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Introduction. This paper was written while the first author was visiting at
the University of Houston. Originally planned as a higher order addition to
the second author’s algebraic investigations of first-order enlargements [14],
a separation became necessary because of the much more set-theoretic
character of the present investigations.

Let A by any set, A the superstructure over A introduced by Robinson
and Zakon [12]. In order to construct, within a superstructure B over some
set B, a higher-order enlargement of A in the sense of Robinson [11], one
usually assumes that 4 and B consist of urelements (individuals that are not
sets).

“Usually” is stated quite euphemistically here. As’a matter of fact, it is
hard to find exceptions to that assumption. Points made in favor of
urelements are 1. convenience and 2. naturality. While we admit the first, we
tend to question the second.

Indeed, where else in mathematics do we find extensions of structures
whose construction relies so heavily on that particular set-theoretic
assumption? Moreover, what really is that assumption? We are advised that,
in order to apply non-standard methods to various structures, we should be
able to find for any carrier set 4 an equivalent set A’ consisting of
urelements. Shall we understand, then, that for every cardinal number we
work in a set theory with just that many urelements, so tayloring as many
set theories as needed (as there are cardinal numbers)? Or, preferring to work
in one set theory (as many mathematicians would like to), do we admit one
in which the number of urelements exceeds each cardinal number, in which,
indeed, the urelements form a proper class? Claiming such an unrealistic
axiom for the sole purpose of non-standard methods does not appear very
“natural”.
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As far as convenience is concerned, we are advised, over and over again,
that there are, of course, several other ways as to get along without
urelements. They must be less “convenient”, however; for nowhere are these
ominous hints substantiated, with the only exception of Robinson and Zakon
[12]. Their remarks indicate, indeed, that they had given deeper thought to
the matter. Actually, they must have come close to some of our findings (cf.
the end of §4).

What now makes urelements convenient? The answer is as simple as
that: Each set of urelements is disjoint with each set of sets. In particular,
AnA,,; =9, where A,,, =P(AUA, and Ay, = A. In Section 2 of this
paper, we show that there are, even in a set theory without urelements,
arbitrarily large sets with this property, even with the property A n A, = O,
for any prescribed ordinal a. Such sets are, in fact, constructed as certain
“strong antichains”. The latter represent our way to get along without
urelements; we would be happy to learn about “several” others. Indeed, no
claim is made here that there are no other sets with such disjointness
properties, the latter being the only properties, indeed, needed for a set-
theoretic construction of higer-order ultrapowers.

Frequently, no clear line is drawn between first-order ultrapowers of
higher-order structures (cf. the beginning of §4) and genuine higher-order
ultrapowers (§5). In Section 3, we summarize the characteristic features of a
first-order ultrapower extension of any set 4. The latter is described here as a
set E together with an embedding i: A — E and projections p,: E— A (te T),
where T is the index-domain, i.e. the carrier set of the given ultrafilter U.
The whole setting is supposed to satisfy three conditions (axioms) UP1-UP3
(whose flexibility is really put on a test on this paper). One introduces
set mappings ,,: P(4%) > P(E*) (k> 1) satisfying the first-order part of
Robinson’s and Zakon’s axioms [12] for a higher-order elementary exten-
sion. The latter are reinterpreted here in terms of arbitrary transformations
of variables, not only permutations.

Applying this in Section 4 to a superstructure A over an arbitrary set A,
one faces the well-known phenomenon that the relation e, = {(Y, X )e 4%;
Ye X ¢ A} passes into some exotic relation ¢ = ,,€, in some subset Z c E
well-founded by g. It is essentially well-known how to pass from (“collapse”)
the relation g into the relation €5 for some suitable set B. Usually, of course,
B (like A) is assumed to consist of urelements, hence it is crucial here to
show that this assumption is not needed. Usually, the “collapsing” procedure
is carried out in a — sometimes clumsy — ad hoc fashion (not always free of
serious mistakes). We present in Section 1 a unified generalization of the two
isomorphism theorems due to Zermelo [19] and Mostowski [10] (the former
much less well-known than the latter). Not only are all generalizations we
found in the literature special cases of our result (Theorem 1.2); our result is
not improvable insofar as we give three necessary and sufficient conditions
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for the Zermelo—Mostowski function to become an isomorphism. All we have
to do then in Section 4 is to show these three conditions to be satisfied. Two
being satisfied anyway, the third one is obtained from the disjointness
condition BN B, = @. Remarkably enough, we need no condition on A4
whatsoever.

Still no conditions on A are needed yet for a new setup of first-order
type (§5): One gets a new injection j =foi: A —f[Z] and new projections
g, = p,of ~': f[Z] — A. However, this is no longer a full-fledged first-order
ultrapower extension, and it is here that the distinction between lower order
and higher order becomes very clear: While the axioms UP2 and UP3, with
all their nice consequences, still hold, the existence axiom UPI1 survives
“collapsing” only in a bounded version (Proposition 5.1). This is the price we
have to pay for replacing the exotic relation ¢ by the genuine e-relation.
Indeed, again introducing higher-order set mappings **: P(4*) — P(f[Z]"
(k = 1), in the very same fashion as the lower-order set mappings ,;: P (A%
— P(E") before, we now have, in particular, *2e, = eg nf [Z]%. This is an
unbounded version of Robinson’s and Zakon’s only truly higher-order axiom
[12], 2.5. Note that almost all authors introduce only *!: 4 —f[Z]. Davis
[4] extended this to the set of all definable subsets of A, so relying heavily on
the formal language in the very definition of *!. (We banned the formal
language completely from the paper, hoping to give a short algebraic proof
of the higher-order ultrapower theorem elsewhere.)

It is in comparing the various mappings so obtained that conditions on
A come in with necessity (§§5, 6), namely An A, =0, even AnA,,, =0.
In fact, if the latter holds, all the mappings considered coincide on the
intersection of their domains (Theorem 5.3, Proposition 6.3, Theorem 6.6). In
particular, ** is, in fact, the restriction of *! to P(4*) < P(A), entitling us to
write simply *, and the restriction of the latter to 4 N P(4) = A, coincides
with the restriction to A4, of j.

1. A general Zermelo-Mostowski theorem. Let (A4, o) be a well-founded
class. L.e., ¢ is a binary relation in the class A, and for every non-empty
subclass M < A, its bottom (class of minimal elements) M\g[M] is non-
empty. It suffices to postulate this for every non-empty subset M — A once
(A, @) is locally small, i.e., for each element xe 4, ¢~ [{x]] = {yeA4; yox} is
a set.

