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0. Introduction. Consider the parabolic differential equation

(1) (- ) PDu =

where P(¢) = P(¢,,...,¢,) is a homogeneous polynomial of even degree m such
that P(£) has a negative real part for real £ and D = (9/0x,,...,0/0x,).

When fis a nice function, a particular solution of (1) may be expressed in
the form

2 u(x, t) = _i' [T(x—¢&, t—Dft¢, 1)dédr, >0,

0 R"
where

I(x,t)y=Q2n)~" | exp(ix-&+tP(£)d¢, >0,
R

is a fundamental solution of the equation
du/ot = (—1)™2 P(D)u.
If o =(0,,...50,) With o, + ...+, = m,_thcn
3) S{x, t) = D&I(x, t) = (2r) ™" | (i&)? exp(ix-& +tP(.C))d§,
»

and the following relation holds:
) Sx,t)=t"t7"mgt " Ymx, 1), t>0.

The function S(x, t) fails to be integrable over the set X = R" x (0, o0) and
the problem raised by B. F. Jones is to give a sense to the following limit:

t—e
)] Deu(x,t)=1lim | | S(x—¢&, t—0)fi¢, 1)dédr.
e—+0 0 R»
Jones [6] showed that this limit can be taken in the I?-sense, 1 < p < 0.
Later on Fabes and Sadosky [5] showed that the limit exists almost
everywhere for feI?(X), 1 <p < o0.
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In the present note we show that all these results can be obtained as
a consequence of the (vector-valued) Calderon-Zygmund theory developed in
spaces of homogeneous nature.

The technique allows us to obtain almost everywhere convergence for
fe L} (X) and also vector-valued almost everywhere convergence. The following
result is obtained in Section 2:

If fe I2(X), 1 < p < oo, the limit in (5) exists a.e. Moreover, if we call this
limit Du(x, t), then for (f) in L(X), 1<p<o0, 1<gq< o0,

o |t—e q
lim Y | [ [S(x—¢& t—0)fj(£ 1)dédr—Diuy(x, t)) =0, ae. (x, )eX.
e=0j=1| 0 gn

Mixed norm estimates are also considered for “Riesz potentials” in spaces
of homogeneous nature and applications of those estimates to the Na-
vier-Stokes equations are given.

The organization of this paper is as follows: in Section 1 we state the
general results in the context of spaces of homogeneous nature, and Sections
2 and 3 are devoted to apply the theory to parabolic differential equations and
Navier-Stokes equations, respectively.

Throughout this paper the letter C will be used to denote a positive
constant, not necessarily the same at each occurrence.

1. Calderon-Zygmund operators and Riesz potentials in spaces of homo-
geneous nature. We shall say that (X, d, u) is a space of homogeneous nature if
X is a metric space with distance d and u is a doubling positive Borel measure,
1.e., there exists a constant C > 0 such that

u(B(x, 2r)) < Cu(B(x, r), xe€X, r>0,

where B(x, r) denotes the ball of center x and radius r.

Given a set A, we shall denote by |4| the measure u(A) ‘and by L%(X)
(where E is a Banach space) the Bochner—Lebesgue space of E-valued strongly
measurable functions f such that

JI{ I/ IEdu(x) < + 0.

If E =C, then we shall write simply I?(X).
In a space of homogeneous nature it is well known (see [3]) that the
Hardy-Littlewood maximal operator defined by

Mf(x) = d X,
1) = 5,4 VIO, e

is a sublinear operator bounded from I?(X) into E(X ), 1 < p < o0, and from
L}(X) into weak-I!(X).
Moreover, if we assume the existence of a nice dense set (the boundedly
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supported continuous functions) in I?(X), then the classical Lebesgue differen-
tiation theorem holds.

Under this condition (which we shall assume to hold in the sequel) we
have one of the most beautiful tools in real analysis, that is, the Cal-
deron—Zygmund decomposition (see [3]):

There exists a constant C such that for feI!(X), f>0, and for a >
C(u(X) "I NLrxy (@ > 0 if u(X) = co) the following decomposition holds:

fx) = g(x)+ Y. by(x)
i=1
with
(6) lg(x)] < Ca for ae. x and ||gllLrn < CllSflLrcn,

(7) there exists a family of balls {B(x, r,)}>, such that the support of b,
is contained in B(x, r),

I b(x)du(x) =0 and Y bl < ClfllLi-
i=1

Calderon-Zygmund operators. Let E, F be Banach spaces, Z(E, F) the
Banach space of bounded linear operators from E into F, and (X, d, u) a space
of homogeneous nature.

