thus there
exists Dj(e;) (which is equal to ¢; = ¢; in the notation of [7]). Using Lem-
ma 3.2 (ii) of [7] we infer that D;(y)= (¢; = y) exists for any y € A. Thus
A is a P,-lattice. (ii) follows immediately from Theorem 5.1 in [8].

The condition of Lemma 2.1, though containing no information
concerning the structure of X; — C,, allows us to give a certain characteriz-
ation of P,-lattices. We need two lemmas which — because of their techni-
cal character — are given in the next section.

3. Auxiliary lemmas. The following lemma is a generalization of
Lemma 7.10 from [2], where po(A4) was assumed to be a disjoint union of
chains.

LEMMA 3.1. Let A be a bounded distributive lattice. Suppose the posel
o(4) is a disjoint union of a family (X,),.p such that, for each t € T, X, has
the least element — say P,. Assume further that there exists an element e € A
such that h(e) = {P;: t €T} and let us denote the interval [e,1] by A,.
Then:

(i) For every @ € A there is an element b € B(A) such that » = b(eVUw).

(i1) If, moreover, for any t € T the set X,— {P,}, if not empty, has also
the least element (denoted by R,), then

B(4,) = {buve: beB(A)}.
Proof. We proceed the proof in several steps.
(A) IfteT, » ¢ P,y and J € X,, then there exists y ¢ J such that ye < @.
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Indeed, let V = {v e T: x € P,}. Since the ideals P,e X, (v € V) and
J € X, are in comparable by assumption, we can choose an element y,e P, —J
for any v € V. Suppose that # does not belong to the filter F generated
by the set {e}U{y,: v € V}. By the prime ideal theorem, there exists
K € p(A4) such that # € K and KNF = (. In particular, ¢ ¢ K,i.e., K € h(e)
= {P,: veT}. Thus K = P, for a certain v €7, and ve V since # e K
= P,. Now P,nF =@ implies y,¢P,, which, however, contradicts
the choice of y,. Thus # € F, i.e.,, # > ey, where y is a finite meet of
the y,. Also y ¢ J, since ¥y, ¢ J and J is prime.

(B) If teT, weP,, and K € X,;, then there exists z¢ K such that
xz = 0.

Let U ={ueT: v¢P,}. For each u € U we can choose an element
2, € P, — K. Suppose the filter F generated by {z}uU{z,: u € U} is proper.
Then there exists J € o(A4) such that JNF = @. Since P, is the least
element of X, we can assume that J = P, for a certain v € T; hereu € U
since # € F. Now P,NnF = @ implies 2z, ¢ P,, a contradiction with the
choice of z,. Thus 0 € ¥ and the desired z is a finite meet of the z,.

(i) follows from (A) and (B) in the following way. Set
U={el:x¢P}, Y= X,
ueU

For any J € Y there exists, in virtue of (A), an element y, ¢ J such
that y,e < . Similarly, by (B), for any K € Z there exists 2z ¢ K such that
22 = 0. Obviously, the ideal generated by {y;: J € Y}U{2x: K €Z}
is not contained in any prime ideal, i.e., it i8 not proper. Thus 1 = yuUz,
where ye < @ and xz = 0. We have yze <20 = 0, i.e.,, h(yz)Nnh(e) = G,
and since h(yz) is a decreasing set, we obtain y2 = 0. Thus

yeB(A4) and 2 =aVUye = x(yUz)Uye = cyVye = y(xVe),

which completes the proof of (i).

(ii) Let # € B(4,), i.e., there is # € A, such that % = ¢, 2U% = 1.
We need to show that there is an element y € B(4) such that @ = yuUe.
Set

Y =X, V ={el—T,: veR}.
uel’

(C) For any w € U’ we have X, < h(x).

For otherwise there is K € X, such that # e K. But# ¢ P, and # ¢ R,
so R, c K.Wehave® ¢ K (#U@ = 1 ¢ K),whence# ¢ R,. Buta¥ = e R,
and since R, is prime, we obtain # € R, — a contradiction.
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(D) If uw € U, then there exists z € P, such that 3Uz = 1.

Indeed, for any K € o(A) such that # € K we have K ¢ X, by virtue
of (C). Thus we can choose 2z € P,— K. A standard argument shows that
the ideal generated by {#} U {zg: 2 € K} is not proper, and so (D) is proved.

(B) If we U and J € X,,, then there exists y ¢ J such that y < = and
h(y)NnX, = O for any ve V'

By (D), there is z € P, such that #uz = 1. We have ueT, z€P,,
J e X,, and applying (B) we get an element y ¢ J such that zy = 0.
Now y = y(xUz) = oy <. We have h(y)nX, =@ (ve V'), for other-
wise P, € h(y) (h(y) being decreasing), i.e., y ¢ P,, whence ze P, c R,
(yz2 = 0 e P,, P, prime). Since = € R,, we would have 1 =zuzeR,,
which i8 impossible.