If the class 4 is well-founded by g, then it is also well-founded by the
transitive closure < of g; in particular, < is irreflexive, x € x, hence the
irreflexive version of a partial ordering < of A. The following observation
will be used later.

LemMma 1.1. Let (A, @) be a well-founded class and xe M c A. Then there
is an element ye M\ o[ M] such that y < x.

In the sequel, A4, = A\@[A] denotes the bottom of (4, ¢). For x and
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x'in A, we define x = x'iff x = xX'€e Ag or x, x'¢ Ag and ¢~ ' [{x}] = ¢~ [{x'}]
(yex iff yox'). This is an equivalence relation in A; in general, it is not a
congruence of (A, ¢), not even a left congruence: It may happen that
y =y ox, but not ygx.

Let now f, be any function from the bottom A, into an arbitrary class
B. Assuming {4, ¢) well-founded and locally small, we define the Zermelo—
Mostowski extension f of f,, with domain A, recursively as follows:

_ o(®) if xeA,,
) yex} =f[e ' [{x}1] if x¢A,.
This function has the following properties:

(1.2) S[A]l = BUP(f[4)),

i.e., its range (wherever located) is transitive over the class B. Moreover, f is a
homomorphism from {4, ¢) into the universe ¥V under the e-relation:

(1.1) S (%)

(1.3) whenever ygx, then f(y)ef (x),
for each x, ye A. Finally,
(14) whenever x = x', then f(x) =f(x),

for each x, x'e A. Here is the main result of this section:

THEOREM 1.2. Let (A, ¢} be a locally small well-founded class. Let f, be
any mapping from the bottom A, into some class B, and let f be its Zermelo—
Mostowski extension. Then the two conditions

(1) yex iff f(y)ef(x)¢B, for any x, ye A;

() x=x" iff f(x) =f(X), for any x, x'€ A;
are equivalent with the following three conditions:

(ili) =is a congruence (it suffices, a left congruence) of (A, 0¢);

(iv) fo is one-to-one;

(v) f(x)eB iff xe Ay, for any xe A.

~ Proof. (i) implies (iii) and (v), (i1) implies (iv) (iff f, is onto B, (ii) also
implies (v)).

Conversely, (iii), (iv) and (v) imply (ii). (Davis [4], p. 17, tries, but fails, to
prove (i) first.) One shows, by induction on xe 4, that f(x) = f(x') implies x
= x". If xe A,, this follows from (iv) and (v). Suppose x¢ A,, and that f(y)
= f(y) implies y = y’, for each ygx. Again by (v), f (x) =f(x) implies x'¢ A,
whence {f(y); yox} = {f(¥); y'ox'}. By induction hypothesis and the weak
version of (iii), {y; yox} ={y’; y' ex}, ie, x =x".

(i), (iii) and (v) imply (i): If yox, then f(y)ef(x)¢ B because of (v).
Conversely, suppose f(y)ef(x)¢ B. By (v), x¢ Ao, whence f(y) =f(y) for
some ) gx. By (ii), y =y, whence ypx by the weak version of (iii).

Condition (iii) is satisfied if the equivalence = is, in fact, the identity
relation ie., if (A, ¢) is extensional inasmuch as it satisfies the axiom of
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extensionality for a set theory with urelements. In this case, (ii) makes f one-
to-one. It is fashionable to call f the “collapsing function” and the whole
procedure “Mostowski collapsing”. Insofar as “collapsing” might suggest the
identification of equivalent elements x = x’, this term seems ill-advised in the
case above. In that case, (i) makes f an isomorphism between {4, ¢) and a
relational system whose binary relation is a restriction of €. The first to
prove such an isomorphism theorem was Zermelo 1930 (cf. [19], also [20]):
Assuming the axiom of foundation (which was really not necessary because
of Proposition 1.5 below), he found the “Mengenbereiche” (cf. below) over
two equivalent sets A, and B, = B of urelements isomorphic under their e-
relations. Mostowski 1949 (cf. [10]) was the first to consider an abstract
binary relation g. However, he assumed {4, ¢) strongly extensional in the
sense that 97! [{x}] = ¢ ' [{x'}] implies x = x’ for every x, x'e A, even for
minimal elements. Note that {4, ¢) is strongly extensional iff it is
extensional and has at most one minimal element. In the well-founded case
then, we have exactly one minimal element a,, which we map onto @.
Indeed, B = {@} was what Mostowski took.

The discussion would be incomplete without the following uniqueness
result:

THEOREM 1.3. Let (A, @) be a locally small well-founded class. Let f, be a
mapping from the bottom A, into some class B. Let g be an extension of f, with
domain A and range trasitive over B. Suppose g satisfies (i) of Theorem 1.2.
Then g is the Zermelo—Mostowski extension f of f,.

Proof. We show f(x) = g(x) by induction on x. This being trivial for
xe Ay, suppose x¢ A,. By induction hypothesis, f(y) = g(y) for each yox.
For each such y, we have f(y) =g(y)eg(x) by (i), whence f(x) = {f(y);
yex} = g(x). Since g satisfies (i), it satisfies (v): Thus g(x)¢ B. On the other
hand, g[A] is transitive over B, whence g(x)eg[A]. Hence if veg(x), then
v=g(y) for some ye A. Since g(y)eg(x)¢B, yox by (i). Hence v =g(y)
= f(y)ef(x) and g(x) =f(x). Note that in this case (iii) of Theorem 1.2
holds, and (ii) becomes equivalent with (iv). _

We neglected the question where f [ A] is located. Let U be any class. Its
power class P(U) is the class of all subsets of U. In case P(U)c U, U is
called inductive (cf. [13]). Such a class is, of course, not a set. Given any class
B, there exists the least inductive class containing B, its inductive closure
ind B. A simple way to construct ind B is as follows: We define B for each
ordinal a, recursively by '

(1.5) B*=Bu |J P(B%.
B<a
In particular,
B° =B,
(1.6) B**! =BUP(b),
B =) Bf if o is a limit number.