We say that a linear operator T is a Calderén-Zygmund operator if
T satisfies the following two conditions:

(A) There exists some p,, 1 < p, < 00, such that Tis bounded from I72(X)
into L§°(X).

(B) There exists an #(E, F)-valued function K in X x X\{(x, x): xe X}
such that, for any x € X, the functions y = K(x, y) and y — K(y, x) are integrable
in balls not containing x, and for f in LE(X) with support in a ball we have

Tfix) = ;(( K(x, yy)du(y) for x¢suppf.

THEOREM 1. Let T be a Calderon-Zygmund operator with a kernel
K satisfying the following conditions:

(K1) § IK(x, y)—=K(x, y)dux) <C (v, y €X);

d(x.y’)> 2d(x,x")
(K2) for d(x', y) > 2d(x, x'),

d(x,x’) i
d(x', y)|B(x',d(x’, y))|’

"K(xay)_K(x,’ y)" < C

(K3)
O IK&)Idem)+ [ IKG)ldp(x) <C  (x,yeX, a>0).

a<d(x,y)<2a a<d(x,y)<2a
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Then
(i) T maps Dha)(X) into e (X) for 1 < p, g < oo;
(i) T maps Lig)(X) into weak-Liap)(X) for 1 < q < oo.
Moreover, if T* is the maximum operator

T*f(x) = sup

e>0

[ K@, py)du®)

b
d(x,y)>e F

then
(i) T maps Lok (X) into Lh(X) for 1 < p, g < oo;
(iv) T* maps Lig(X) into weak-L(X) for 1 < g < oo.

(Here, |K(x, y)|| denotes the norm of K(x, y) in Z(E, F); l4(E) is the space of
E-valued saquences {a,} such that ) |a,|t < +c and 1(C) = )

Note. When we say, for instance, that Tmaps L) (X) into e (X), we
mean that T has an /%-valued bounded extension (see [8]), i.e.,

® 1/q © 1/q
( 2 Tf,-(')ll?r) ( > IIf,-(')|I}'s)
j=1 j=1
Remark 1. Hypothesis (K3) is not necessary for (i) and (ii) to hold. In fact,

(i) and (ii)) can be obtained under hypothesis (K1) plus
(K2y § IK(x, y)-K(x', Wide() <C  (x, x'eX)

d(x’,y) > 2d(x,x")

< CP-‘I
LP(X)

LP(X)

(the fact that p is doubling implies that (K2) is weaker than (K2)).

Proof of Theorem 1. The proof goes along the same lines as in the case
X = R" with Euclidean norm and Lebesgue measure (see {8]). However, for the
sake of completeness we shall give the main steps of the proof in our case.

It can be seen in [3] that the Calderon-Zygmund decomposition, the
previous boundedness on I#° and condition (K1) for the kernel imply that T is
bounded from L);(X) into weak-Lr(X), and then Marcinkiewicz’s interpolation
theorem gives us the boundedness of T from I%(X) into If(X) for 1 < p < p,.

If p, < oo, we shall prove the range p, < p < oo by a duality argument: it
is enough to prove the inequality for functions fe I?(X)Q®E, i.e.,

flx) = i filx)a; (a;€E, fie £(X)),

since these are dense in I%(X). Every such function takes values in a finite-
-dimensional subspace E, of E. Now, we fix E, and define K,(x, y)e Z(E,, F)
as the restriction of T to L% (X).

Since I%.(X) is isometrically contained in (I(X))* and
E";;(X ) = (I%,(X))*, we can consider the adjoint of T, as a bounded operator



PARABOLIC DIFFERENTIAL EQUATIONS 65

from If,;?.(X) Jnto L?8(X), and computing
1]

J<), Teg(x)> du(x) = [ Tof(x), 9(x)> du(x)

for functions fe L% (X), g € L3+«(X) with disjoint supports, one easily finds that
T¥ is a Calderon-Zygmund operator with kernel K(x, y) = Ko(y, x)* (where
K,(y, x)* denotes the adjoint of the operator K(y, x)).