Now we complete the proof of (ii). For each J € Y’ we can choose
(by (E)) an element y; ¢ J such that ¥y, <z and h(y,)NX, = O forve V'
Suppose = ¢ ({e}U{y,;: J € ¥'}]. Then there is an ideal K € o(A) such
that ee K, y;e€ K, and # ¢ K. We have KX, for a certain ueT.
Thus ¢ € K implies B, < K and we infer that » ¢ R,, i.e., w € U’'. This,
however, yields K € Y', i.e., ¥z ¢ K has been chosen, a contradiction.
Consequently, # < eUy, where y is a finite join of the ;. Also e < x (x € A,)
and y <@ (y; < @); hence z = evy.

It remains to show that y € B(A) or, equivalently, that k(y) is in-
creaging. This, however, is implied by the definition of the disjoint union
of posets and by the following two facts:

h(y)nX, =G forveV
(see the analogous condition for the elements y;) and
X, csh(y) for uel
(for otherwise there would exist J € X, such that y € J; but then J e ¥’

and y > y; ¢ J, a contradiction).

LEMMA 3.2. Let A be a bounded distributive lattice and let A, = [e, 1],
where e € A. Then o(A,) is order 1somorphic to o(A)— h(e).

Proof (cf. [2], Lemma 7.9). Let us define the mappings
¢: ¢(4)—h(e) >eo(4,) and y: o(4,) > e(4)—h(e)
by
p(J) =JNnA;, and oK)= (Kl,.
An easy computation shows that ¢ and y are well defined, order-
preserving, and mutually inverse. Thus y is the desired isomorphism.

4. Characterization of P,- and P,-lattices in the class of Heyting
algebras. Let A be a bounded distributive lattice. Let o,(A4) be the set
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of all minimal elements in ¢(4) and, inductively, let g,(A4) be the set of all
i-1

minimal elements in ¢(4) — | ¢;(4).
j=1

THEOREM 4.1. A Heyiling algebra A i3 a P,-latiice if and only if the

Jollowing conditions are satisfied:

(i) The dual space of A can be represented as a digjoint union of a family
(X,)jer, where each X, is either a finite chain or an order sum C,+ D,, where
0, is an o™ -type chain.

(ii) The sets p;(A) are clopen in o(4) (i =1,2,...) and o(A) is the
only clopen decreasing set containing their union.

Proof. Note first that (ii) means simply that there exist elements
¢; € A such that

h(e) = 0(A)U ... Ug(4) and Je = 1.

te=1

Thus the necessity of conditions (i) and (ii) follows from Lemma 2.1.
We prove that these conditions are sufficient. Set B = B(4), 4; = [e;, 1],
and B; = B(4;). By Lemma 3.2, each of the intervals A, satisfies the
condition analogous to (i). Applying Lemma 3.1 we obtain inductively

(4.1) B; = {bUe;: beB}.

Let # € A. By Lemma 3.1 (i), # = b,(e, V), where b, € B. Applying
this lemma again to the lattice A, and the element ¢, Ux, we obtain

6,V = ¢, 6,V (6,Um)) = ¢y(e,Uw), where ¢, € By,
80 there exists b, € B such that ¢, = e, Ub, (see (4.1)). Hence
GIU.’D == (GIsz)(Gz\Jw), Whel‘e bz eBo
In general, by induction we get
e,ve = (6,Vb;,,)(6;.,Vx), wherebd, ,eB (i =0,1,...).
Thus, for any #k,
= bl(GIU{D) = bl(QIsz)(quw) = .o
= b;(6,Ub5) (63U b3) ... (6,1 VYY) (6, V%)
and, in consequence,
wey = by(6,Ubg)(€2Ubs) ... (6,1 Vby)e;
= b,(€;Ub,) (€3 Uby) ... (65, Vbyex)
= b1(31Ub2) (62Ub3) ) (ek_2Ubk_16k_1Ubk_lbkek) = e
- bIGIUblbzezu XX Ublbz cee bkek.
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Applying the infinite U-distributivity of Heyting algebras (see, e.g.,
11.2 of [5]) we obtain

o0 -] o0
2 =anl =an|Je = Uwxe = Jb,... b6,
k=1 k=1 k=1

i.e., # has a monotonic representation. Finally, ¢;,, — ¢; = ¢; since the set

nie) = U g(4)

jm=1
is obviously the greatest decreasing set contained in (g(A) —h(e; +,)) Uh(e)
= o(A)—0;,,(A). This completes the proof.

Following the notation of Theorem 4.1 we put

T, ={teT: X, is a k-element chain}, @,(4) = |J X,.
teT
Applying Lemma 2.2 we obtain immediately ’

THEOREM 4.2. A Heyling algebra A is a P,-lattice of order ot if and
only if conditions (i) and (ii) of Theorem 4.1 are satisfied and

(iii) @,(A) are clopen in o(A) for E =1,2,...

THEOREM 4.3. A Heyting algebra A is a generalized Post algebra of
order ot (see [4]) if and only if (i) and (ii) are satisfied and

(iii') Q(4) =9 for k =1,2,..., i.e., o(A) does not contain finite
maximal chains.
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