B <a
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(1.7) indB=B%=() B*

where a ranges over the class of all ordinals (which we denote by Q). This is,
indeed, the “Mengenbereich” (domain of sets) Zermelo [19] erected over a set
of urelements B. For an alternative construction, much more in the spirit of
the present paper, we define

(1.8) Bo=B, B,= 1) P(BuBp) (x=1).
p<a
Again,
(1 9) B¢+l = P(BUBG)’
' B, = U By if « is a limit number.
1<p <a
We put
(1.10) B,= U B,.

az1

In case B is a set of urelements, B,, has been used by Barwise [1] (cf. also
[2], p. 45). Note that

(1.11) B*=BuB, for each ordinal a,
so that

(1.12) B+, = P(B°),

also

(1.13) ind B = B?=BuUB,,.

By definition, B? is the least class U such that Bu P(U) = U. On the other
hand, each B® and with that B% is transitive over B, B* < Bu P(B%,
B? = Bu P(B%). (The frequently used terminology “transitive in B?” would
be absolutely misleading here: B? = C®? does not imply B = C; in fact, B?
might be the entire universe) Hence B? is the least class U such that
Bu P(U) = U. Correspondingly, By, is the least class U such that P(Bu U)
=U.

Trivially, each class U such that P(BuU)=U is an ideal in the
Boolean Algebra of classes: @eU; if X, YeU, then X u YeU; if Xe U and
Yc X, then YeU. If PBuU)=U, U is also P-closed: That is, XeU
implies P(X)e U. Finally, such a class U satisfies also a strong closure under
union:

(1.14) if XeP(U), then JYXeU.

Certainly, B, has these properties. We state without proof:

ProposiTION 1.4. If B is a set, then By, is the least P-closed ideal U
satisfving (1.14) such that Be U.
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ProposiTION 1.5. Each B* (x > 1 or a = Q) is transitive over B and well-
founded by the (restriction of the) relation

(1.15) ep =Y, X>; YeX¢B).

The bottom of B* (under this relation) is Bu {@). B? =ind B is the
greatest class transitive over B and well-founded by 4.

CoroLLARY 1.6. The inductive closure ind B is the only inductive class
U o> B which is transitive over B and well-founded by eg.

ProposiTION 1.7. If f is the Zermelo—Mostowski extension of f,: Ay — B,
then f[A] <indB = B%. In case condition (v) of Theorem 1.2 holds,
S[A\Ao] = By,

One proves f(x)eind B by induction on x. Assuming (v), we get
f[A\A,] = B®\B c B,,

2. Superstructures, strong antichains. In this section, we are looking at
(2.1) B-B°=BUB,,

introduced by Robinson and Zakon [12] as the superstructure over B.
Robinson and Zakon did, indeed, consider the classes B, (n < w) and B,,
recursively defined by (1.9), while others (cf. Stroyan and Luxemburg [16],
Davis [4], Keisler [5]) consider only the classes B" (n <w) and B — B®,
recursively defined by (1.6).

Here is an analogue of Proposition 1.4:

ProrosiTION 2.1. If B is a set, then B, is the least P-closed ideal U such
that BeU.

Proof. Be P(B) = B, = B,. Being the union of a chain of ideals, B, is
an ideal. If Xe B, (n > 1), then P(X)e B, ,, whence B, is P-closed. Let U be
a P-closed ideal such that Be U. By induction on n, B,e U for each finite
n>0. Let XeB,,,, then X cBuB,. Since U is an ideal, XeU, so
B,,,<U and B, c U.

We observe here that 4 — B implies A, « B, and A” c B* for each
ordinal a and also for a = Q. In particular, & = @, < B, for each ordinal a
and x=0.So @ =0 = g,<B,. @, the least P-closed ideal, is even the
least Grothendieck universe U (if one does not require weU; cf, eg,
Kiihnrich [6]). With the axiom of foundation (the nonexistence of
Mirimanoff’s extraordinary sets) and the nonexistence of ureclements, the
elements of @ are exactly the hereditarily finite sets.

There is a nice description of () valid without foundation. For an
arbitrary class X, one defines the iterated power classes and unions as follows:

22 {P°(X) =U°X = X;
- P"+1(X)=P(P"(X)), Un+lx=UU"X'



8 J. SCHMID AND J. SCHMIDT

So YeU"X iff there are sets Z,,...,Z, such that YeZ,eZ, €...
...€Z,eX. For classes X and Y, one has

(2.3) UXcY iff XcP(Y).

Ie., the operators J and P form an adjoint situation (Galois connection) in
the Boolean Algebra of classes. This carries over to the iterated operators:

24) U"X<cY iff XcP'(Y)

for each finite n > 0. Note that |J"(Q) = O" = @,. With that, we get

PrOPOSITION 2.2. @ = @° = @, is the set of all sets X such that )" X
=@ for some finite n> 0 (X is “nilpotent”).

Indeed, Xe©@, iff XeP"*1(Q) for some n>0. But XeP"t'(Q) iff
X < P"(Q), which is equivalent to (J"X < Q.

Skolem [15], 4:0, called sets with this property of first “Stufe” (grade).
This description of @, can be extended to any B,. One iterates the operators
BuUP(X) and {J(X\B). We leave the details to the reader.

An (e-) antichain would be any class B such that Y ¢ X for each X, YeB.
Or to put this way, Ye XeB implies Y¢B. Let < denote the transitive
closure of the e-relation. B is a strong antichain if Y < X e B implies Y ¢ B,
for each X and Y. B = {Q, {1}} = {Q, {{ﬂ}}} is a weak antichain, but not a
strong one.

THEOREM 2.3. Let B be a strong antichain. Then

(2.5) BAB,=BnO,

fJor each ordinal a > 1 and a = Q.

Proof. Because of (1.10), it suffices to prove this for any ordinal a > 1.
For the proof of the nontrivial inclusion, suppose there is a set Xe BN B,
such that X ¢ @,. By (1.8), then, X <« BuU B and X ¢ @, for some ordinal B
<oa. Hence there is a set YeX such that Y¢@;. So YeBu B;. Since
YeXeB and B is a weak antichain, Y¢ B. So YeB;\ @, and Y < X. Let y
be the least of the ordinals f < a such that Y < X for some set YeB;\ D,
and let YeB,\@, be such that Y < X. Since Y < XeB and B is a strong
antichain, Y ¢ B, whence y > 1. So again by (1.8), Y « BUB; and Y ¢ O; for
some ordinal 6 <y. Hence there is a set ZeY such that Z¢@;. So
ZeBuUB;. Since ZeY <XeB and B is a strong antichain, Z¢B. So
ZeB,\J; and Z < X, contradicting the minimal property of y.

Any set of urelements is, of course, a strong antichain. However, there
are enough strong antichains in a set theory without urelements, which we
will adopt henceforth.