Now, hypothesis (K2) (or even the weaker one (K2)) implies that the
kernel of TF verifies (K1), and so Tg is bounded from I%.(X) into L‘,’EB(X),
1 < g < po. Thus, T, is bounded from L% (X) into Lp(X), p, < p < oo, with
constants independent of E,, and this implies that T is bounded from Iz(X)
into I%(X), po < p < o0.

In order to obtain (i) and (ii) we can define a new operator T mapping
1%(E)-valued functions into [%(F)-valued ones (where q is fixed, 1 < g < o) as

T(fl,fz,...,f},...) = (Tfl’ sz,... ,Tf;-,...).
It is clear that T'is bounded from I%,(X) into Lyr)(X). Moreover, T'is
a Calderon-Zygmund operator again with £(I%(E), 1(F))-valued kernel
K given by
R(x, @)1 = (K= nle))Z:, (@) < E.

This kernel has a norm

IK s Y gav@yoay = 1K, Y oi.m»
and then the argument above can be applied to the operator T, so we obtain (i)
and (ii).

For the proof of (iii) we state the following well-known lemma of Cotlar,
‘whose proof can be deduced from (ii), (K2) and (K3) as in the Euclidean case

(see [7]):
LEMMA 1. There exists a constant C such that for any function fe Lg(X) with
support in a ball we have

T*(x) < CM(ITO)I )+ M(IfOll(x), xeX,
where M is the Hardy-Littlewood maximal operator.

Now, the fact that the Hardy-Littlewood maximal function is bounded
from I5,(X) into itself, 1 < p, g < oo (see [11]), together with (i) and the lemma
imply (iii).

Once we have (iii) and, by using the arguments above, (iv) would be true if
we could regard T* as a Calderon—-Zygmund operator with £ (E, [*(F))-valued
kernel satisfying (K1). In fact, we can look at

T*f(x) = I{Tf(x}}e> ol

5 — Colloquium Mathematicum 58.1
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(where Tf(x)= [ K(x,»)f(y)du(y) as a Calderon-Zygmund operator

d(x,y)>e

Tf = {T.f}.>o with kernel given by

{K(xa .V)x[e<d(x,y))(xs y)}e>0

and satisfying previous boundedness (due to (iii)) on I?° for any p,, 1 <p, < 0.
The problem is that its kernel does not verify condition (K1).

In order to avoid this problem we take a function ¢: R— R such that
Xiz.0) S @ < Xp1,00) and |@'(¢)] < C/t, and consider the operator

R = (R0 = 41K 5 o (222 1]
with an Z(E, I°(F))}-valued kernel given by
{Rc(x, y)}a>0 = {K(X, y)(p<d(x8’ y))} 0°

Now, this kernel satisfies (K1) since

IR, (%, 9)— Rx, 1)l < 1K (x, )= K(x, Y + K (x, y)u| (‘“" y’) «p(‘“"”"))l,

&

e>0

and then, by applying the mean value property, the fact that |¢'(t)] < C/t and
hypotheses (K1) and (K3) to K, we have

[ suplR,(x,y)—R,(x, )l du(x)

d(x,y’)>2d(y,y’) €>0

< f 1K (x, y)— K(x,y) | du(x)

d(x,y")>2d(y, y')

+C§ § IK(x,y)127dp(x) < C.

ji=1 2-’d(.v ') <d(x,y’)
fv" Ld(y,y’)

Observe tﬁat the difference operator J = R—T satisfies
1O iwiry < Afx)=sup [ [|KC I 1) du©)-

£>0 e<d(x,y)<2e

Now, due to (K3), # is bounded from L3 (X) into L*(X) and, moreover,
# can be majorized by a Calderon—-Zygmund operator with kernel satisfying
(K1) (see [8] for details in the Euclidean case).

This implies that R =J+T is bounded from I%(X) into I 10F) (X)),
1 < p < o0, and since its kernel satisfies (K1), we see that R, and then T, sat-
isfies (iv). -

This completes the proof of Theorem 1.

Riesz potentials. Given a with 0 < « <1, the maximal fractional operator
of order a in a space of homogeneous nature (X d, u) will be

M, f(x) = d X.
)= 590 g § VONO.  xe
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LEMMA 2. (i) M, is bounded from L'(X) into weak-L}'*(X).
(ii) M, is bounded from I¥(X) into I)(X) for 1/p =1—a+(1/g), 1/ < g < 0.

