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1. Introduction. For a non-empty set A of real numbers, let D(A4) denote
the set of all numbers of the form |x—y|, where x, ye A. In 1920, Steinhaus
[11] proved that D(A) contains a non-empty open interval if A has positive
Lebesgue measure. Various authors ([2], [4], and [5]) have generalized this
result by showing that f (A, B) = {f(a, b): aec A, be B} must contain a non-
empty interval if both A and B have positive Lebesgue measure provided
that the function f: R x R — R satisfies appropriate conditions. Kuczma [3]
and Sander [9] have proved analogues of the above-mentioned results in
topological spaces. Miller [6] and Sander [10] obtained similar results in the
case where 4 and B are both Baire sets of the second category.

For A = R, the condition m(A4) > 0 (m is the Lebesgue measure) is
sufficient for D(A4) to contain an interval. This condition is not necessary
since D(C) = [0, 1] (see [1]), where C is the Cantor set, although m(C) = 0.
However, u(C) = 1, where u is the measure on R induced by the function

. 0 for x <0,
F(x)=%G(x) for 0<x<1,
1 for x> 1,

G being the Cantor function [8]. A set A = R is called a universal null set in
case a(4) =0 for every measure a on R induced by a non-decreasing
continuous function. By the above, the Cantor set is not a universal null set.
In [7], using transfinite induction and assuming the continuum hypothesis,
we have constructed a universal null set N such that D(N) = [0, o). We
have recently generalized this result by showing that if f is any function on
R xR into R, satisfying appropriate conditions, then there exists a pair of
universal null sets 4 and B such that f(A4, B) contains an interval.

In this note* we present an incompatibility result. We will show that if f
and g are any pair of functions on R x R into R satisfying certain properties,

* This research was supported by the Republican Council for Scientific Work of Bosna
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then there exist subsets A and B of the real line such that f (A4, B) contains a
non-empty open interval and g(A4, B) does not contain a non-empty open
interval. We use transfinite induction and assume the continuum hypothesis
in our proof.

2. Results. We now prove the theorem mentioned in the Introduction.

THEOREM. Assume that f and g are functions on R xR into R such that

@) fs» fy» 9x, and g, (partial derivatives) exist and are continuous on an
open neighborhood of the origin;

(1) £(0, 0) # 0, £,(0,0) # 0, g,(0, 0) # 0, g,(0, 0) # 0;

() f(0,0)=g(0,0)=0;

(d) the numbers £,(0, 0)/£,(0, 0) and g,(0, 0)/g,(0, 0) have opposite signs.

Then there exist sets A, B such that A, B< R and f(A, B) contains an
interval, but g(A, B) does not.

Proof. Denote —g, (0, 0)/g,(0, 0) by 4, ¢,(0, 0) by «, and g,(0, 0) by 8.
Let ¢, and t, be numbers such that t; > 1 >t, > 0. Then there exists ¢ > 0
such that

(i) g and g, exist and are continuous in the set

N,(0) X Ngggy(0) = N, where N, (x) = (y:|y—x| <r};

(ii) £, |0] > lg«(x, ¥)/g,(x, )| > t,18] for every (x, y)eN;

(iii) |g«(x, YNl < 2]a| and |g,(x, y)| > (2/3)|B] if (x, y)eN.

The set g(N, ,(0), 0}) is a non-empty open interval; call it I. Let rel;
then there exists x,€N,,(0) such that g(x,,0)=t. If rel, then for each
x € N,(0). there exists a unique y€ Ng, 4 (0) such that g(x, y) =t. We denote
this correspondence by the function y = h,(x). Then h(x) exists and is
continuous for every xeN,(0) and

B (x) = —gx(x, b (x))/gy(x, By (x).

To see this suppose that xeN,(0). Then from (iii) and the Mean Value

Theorem we obtain
lg (%, 0)—t] < 2|«|(3/2) @ = 30]x.