We consider von Neumann’s regular universe ind @ = @? = @, (which
is a Grothendieck universe if one admits universes which are not sets). Its ath
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layer is defined by
(2.6) L, =\ &

L, is the bottom (under €) of M = @2\ . Its elements are, by definition, the
sets X e O? of rank a (« itself among them).

THEOREM 2.4. L, is a maximal strong antichain in ind .

Proof. L, is a strong antichain since Y < X implies rankY < rankX.
Let now Xeind@\L,. So f=rankX #a. Suppose f>a. Then
Xeind @\ . By Lemma 1.1, there is Ye L, such that Y < X. But Y # X,
whence Y < X, showing that L, U {X} is not a strong antichain. Suppose f
<a. Take any YeL,. Then rank({X}uY)=max{f+1,a} =a and
Xe{X}uYel,. Again, L, U {X} is not a strong antichain (not even a weak
one).

However, not all strong antichains in ind@ are homogeneous, that is,
contained in some layer L,. Here are the simplest counterexamples of lowest
possible ranks: Both {{1},3} and {2, {{1}}} are strong antichains, yet
rank {1} = rank 2 = 2, rank 3 = rank {{1}} = 3. Both examples are anti-homo-
geneous inasmuch as distinct elements are in distinct layers. Here is an
impressive example of an anti-homogeneous strong antichain which even is
a proper class:

THeoREM 2.5. B = {{a}; ae®, a >0} is an anti-homogeneous strong
antichain. ’

Proof. Suppose {a} < {B} where a, feQ, a, B >0. So we have
{a} < Xe{B} for some set X, ie, {a} <B. Since Q is transitive, {a}e®,
whence {a} =1 = {0} and a« =0, making B a strong antichain. For every
ordinal a, rank{a} = a+1, making B anti-homogeneous.

THEOREM 2.6. For every ordinal o > 1, there are sets B<ind@ of
arbitrary cardinal number such that B~ B, = @. We can choose them as strong
antichains, either homogeneous or anti-homogeneous.

Proof. By (2.6) L, n©Q, = O for each ordinal B > a. Likewise, B = {{B};
BeQ, B > a} is disjoint with @,. The cardinal number of L, becomes as large
as one wants while g grows (L, has already the power of continuum). So any
set is equivalent to some -subset of L,, for large enough f, also with
some subset of B as defined in Theorem 2.5. In view of Theorems 2.3, 24,
2.5, the proof is complete.

3. Lower order ultrapowers. Let T be an infinite set (the index-domain)
and U a nonprincipal ultrafilter on T (the index-filter). For any set U< T
such that UeU we will say that teU for almost all teT If U= {teT,
P(t)} e U, we will also say that almost all te T have the property P(t) or that
P(t) holds almost everywhere (abbreviated a.e.). The usual ultrapower exten-
sion AT/U can be conveniently described, up to unique isomorphism, as a set



10 J. SCHMID AND J. SCHMIDT

E together with a mapping i: A —» E and a family of mappings p,: E — A4
(te T) such that the following properties hold true:

UPI. For each choice of elements a,€ A (te T), there is some be E such
that p,(b) = q, ae.;

UP2. for each b, b'eE, if p,(b) = p,(b’) a.e., then h=h":
UP3. for each ae4, p,(i(a)) =a ae.

Note that by UP3 and UP2 the mapping i is one-to-one. One could
easily rearrange the situation to the effect that 4 becomes a subset of E and i
the genuine inclusion mapping. For application to higher order ultrapowers
(8§4, 5) however, it seems much clearer to keep the unspecified injection
i, interrelated with the “projections” p, by “axiom” UP3. As far as the latter
are concerned, one gets them in an obvious way by choosing representatives
from the equivalence classes modulo U of AT. One so uses the full power of
the axiom of choice, not only the ultrafilter (prime ideal) theorem guaran-
teeing the existence of U. However, use of the axiom of choice seems to be
unavoidable later (§4) anyway, so we need not worry much here.

For any set X and integer k > 1, X* will henceforth denote the kth
Cartesian power of X (the classes X* of §1 will no longer be used). By that
we mean the set of ordered k-tuples {(x,, ..., x>, where x,, ..., x,€ X, those
k-tuples defined a la Kuratowski: (x;)> =x;, {X;, x> = {{x;}, {x;, x,}],
and <Xy, ..., Xo 1, X0 = {{Xgy ovvy X—1 D5 Xk » (k = 2). This definition has
several disadvantages. E.g., an ordered k-tuple (k > 2), being defined as an
ordered pair, does certainly not determine its type (“length™) k uniquely, nor
does an ordered 1-tuple {(x,) in case x; happens to be an ordered pair
(maybe an ordered k-tuple, for some k > 2). An ordered k-tuple is a finite set
if k = 2 (we will take advantage of that), whereas an ordered 1-tuple is any
set, finite or infinite. The main disadvantage, however, is the lack of
associativity. Indeed, {, ) being a non-associative binary operation in the
universe of all sets, we have to identify {<{x,, x5), x3> and {x,, {x,, x3)>)
etc. by natural mappings (Robinson and Zakon [12]: groupings) g: (X, x X ,)
x X3 = X, x(X, x X;) etc. There are ways out of this situation (cf. e.g., [13],
[14]). They all amount to replacing <x;, ..., x,> by a “word” of exact
“length” k in a (suitably constructed) free semigroup. This would fit perfectly
into the following sections. However, all we would so gain here would be the
vanishing of groupings (which would become true identities), at some price
(in §§5, 6) which, though it is not too bad, we are not willing to pay here.

Besides the point mapping i: A — E, one now introduces, for each k > 1,
the set mapping

s: P(A¥)— P(E"



ENLARGEMENTS WITHOUT URELEMENTS 11

by defining, for each k-ary relation R c A,
(3°1) *kR = l(<bla (ERY bk>eEk; <p((bl)’ LX) pl(bk)>eR a'e‘}'

It follows from this definition and the properties of an ultrafilter that ,, is a
Boolean homomorphism from P(A4*) into P(E*). In particular,

(3.2) wA =E L9=0.
The following statement is a consequence of, even equivalent to, UP2:
(3.3) £21d4 =1dg.

This is the lower analogue of Robinson’s and Zakon's normality condition
[12], 2.5

As a consequence of UP3, one has the following interrelation between
the induced point mapping i*: 4* —» E* and the set mapping ,;:
3.4 (™' «R =R,

for each k-ary relation R < 4% le., i: (4, R)— CE, 4R) is an embedding.
Consequently,

(3.5) *[R] < .R.