Proof. Hélder’s inequality says that M, is bounded from [}/ “®(X) into
L*(X). On the other hand, it is very easy to obtain the weak type boundedness
by means of a classical covering lemma (see [3], [11]), and the remainder
follows from Marcinkiewicz’s interpolation theorem.

Parallel to M, we can define the fractional integral operator

J)
I,f(x) =
o) )j:d(x, W
If X is an additive group, and d and p are translation invariant and,
moreover, there exists 4 > 0 such that u(B(0, r)) ~ r*, then we have

PROPOSITION 1. Let a be such that 0 < o < 1. Then I,, is bounded from
I?(X) into I4(X) for 1/p=1—a+(1/gq), 1/a < q < 0.

Proof. The proof follows from Lemma 2 and Hélder’s inequality (as in
the Euclidean case, see [10] and [12]) since I,, is controlled by M, in the
following sense:

Let o' be such that 1—(a'/A))=a Then for -any &> 0 with
0 <o —e<a+e&< A there exists a constant C, such that

. f(x)l < Ce(Ml—(a'—e)/Af(x)'Ml—(a'+e)/zf(x))1/2, xeX.

The following mixed norm result is an easy consequence of the last
proposition (see [2] for a proof for the classical Riesz potentials which can be
perfectly adapted to our case):

PrROPOSITION 2. Let (X, d, u), i=1,...,n, be a family of spaces of
homogeneous nature such that X; are additive groups, d; and y,; are translation
invariant and there exists A, > 0 such that p,(B;(0, r)) ~ r*, i = 1,...,n. Suppose

du(y), B>0.

O<a;<1 and ) Ao,=8.

i=1
Then

I gfNLas s x - x X < CNfULPr Py x - x X0
for 1/p,=1—a,+(1/q), 1/, <qg< o0, i=1,...,n.

2. Parabolic differential equations. In this section, we shall see that the
questions raised in the Introduction fall under the scope of Theorem 1. For
that, consider the space of homogeneous nature X = R" x (0, o0) endowed with
the distance

d(x, y) = [x—yl+lt—=s|'™, x=(x,0), 7=, 59),
and the Lebesgue measure du(x, t) = dx®dt.
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For Holder continuous functions f the iterated integral

I(I S(x—¢&, t—)f(¢, t)dﬁ)dt
o \r»

exists in the usual sense and the limit (5) exists for any (x,t)e X (see [6]).
In particular, the operator

Df(x) = | K(%, p)f()du(y), XeX,
X

defined by means of the kernel
K: X x X\{(x, X): XeX}->Z(C,C)=C,
(%, ) K(X, §) = S(x—y, t—s)
(where we define S(x, t) =0 if ¢t < 0) is a well-defined operator for functions
(say) in €5 (X). More precisely, D is the convolution with the function S(x, ¢).

The (n+ 1)-dimensional Fourier transform of S (see [6]) is the bounded rational
function

— (i)
it+ P(&)

Then, the Plancherel theorem assures that

1Dfl2c0y < Clflle2eny, € €T (X)),

and since €¢ (X) is dense in I?(X), we conclude that D has a boundéd extension
to I?(X). So, D is a Calderon-Zygmund operator in the sense of Section 1.

On the other hand, the translation invariant properties of the distance and
the measure and also the fact that u(B(x, r)) ~ r"*™ establish that in order to
verify (K1) and (K2) for the kernel K it is enough to check that

S, 1) =

Iyl +s"

(8) |S(X—y, t—s)—S(x, t)l < C(|XI+tl/m)"+m+l

for |x|+t'™ > 2(|y|+s'™).
LEMMA 3. Let S(x, t) be a function satisfying
(i) S(x,)=01ift=0;
(i) S(x, ) =t~ 17 Mmg(t~mx, 1), ¢t > 0;
@) |SCx, DS CA+|x)™" ™! and

‘a—s(x. NI<CA+Ixh™™ ™2, i=1,...,n.
0x;

Then condition (8) is fulfilled.
(Note that the function S(x, t) defined by (3) satisfies hypothesis (iii).)
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Proof. We shall distinguish between three cases.
(1) t<s. Then S(x—y,t—s)=0 and

t—l—n/m tl/m
IS(x’ t)' < C(1+|t—1/mxl)n+m+1 = C(tl/m+|x|)n+m+l
s+ 1yl

= (tl/m+|xl)n+m+l'
(2) t/2 <s < t. Here

gLim s™+ 1yl
IS(x, t)| C(t1/m+|x|)n+m+l (t1/m+|x|)"+"'+l

and
(t—s)'" '™+ |yl
(=)™ [x—yprmri Sy
since (t—s)'/™ < sYV™ < 5™ +|y| and
E—=s)'"™+|x—y| = 4(Ix|+t¥™) for |x|+t™ > 2(|y|+s'™).