The continuity of g,(x, y) and (ii) imply that g,(x, y) has the same sign
throughout N. Hence the function m(y) = g(X, y)—t is strictly monotonic
throughout N, (0). Therefore, m(y) has at most one zero in N, (0). The
inequality |g,(x, y)l > 2|B|/3 in N and the Mean Value Theorem imply

Ly (X, »=1]=[g(X, 00=1] > (2/3)[Bl [yv—0f for every yeNg (0, 1 =0,
Therefore, there exist v, and y, in Ng,5(0) such that y, <0<y, and ~
Ly (%, v =1 =[g(%, 0 —t] > 3o, I[9(%, ¥a)—rI—[y (%, O —1]| = 3olxl.
This follows from the fact that

(2:3)|f1 6010] = dolf) 10| = do|2.
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Since |g (X, 0)—t| < 3¢|a| and m(y) is strictly monotonic in N, (0), we infer
that ¢g(x, y,)—t and g¢g(X, y,)—t have opposite signs, and therefore there
exists yo (y; < yo < y¥3) such that m(y,) = g(X, yo)—t = 0. This completes the
proof of the fact that for each xe N,(0) there exists a unique yeNg,4(0)
such that g(x, y)=t.

Denote —£,(0, 0)/£,(0, 0) by d, f.(0,0) by a, and f,(0, 0) by b. Then
there exists r > 0 such that

(1) f. and f, exist and are continuous in the set N, (0)x N, ,(0) = M;

(2) tyldl > 1 f(x, Y)/f,(x, Y| > t,]d] for every (x, y)eM;

(3) 1fe(x, ¥) < 2lal and f,(x, y) > (2/3)|b] for every (x, y)eM;

4) f(x, ), g(x, y)el for every (x, y)e M;

(5 McN.

The set f(N,.,(0), {0}) is a non-empty open interval: call it J. If reJ,
then for each xe N, (0) there exists a unique y € Ng, 4 (0) such that f(x, y) =1t.
We denote this correspondence by the function y = k,(x). Then k;(x) exists
and is continuous for every xe N,(0) and

kl,(x) = _ft(x’ kr(x))/j;r(x’ k,(Y))

We now proceed to construct the required sets A and B. Using the well-
ordering principle and the continuum hypothesis, we can write the interval J
in the form |t,). <o, Where Q is the first uncountable ordinal. There exists
(xy, y1)€M such that f(x,, y;) =t, and ¢g(x,, y;) is an irrational number.
This follows from the fact that each k, (r€J) is strictly monotonic on N, (0)
(increasing if d > 0 and decreasing if d < 0) and each h, (¢ rational and 1 €1)
is strictly monotonic, but in the opposite sense (because of the hypothesis
that  and d have opposite signs) as the functions k,, so that the graph of a
function k, (t€J) can intersect the graph of a function h, (tel and r rational)
in at most one point. Since the rationals are countable and the graph of &, is
an uncountable set, the required pair x,, y, exists.

Suppose that (x4, ys) has. been picked for each f < (x < Q) in such a
way that

(x4, yp)eM for every B (B <a);

f(xp. vp) =ty for every B (B <2):

g(x, y) is irrational for every xe|x,:f <z, and for yely,: f <u,.

Pick (x,, y,)€M such that f(x,.Vv,) =1, and ¢(x, y) is irrational for
every xe€ 'xg: ff < x} and for every ye |y;: B < a;. This is always possible by
an argument similar to that used in the case x = 1 and by the fact that x is a
countable ordinal (as x < Q).

Thercfore, by transfinite induction we get two sequences ,X,,,., and
‘Vara <o Such that

(x,. ¥v,)€M for every 2 < Q;

f(x,, vy) =1, for every x < Q:
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g(x, y) is irrational if xe {x,: « < Q} and yely,: a < Q}. Consequently,
if we put
A={x,;a<Q! and B=ly,:a<Q},
then f (A4, B) o J and g(A, B) contains no interval as it contains no rational
number.

Remark 1. In particular, there exist subsets A and B of the real line
such that the set {x—y: xeA, yeB] contains an interval while the set
Ix+y: xeA, yeB) does not contain an interval.

Remark 2. Our results can be improved on the following: if f satisfies
the conditions of the function “f™ in our theorem and each of the functions
(9., =, satisfies the conditions of the function “g” in our theorem, then there
exists a pair of sets of real numbers 4 and B such that f (A4, B) contains an
interval, while g,(A4, B) does not contain an interval for each n=1, 2, ...,
provided |g,}.(0, 0) = a for every n=1, 2, ... and {g,},(0, 0) = 8 for every
n=1,2,...
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