Note that (3.5) implies UP3: Take k = 1 and R = {a}. Hence UP3, (3.4) and
(3.5) are equivalent. As another consequence of (3.5), ,,R = @ implies i*[R]
=@ and R=0@ making ,: P(4Y—>P(EY) a Boolean embedding
(monomorphism). If R is finite, then equality takes place in (3.5):

(3.6) *[R] = ,R if R is finite.

For R = {{a,, ..., @)}, this follows from UP3 and UP2. For k=1 and
R = {a}, this is, in fact, the lower order version of Robinson’s and Zakon’s
axiom [12], 2.1.

Another of their axioms, [12], 2.3, concerns permutations of variables.
We will even consider arbitrary transformations (of variables)

o {1, koL, (k1> 1).

For an arbitrary set X, one gets an induced transformation ay: X'— X*,
defined by

(3.7) ax(<xl, ey x,)) = <x0(1), ceey xa(k)>,.

for each x,, ..., x;e X. For every k-ary relation R c X* one gets an l-ary
relation ¢! [R] < X!, defined by

(3.8) 6 '[R]1=0x'"[R]={<{x1, -0, xD; 0x({Xys .0y X D)ER).

With that one has the covariant transformation functor over X. Similarly, one
obtains the contravariant transformation functor over X: For every l-ary
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relation S = X!, one defines a k-ary relation ¢[S] = X* by
(3.9 o[S]1=0ox[S] = {ox({xy, ..., X1)); x4, ..y X DESY.

The second author [14] has shown that (the lower order version of) the
axioms 2.1-24, 2.5’ of Robinson and Zakon [12] are equivalent to the
following two conditions:

(3.10) «04 '[R] = 0! [«R]

for each R c A, each transformation o: {1, ..., k}— {1, ..., I}, and

(311) *k0 A [S] = Og [*ls]

for each S c A, each transformation o: {1,...,k} - {1,..., l}. e, the

mappings ,, form a natural transformation between the covariant
transformation functors and between the contravariant transformation
functors over 4 and E, respectively. For a permutation ¢ of {1, ..., k} both
(3.10) and (3.11) represent, in fact, the essential part of Robinson’s and
Zakon’s axiom [12], 2.3 (the other part, concerning groupings, being similar
to, but not covered by, (3.11)).

For the proof of (3.10), neither of the “axioms” UP1-UP3 is needed, and
the same applies to one half (3.11): Its right-hand side is always contained in
its left-hand side. The equation (3.11) holds at least for all onto-
transformations o: {1,...,k} = {1,..., 1} (k, 1> 1) iff (3.3) holds (cf. [14]),
which in turn was equivalent to UP2. In order to prove (3.11) for one-to-one
transformations, it finally takes UPIL.

(3.10) permits to generalize (3.3) to all partial diagonals

(3.12) DY (A) = {{xq, ...y XD X, = X}
(A<r<s<k k>2). le,
(3.13) «xDrs(A) = Dy (E).

The cylindrifications

(3.14)  F(R)={<xys ..., xxd€A*; {Xyy iy Xpo 1y Vs Xty --er XgDER
for some ye A}

(Rc A% 1 <r<k,k>1) are preserved,

(3.15) o35 (R) =3} (R),

iff (3.11) holds for each one-to-one transformation o: {1,...,k} - {1,..., 1}
(k, 1 = 1). (3.13) and (3.15) make the Boolean embedding ,, an embedding of
the cylindric algebra P(A% into the cylindric algebra P(E*). With that
reinterpretation of (3.11), one arrives at a simple algebraic proof (cf. [14]) of
Lo$’s ultrapower theorem: i: A — E is, in fact, an elementary embedding of
A endowed with its full relational structure, i.e, with all its relations R < A¥,
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for every k > 1, into E with the corresponding relations ,,R. This is the
lower order version of Robinson’s and Zakon’s Meta-theorem [12], 3.2 (for
which we hope to give a simpler algebraic proof elsewhere, as we wish to
keep the formal language out of this paper).

It is well known that a suitable choice of the index-domain T and of the
index-filter U, together with UP1, makes the elementary extension E an
enlargement in the sense of Robinson (cf. Robinson and Zakon [12], §4). Le.,
for every proper filter F = P(A4%) (k > 1), its monad

(3.16) u(F) = N {uF; FeF}

is a nonempty subset of E* (cf. Luxemburg [7], also [8]). This applies, in
particular, to the concurrent binary relations R — A™ x A" whose sections
R[{<ay, ..., apy}] = A* (4ay, ..., anyedomR) have the finite intersection
property (generate a proper filter F < P(AY)).

4. Higher order ultrapowers. We now consider the superstructure A over
the set A. A being as honest a set as any, we can consider some lower order
ultrapower of A, i: A — E with the projections p,: E— A (te T). We get the
lower order set mappings

o P(AY > P(E¥

defined, for every k > 1, by (3.1). Recall that ,,4* = E* and ,,@ = @. Instead
of ,,4,, one considers

@.1) Z=U wd
n=0

By (3.4),

42) i"'[z]1= U 4, =4,
n=0

whence i maps actually into Z,

4.3) i[A]< Z.
We also consider
(4.4) «2€ = {KY, XDe E%; p(Y)ep(X) ae.}.

The four subsequent key lemmas, dealing with ,€, are using the mappings p,
and i.

LemMA 4.1. If Xe,1Ayy, and Y,,e X, then Ye AU A,

For p(Y)ep(X)eA,,, ae, whence p(Y)edAuAd, ae. and so
Ye, 1 AU o A,

CoroLLARY 4.2. If XeZ\ A and Y € X, then YeZ.

Using €, defined in (1.15), we can restate this as follows: XeZ and
Y,,e X implies YeZ.
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LemMma 43. Let XeA, X c A, and YeE. Then
(4.5) Ye2€i(X) iff YegX.

For Y,,€i(X) iff p,(Y)ep,(i(X)) a.e. But p,(i(x)) = X ae, so Y,,ei(X)
iff p(Y)e X ae., which by (3.1) is equivalent to Ye,,X.
Note that

(4°6) A(u < A(u+l = P(j)’

because of (1.12) and (2.1). Hence Lemma 4.3 applies, in particular, to each
XeA,.