(3) s < t/2. This case can be straightforwardly deduced from the mean
value property and the estimates in (iii).

Again, because of the translation invariance of the measure and the
distance the following computation is enough to verify (K3) for our kernel:

9 } IS(x, t)|dxdt

a<|x|+ti/m<2a

= [ ISy, l)l( [} dt/t)du <C (IS, 1)du<C.
R" a(l+|ul)~1<gl/m R"
. <2a(1+|ul)?
Thus we have proved the following result:
PROPOSITION 3. The operator D satisfies all the conclusions of Theorem 1.

In particular, we have obtained some boundedness for the maximal
operator

IS(x—y, t—s)| < C(

D*f(x, 1) = sup|{ (Stew)(x—¢, t—DE, )d&ds
e>0 |X
where G(¢) = {(x, t): |x|+¢t'™ > ¢}.
But in order to answer the problem proposed in the Introduction we must
consider the operator

’

f*(x’ t) = sup

e>0

where H(e) = {(x, t): t > &}.

b

f (Sxae)(x—¢&, t—1)f(E, 1)dédr

X
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The following proposition says that, for all practical purposes, it is
equivalent to estimate D*f or f*.

PROPOSITION 4. The maximal operator

U*f(x, t) = sup I I(SxGienmem)(x—&, t—0)f(E, 1)|dldr
e>0X
is bounded from I5(X) into IZ(X), 1 <p, q< oo, and from Ly:(X) into
weak-Li(X), 1 < q < 0.

Before giving the proof, which involves again vector-valued singular
integral techniques, we state the following consequence of the last two
propositions:

THEOREM 2. The mapping f— f*, defined a priori for fin €3 (X) (see [6]), can
be boundedly extended from I?(X) into I¥(X), 1 < p < o, and from I1}(X) into
weak-L (X). _

Moreover, the following vector-valued inequalities hold:

® 1/q © 1/q
(i) ( (ff")") <C,, (Z If,-l") (1<p, <),
Jj=1 LP(X) j=1 LP(X)
(ii) {(x, HeX: i(f,-*(x, 1) > )."}
j=1

0 1/q
<Sy( e on) s >0 1<q<m)
X \j=1

Remark 2. For fe €3 (X) it is known (see [6]) that the limit in (5) exists in
the I?-sense and almost everywhere. Then the last theorem has the following
consequence:

THEOREM 3. The limit, D2u(x, t), in (5) exists almost everywhere for functions
fin I2(X), 1 < p < 0. Moreover, for (f)el5(X), 1 <p< o0, 1<q< o0, we
have

=0

19

(10) lim

e—+0

{T [ S(x—¢, t—0)f(¢, 1)dEdr— DLuy(x, t)}
j

0 R»

Jor almost every (x, t)e X.

Proof. Theorem 2 and the existence of a nice dense set (4§ (X)), where the
pointwise convergence holds, imply by a well-known standard argument the
almost everywhere convergence for functions in I?(X), 1 < p < 0.

Then (10) will be true for the dense subspace of I5,(X) formed by all
g(x) = (gj(x)) with a finite number of nonvanishing components g;(x). Then,
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denoting by D%v; the limit corresponding to g;(x), we have

lim
e—0

{ -j:z | S(x—¢&, t—1)f)(&, ©)dédt—Diuy(x, t)}j

0O Rn

19

< lim
e—0

{T [ SGx—&, t=1),—g)(C, r)dédr}

0 R

jite

+ I{D%u;(x, ) — D%v;(x, t)};ll;a < 2[{(fj—g)*(x, )} ;] 1a-
Then, given A > 0, by Theorem 2 we have
> 1}‘
19

<[{(x, e X: 1{(f;—g)*Cx, O}l > 42}

{(x, t)e X: lim |

e—0

{'__[e | S(x—¢&, t—1)fj(¢, ©)dédr—Dluy(x, t)}'

0 R"

<2 ] MU= 9)(x, 0} It
X

The proof is completed by choosing (g;) such that

2=, 0 et < e
X

Proof of Proposition 4. First of all, we state the following fact whose
proof will be given later:

(11)  There exists a constant C independent of & such that

[ 1SxGenaEm (> s)ldyds < C.
3 ,

This implies that
(12) NU*fll Loy < Clf Nl Log)-

Now, given a function f>0, fel!(X), and « >0, we decompose
f=g+b=g+)b; as in Section 1.
From (12) it is clear that

[{xeX: |[U*A(x) > 2Ca}| < |{Xe X: [U*b(X)| > Ca}|.

If { B(x;, r;)} are the balls containing the supports of b; and we consider the
set D, = U B(x;, Cr;) (with C a constant depending only on the dimension), the
properties of the kernel S and geometrical arguments show that if x¢ D,, then

U@ <Y [ IKE& 5)—KE& x) b()du@)+C-Mf(%).

i B(xi,ri)
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In particular,
{xeX: U*b(%) > Ca}| < ID,|+|{x¢D;:Y, [ ...> Ca/2}|

i B(xiri)
+H{x#D;: MAD) > Cof2}l < 7[RI,

The last inequality is given by the (1, 1)-weak boundedness of the
Hardy-Littlewood maximal operator and the standard techniques with Cal-
deron-Zygmund kernels.

Now we observe that this procedure can be applied to the vector-valued
operator

U~ﬂX, )= {j Sxcenaem(x—y, t—9)f(y, s)dyds} )
b's

and then using the ideas in the proof of Theorem 1 we can show that U maps
[o(X) into Dege)(X), 1<p, g<oo, and Ly(X) into weak-Lig;«)(X),
1 <g<oo.

Finally, using the fact that

10Ax, )l = U*fix, 1),
the conclusion of Proposition 4 holds.

Proof of (11). We have

lexG(,,)\H(,m)(x, t)ldth < I + f IS(x, t)Idth.
b ¢ {Ix| >/4,0 <t<(e/2)™}  {(e/4)m <t <(2e)™}

The first term of this sum is
(e/2)m

[ [ em s Ymx, 1)|dxdt

0 |x|>¢/d
(g/2)ym 4 ¢l 2)m
= [ ' [ IS, Dldxdt <= [ ™71 (x| |S(x, 1)|dxdt
) |x] > e/a11/m € o R"

< C [ Ix| IS(x, 1)ldx < C,
R"

and the second one is

(2em

[t [IS(x, 1)]dxdt < C | IS(x, 1)|dx < C.
/4™  R» Rn
Remark 3. Since the operators considered in Theorem 2 are translation

.invariant and can be seen as linear operators, the /?-valued bounded extensions
(1) and (ii) in Theorem 2 imply, by a well-known procedure (see [1] and [9]),
that these operators satisfy also mixed norm estimates of type 2% In
particular, we can obtain almost everywhere convergence results for functions
such that

“ "f('--’xk+l:---rxmt)"Lq(R")”LP(R""‘X(O.oo)) < +00.
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Remark 4. The properties we have used of the kernel S are the following:

(13) S(x,t)=0 if t<O;

(14) Sx,t)=t"1""m§@¢t"""x,1), xeR", t>0;
(15) 1S(x, DI < CA+|x)™"" "7

(16) ‘%S(x, Hl<CA+|xp~™ ™2, i=1,...,n.

Fabes and Sadosky obtained in [5] the almost everywhere convergence
for functions f in I#(X), p > 1, if S satisfies (13), (14) and

9 sx, 1)

17) IS(x, 1)+ 3
X;

<SC(L+pd)""2, i=1,...,n.

Their method is strongly based on the boundedness properties of the
strong maximal Hardy-Littlewood function, and then it does not work for the
(1, 1)-weak type maximal result. Using their result in I7(X), p > 1, we proved in
[11] the almost everywhere convergence for functions in I!(X).