Since e A, < A, and ,,0 =, we get

CoroLLARY 4.4. There is no YeE such that Y,,ei(©).

LemMA 45. Let X, X'eZ\ ,,A. Suppose that, for each YeZ, Y, ,e X iff
Y..eX'. Then X.= X'

For suppose X # X'. So p,(X) # p,(X’) a.e. Hence p,(X) ¢ p,(X’) ae. or
p.(X) & p,(X) ae. Assuming the former, we find, for almost all te T, sets
Yep(X)\p(X). But Xe,,A,4+, for some n, so p(X)eA,,, ae and
YeAuU A, ae, whence Y,eA ae. So there is YeE such that p,(Y) =Y, ae.
So Y,,eX and YeZ by Corollary 4.2. But Y,,e X’ does not hold.

Note that we used here the full power of the axiom of choice (as did
Davis [4], 14, Lemma 5). This makes the discussion of its réle in this
context (cf. Davis [4], p. 8 f, p. 82) appear somewhat unsubstantiated.

LeMMA 4.6. For any XeZ\ 1A, X =i(9Q) iff there is no YeZ such that
Y,.eX.

For one direction follows from Corollary 44. Let now X # i(@). Then
p.(X) # p,(i(Q)) ae. But p,(i(Q) = O ae. So p,(X) # O ae. As in the proof
of Lemma 4.5, we find YeZ such that Y,,e X. (If we would know O¢ A
=i"'[,14), ie, i(D)¢,,4, we could have applied Lemma 4.5 itself)

We introduce the relation

4.7) 0= ,264n2%= Y, X)eZ? p(Y)ep(X)¢ A ae.).
Recall — (3.5), (4.3) — that i: (4,e,>— (Z, @) is an embedding:
4.8) YeX¢A i i(Y)oi(X)

for each X, Ye A. Recall also — Proposition 1.5 — that A is well-founded
by e,, with bottom A u {@}.

THEOREM 4.7. (Z, ) is well-founded and extensional, with bottom
Zy= 1AV i(9D).

Proof. Let M cZ, M # (. There is a minimal n such that
Mn A, #0. So there is XeMn , A,. Let YoX. Then X¢,,A, by the
definition of ¢, whence n> 1. By Lemma 4.1, Ye, AU,,A4,_,. By the
minimal property of n, Y¢ M, making X a g-minimal element of M and
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(Z, @) well-founded. By the definition of g, each Xe€,,4 is in the bottom of
(Z. 0, and so is X =i(9), by Corollary 44. Conversely, if XeZ\,,4 and
X #i(0), then X is not in the bottom by Corollary 4.6. Let now
X, X'eZ\,,A and X, X' #i(Q). Let X = X', i.e. YoX iff YoX' for each
YeZ. So Y,,eX iff Y, ,e X for each YeZ, whence X = X’ by Lemma 4.5,
making <{Z, ¢) extensional.

THEOREM 4.8. Let B be a set such that B B, = @. Let f, be a one-to-one
mapping from Z, = , AU {i(D)} into Bu (D} such that

(4.9) fol(i(9)=9.

Let f be its Zermelo—Mosto:vski extension to all of {(Z,@). Then f is an
embedding of {Z, 9> into (B, €g). l.e, f: Z— B is one-to-one, and

4.10) Y.eXeaA iff f(Y)ef(X)¢B, for each X, YeZ.

Proof. Note that because of (4.9) and Corollary 4.4, the original
definition — (1.1) — of f can be conveniently replaced by

O(X) if XE*IA,
(F(Y); Yoe X! if XeZ\,,A.

If X¢,Aand X #i(Q), then Y,,e X for some YeZ by Lemma 4.6, making
f(X) # 3. Hence

4.12) f(X)=0 implies Xe,,Auli(9)].

(4.11) f(X) =

By Lemma 4.1, one gets f[,,4,\,14] < B,+, by induction on n > 0 (for the
induction step, note that we might have e 4, whence we can only claim
f[,1Al < BUB,). Hence f[Z\,;A]<B, and f[Z]<BuUB,uUB,=B8.
Since BN B, = @, we get f[Z\,,A] "B =@, whence

(4.13) f(X)¢B implies X¢, A.

In view of Theorem 4.7, (4.12) and (4.13) represent the nontrivial direction of
condition (v), Theorem 1.2. Conditions (iii) and (iv) being already satisfied,
Theorem 4.8 becomes a special case of the general Zermelo—Mostowski
Theorem 1.2. -

It is somewhat surprising that so far A could be any set. This is in some
contrast to usual presentations of higher-order enlargements, where much is
required of A and not much said (except for some reassuring remarks what
could be done) about B (often identified with ., 4). It is about B, namely for
(4.13), that we needed the assumption B n B, = @, satisfied, for instance, if B
is a strong antichain such that Bn @, = G, cf. Theorem 2.3. In this context,
it is quite remarkable that Robinson and Zakon [12], p. 111 (cf. also Keisler
[5], p. 39), came up with conditions “such as” @¢ 4 and AN (J4 = O (the
latter making 4 a weak antichain such that An A4,,,, = @). They find these
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“small adjustments” necessary to “formalize in any existing set theory” all
they did in “the language of naive set theory” (the latter admitting
urelements). If we were not “naive” here, then only in succeeding to ban
urelements.

S. Higher order ultrapowers, continued. Still assuming B B, = O, we
now combine the embeddings i: <4, @,> — (Z, 0> and f: (Z, 0> — {B, )
to the embedding

(5°l) .’ =f0i: <ja eA>_b <Ba eB)‘
So we have, for each X, Ye A,
(5.2 YeX¢A iff j(Y)ej(X)¢B.

(Stroyan and Luxemburg [16], (3.4.1), state only the trivial direction
corresponding to (1.3).)

Actually, the injection j maps into f [Z]. Since f is one-to-one, we can
also introduce the “projection” mappings

(5.3) g, =pof ' f[Z]- A

It is clear that j: A — f[Z] and the mappings q,: f [Z] — A satisfy UP2 and
UP3 of Section 3. So almost all of Section 3 .applies here. We again
introduce, for each k > 1, the set mapping

*: P(4 - P(f[21"
by defining, for each k-ary relation R = A*:
(54  *R={Xy, ..., X, Def[Z] (@ (X)), ..., a(X))eR ae}.