3. Navier-Stokes equations. Fabes et al. [4] considered the initial value
problem for the Navier-Stokes equations in the infinite cylinder S; = R" x

[0, T). More precisely, given g(x) = (g,(x),...,g,(x)) satisfying

div(g)(x) = Z (—a—)g,-(x) =0, xeR",

=1 \0x;
and a pressure function P(x, t), they studied the solution vector

u(x, t) = (uy(x, 2),...,u,(x, ), xeR", te(0,T),

such that
ou; & o0%u; X ou  OP )
(18) E—j;l“ﬁ+j§15%uj+5;;—0, i=1,...,n,
" Ou,
Jz:l 0x;
(20 u(x, 0) = g(x).

They give conditions in order to have existence, regularity and uniqueness
for weak solutions u(x, t) e I?*4(S;), where the exponents p and g always satisfy
the relation (n/p)+(2/q) < 1, n < p < oo. Here I%(S;) is the space of functions
f depending on x and on t such that

T

| ( [ 1ftx, t)l"dx)wdt < +00.

0
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Their technique is to show that ueI?4(S;), p, ¢ = 2, p < o0, is a weak
solution of the Navier—Stokes equation if and only if u is a solution of a certain
integral equation u+ B(u,u) = f, where

t
lu(y, )l lv(y, )l
(21) [B(u, v)(x, t)) < C —dyds.
w06, < CL 1 e yire—gper®

Looking for solutions of the integral equation the computational step is

the following:

THEOREM 4 (see [4]). For u, ve I2'%(S;) we have the following conclusions:
@) If (n/p)+(2/q9) =1 with n < p < o0, then

| B(u, U)"Lm(sT) <Cn,p,q) ||“||u-¢(s-r) ||U||Lr-a(s-,-)-
(i) If (n/p)+(2/q) <1 with n < p < o0, then
| B(u, v)"u-a(sr) < C(n, p, ‘I)Tum(l ~(ip) =2/ ||u"z.r-¢(s-r) ||U||Lr-¢(s-r)-

This theorem and its proof can be very well understood from the point of
view of mixed norm estimates for Riesz potentials in spaces of homogeneous
nature obtained in Section 1.

If in Proposition 2 we put X, =R" d,(x,y) =|x—y|, u, Lebesgue
measure on R", X, = R, d,(t, s) = |t—s|"/?, and u, Lebesgue measure on R, we
have 4; =n, 4, =2, and we can state the following

PROPOSITION 5. Let 0 < ay, @, < 1 be such that na, +2a, = n+1. Then the
operator

) 1. 9)
Iy fix, t) = R';f“(lx_yl_'_lt_sluz)nﬂ

is bounded from IP*P*(R**') into I“*(R"*') for 1/p;=1le—o;+(1/q),
o, <g<o0,i=1,2

dyds

Note. A typical dilation argument with A4,(x, t) = (6x, 6>x) shows that
the range of p, g; is the best possible.

Now, (21), Proposition 5 and Holder’s inequality imply that B is
continuous from IP*P*(S;) x [F*P*(S;) into I#*9*(S;) (uniformly in T) for the
following range of p’s and g¢’s:

2/py =1—a,+(1/q,), 1/a; <gq, < o0,

2/p, =1-a,+(1/q;), 1/a; <q, <o,
with a,, «, such that 0 <a,, 2, <1 and a;n+2a, =n+1.

(22)

Proof of Theorem 4. (i) If we put p=p, =q, and g = p, = q, in (22),
then o, =1/p° and a,=1/¢, and since (n/p)+(2/q9)=1, we have
an+20, =n+1 indeed.

(ii) Fix p with n < p < co and let g be such that (n/p)+(2/q) < 1 (the case
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p = oo is more easy and it can be proved directly, see [4]).

If we put p, = q, = p in (22), then a, = 1/p’, and therefore a, = %+ (n/2p).
Since (n/p)+(2/q) < 1, we have g > 1/a,, and then it is possible to take g, = q
in (22).

Now, if p, is such that

2/p, = 1—a,+(1/g) = (1/g)+4—(n/2p),
then

IB(4, V)lLr.asz) < ClittllLr-pasy V]| Lo-pa(sm)s
and by Holder’s inequality this is less than

C- TP (/) llu ||um(s-,~) lv "LP-'!(ST)-

Finally, observe that
2((1/p2)—(1/g)) = 1 -0, —(1/q) = 3(1 —(n/p)— (2/9)).
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