‘Again, these set mappings are Boolean embeddings (UP3); again we have, in
particular,

(5.5) gk —f[Z}* and *O=0
(for k =1, cf. Davis [4], p. 29). Again we have (UP2)
(5.6) *zidj = ldf[Z]’

which is the unrestricted (unbounded, cf. below) version of Robinson’s and
Zakon’s axiom [12], 2.5 We again lAlave the old interrelations (UP3)
between the induced point mapping j*: A* — f[Z]* and the set mapping **:

(5.7) (M '[*R]=R and j*[R]<*R

for each R C/i:k, making again j: (4, R)>— (f[Z], **R) an embedding.
Again,

(5.8 F#[R]=*R if R is finite.
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This is a strong version of Robinson’s and Zakon’s axiom [12], 2.1.
In addition to (5.6), we now have

(5.9) *’e, =g nf[Z7,

as a consequence of (5.4), (5.3), (4.7) and (4.10). This is the unrestricted
version of Robinson’s and Zakon’s only truly higher order axiom [12], 2.5.
Note that (5.2) follows from (5.9) and (5.7). (Stroyan and Luxemburg [16],
(3.4.1), list both the (bounded version of) (5.9) and the trivial part of (5.2) as
axioms.)

The price we pay for (5.9) is the fact that UP1 does no longer hold
without restrictions. A sequence of elements Y,e A (te T), i.e.,, a function from
T into A, is called bounded iff there is an n > 0 such that Y€ A, a.e. One has
the following bounded substitute for UP1:

ProPOSITION 5.1. Consider a sequence of elements Y,e A (te T). Then
there exists Yef[Z] such that q,(Y) =Y, ae. iff the sequence is bounded.

It is (5.9), together with Proposition 5.1, that makes the setting j: A
-f[Z), q: f[Z]- A4 a hzgher order ultrapower of A, as opposed to the
lower order ultrapower i: A— E, p,—» A with its exotic element relation
+264 < E2. (Some authors, e.g, Luxemburg [7], do not shrink back from
working with ,,e4; maybe they should then not call higher order ultrapower
what is truly lower order.)

Proposition 5.1 certainly has some damaging effects. Gone is, e.g., the
(non-trivial part of) (3.11): While it is still valid for transformations ¢ from
{1, ..., k} onto {1, ..., I}, it is no longer true, without obvious boundedness
assumptions (cf. below), for one-to-one mappings. Or to put it this way, **
does no longer preserve the unrestricted cylindrifications 3¥. We will not go
into that here. Note only that (3.10), still following just from the definitions,
is still valid without any restrictions whatsoever.

We now have a beautiful interrelation between the point mapping and
the (unrestricted) set mappings above for which there is no lower order
counterpart. We restrict ourselves, in this section, to the case k = 1. The case
k = 2 will be treated in the next section. We first observe:

PROPOSITION 5.2. Let BN B, =@. Then

(5.10) 1S =f 181 =f[Z N ,:5]
for each subset S c A.

For any Yef[Z], we have Ye*'S iff q,(Y)eS a.e., which is equivalent
to f71(Y)e,,S, ie, to Yef[,;S].

Up to this point, nothing has been assumed about the set 4. Conditions
on A will surface now.

THEOREM 5.3. Let BNB,=@. Then j[A] < B iff O¢A. Moreover,
j[A,) = B, for each n>0 iff j[Al] < B and j[A,]<B, if AnA,=0. In

2 - Colloquium Mathematicum 52.1
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that case,
(5.11) JlA, =*"A,.

Finally, domj~ndom*! = A4, ie, AnNP(A)=A,, if AnA,+, =D. In the
presence of An A, = @, this is the case if and only if AnA,+, = 0.

Proof. (i) follows from j[AuU (@] < Bu {@} and j(Q) = @¢B. For
(i), let An A, = @. Using Lemma 4.1 once more, one shows that j[4,] < B,
by induction on n > 0, the induction beginning j[4] < B being true since
¢ A. With that, j[A,]J<B,. If j[AJ<B and j[A4,] < B,, then
j[A]nj[A4,] =9 and AnA,=@. Assuming An A, =9, we have, for
XeA, =A\A, that i(X)eZ\,,;A4, whence

(5.12) JX) =f[, X]="'X.

This is, in fact, a consequence of (4.11) (the redefinition of the Zermelo-
Mostowski function f), the star-shifting formula (4.5), and of (5.10), of course.

For (iii), assume AN A,,, = @. One gets AnA, =@ and. 4 P(A)
=(AuvA,)NA,,, =A,nA,+, =A,. Conversely, let AnA,=0 and
AnP(A)=A,. One gets (AnA,,)VA,=(AUA,)NA,+, = A,, whence
AnA,,,cAnA, and AnA,,, =0.

The reader should be duly reminded that the condition AnA,,, = O
follows from the conditions of Robinson and Zakon [12] and Keisler [5]
mentioned at the end of Section 4. At any rate, if AnA4,,, = 9 (and there
are arbitrarily large sets with this property, cf. Theorem 2.6), then the pure
point part of j, jo = jl4, maps A into B, while the set part, j, = jl, , maps 4,
into B,; moreover, the equation (5.12) holds whenever both sides are
meaningful, Xe A~ P(A) = A,. Note that Xe A, iff Y < AU A, for some
n> 0; these sets X = A are known as the bounded sets. Following Robin-
son’s pioneer work [11], most authors define the mapping *! only for
bounded sets, so Robinson and Zakon [12], Luxemburg [8], Machover and
Hirschfeld [9], Zakon [18], Stroyan and Luxemburg [16]. In all these
approaches, the construction is closely linked together if not directly based
upon an appropriate formal language. The first one to have extended the
mapping *' to unbounded sets seems to bc Davis [4], p. 29. However,
restricting *! to definable bounded or unbounded sets (and every bounded
set is definable), he again “constructs” *' via the formal language ((5.12)
above corresponds to his Corollary 7.5).

For any bounded set S, we now have, as a consequence of (5.7) and
(5.12),

(5.13) Jj'U] =S and j[S]<j(S).

Any finite set is bounded. Hence, as a consequence of (5.8) and (5.12), we get
(5.14) j[S1=j(@S) if S is finite.
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This is another version of the axiom [12], 2.1, more in the spirit of that
paper which, after all, considers only one mapping ¢: A - B.

6. Relati0|§ in higher order ultrapowers. An ordered k-tuple
Yy, ..., Y )e A" where k > 2, is a finite subset of A, hence bounded:

6.1 A*c A, (k=2.
Hence, if An A, =0, we have
(6.2) AnA* =0 (k=2).

We need a statement somewhat more subtle than (6.1).

Lemma 6.1. If Y;, ..., ,eAUA,, k22 then (Yy,..., \)eA 4 2-2-
Conversely, if AnA, =0 and (Y, ..., ,)eA,, then Y,, ..., e AUA,,.

For the first statement, cf. e.g. Davis [4], p. 14, Lemma 14. The second
statement, voidly true for m <2, is proven for m> 2 by induction on
k>2. For the induction beginning, assume (Y, Y,>eA4,. One has
Y,, ell;, e, ,) c AU A,._,. Since {Y,, Y,}eA, and AnA, =0,
we have |Y;, Y,]) ¢ A. Consequently, Y, Y,eAUA,_,cAUA,.

Lemma 6.1 can be reformulated:

(6.3) ANnA*c(AVA) cAyn-, *k=2).
For k =2, we even have
(6.4) Ay, N A2 =(AU A,)%

CorOLLARY 6.2. Let AnA,=9D. Then for any set R and k=2,
R c(AUA,) for some n>0 iff Rc A* and ReA,,.

One direction follows already from (6.1), the other one (which takes
An A, =) from (63). Corollary 6.2 has been stated by Robinson and
Zakon [12], footnote 1. They call such a relation a bounded k-ary relation.
By Corollary 6.2, R is bounded as a k-ary relation iff it is bounded as a set (a
unary relation).

These were simple technical observations, related to ordered k-tuples (a
la Kuratowski), about a single superstructure A. Returning to our various
mappings, we first have

ProposITION 6.3. Let An A, =@. Then for each k > 1:

(6.5) Jlu=J*
That is,
(6.6) JY, .., ¥O)=G(h), ..., (%))

for each Y,, ..., ,eA.

~ Note that by (6.1) 4* = 4 for each k > 1. Le.. domj*  domj. For k =1,
(6.6) is trivial. For k = 2, one uses (5.14), The rest is induction.
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For a related result we introduce in the lower order ultrapower E an
exotic ordered k-tuple by the definition

(6.7) pt([Yl’ ceey Yk]) = <pl(Yl)a D) pl(Yk)> a.c,

for each k> 1, Y, ..., Y,eE, existence and uniqueness of [Y, ..., ,]eE
being based upon UP1 and UP2. (If we consider the k-ary operations
{,...,»and [,...,] as (k+1)-ary relations in 4 and E respectively, the
latter is really the (k+1)-, (3.1) of the former.)

LEMMA 64. Let BNnB,=@. Then Y,, ..., Y,eZ implies [Y,, ..., ;]eZ.
One then has

If also AnA,=0, then Y,,..., ,eE and [Y,,..., \]JeZ imply
Y, ..., el
The first and the last statements are immediate consequences of (6.7) and
Lemma 6.1. For the equation (6.8), cf. Davis [4], p. 19, Lemma 9.
CoroLLARY 6.5. Let BNnB,=@. Then X,,..., X, ef[Z] implies
Xy, ..., XpuDef[Z] and one has

(6.9) 3 (X4, ... Xi)) = (4 (X)), ..., ¢(XW)) ae.

Conversely, if (X,, ..., X,)ef[Z], then X,, ..., X;ef [Z].

The first two statements follow from Lemma 6.4. The last statement,
trivial for k =1, holds for k =2 since BN B, =@ and f[Z] is transitive
over B, cf. (1.2). The rest is induction.

With that, we are ready for our last result:

THEOREM 6.6. Let An A, =BnB,=@. Then for each k > 1:
(6.10) ** = ’“IM,‘).

6.11) R = *IR
for each k-ary relation R = A*.

Proof. Note that P(A4*) < P(A), ie, dom* — dom*!. Let now
Xy, ..., XuDe*R. Le, Xy, ..., X;€f1Z] and {g,(X,), ..., ¢,(X.)DeR ae.
By Corollary 6.5, {X,, ..., X, )>ef [Z] and q,(<{X,, ..., X;))eR a.e., whence
{Xy, ..., X, e *'R, proving **R c *'R without the assumption AN 4, = @.
Conversely, let Xe*!R. So X =f(Y), for some YeZ, and ¢q,(X) = p,(Y)eR
ae. Since Rc A% we find, for almost all teT, Y,,..., Y,eA (uniquely
determined) such that p,(Y) = (Y, ..., Y, ). By UP], we find Y;, ..., Y,eE
(uniquely determined by UP2) such that p(Y;)=Y,,...,p(¥) =Y, ae,
whence p,([Y;, ..., X)) =p(Y) ae. By UP2 [Y,,..., Y,]=YeZ. Since
ANnA,=0,wegetY,.., LeZ whence X, =f(Y)), ..., X, =f(X)ef[Z].
But (g (X)), ..., q(X))> = p(N), ..., (Y)) = p(Y)eR ae. Hence X
=f(Y)=f([Y;,-., k] = <X, ..., X, >e**R, completing the proof.
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In summary, the higher order case has the following features (in striking
contrast to the lower order case, §3): Under the assumption 4N A,
= BN B, = @, the mappings j and j* coincide on domj* < domj. Likewise,
the mappings *! and ** coincide on dom** = dom*!; we may henceforth just
write *. Finally, the mappings j and * coincide on A,, which is the exact
intersection of their domains provided that we have even AnA,,, =@. In
that case, we arrive at the function

(6.12) ®=ju*: AUP(A) - BUP(B),
unambiguously defined by

i) if Sed,
(613)  2(5) —{;[“S] =Xef[Z); q(X)eS ae. if SeP(A).

A final word on higher order enlargements: A proper filter F = P(A) is
a bounded filter provided that A U A,eF for some n > 0 (which is, e.g., the
case if even A,eF for some n > 0). Suppose now the index-filter U is
adequate (cf. Luxemburg [8], also Bruns and Schmidt [3]) at least for each
bounded filter F over A: There is a sequence of elements Y,e A (re T) such
that, for each FeF, Y. e F a.e. Then this sequence is bounded (§5), hence —
Proposition 5.1 — there exists Xef[Z] such that q,(X) =Y, a.e, making
again the monad u(F) — cf. (3.16) — non-empty. This applies again to such
concurrent binary relations R < A2 whose sections R[{Y}] (YedomR)
generate a bounded proper filter F = P(A). Such relations are not necessarily
bounded. Nevertheless, there is X ef[Z] such that (Y, X)e,R for every
YedomR.
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