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RECTILINEARLY AND RECTIFIABLY AMBIGUOUS POINTS
OF A FUNCTION HARMONIC INSIDE A SPHERE

BY

F. BAGEMIHL (MILWAUKEE, WISCONSIN)

Denote the Cartesian coordinates of a point in three-dimensional
Euclidean space by x, y, z, and set

S={x,y,2): x2+y*+2z2 <1},
T ={(x,y, 2): x2+y*+z2=1}.

Suppose that f is a single-valued, real-valued function defined for every point
PeS. A point Qe T is called an ambiguous point of f, if there exist Jordan
arcs J, and J, that lie in S except for their common end point Q, on which
the limits

lim f(P) and lim f(P)
P-Q P-Q

PelJy PelJ,y
exist and are unequal. Such arcs J, and J, are called arcs of ambiguity of f at
Q. If f has a pair of rectilinear arcs of ambiguity at Q, then Q is called a
rectilinearly ambiguous point of f.

THEOREM. There exists a harmonic function h(P) (PeS) and an every-

where dense subset D of T with |D| = 2% such that every point of D is a
rectilinearly ambiguous point of h and every point Qe T\D is an ambiguous
point of h with arcs of ambiguity J¢ and J$ at Q such that J$ is a rectilinear
segment and J$ is a rectifiable Jordan arc.

Proof. To simplify the description of our construction, it is convenient
to work initially with the cube

A={(x,y,2: 0<x<1,0<y<1,0<z<1}



134 . F. BAGEMIHL

instead of S, and confine our attention to the face
F={x1y,0:0<x<1,0<y<1}

instead of T In the final stages of the proof, we shall suppose that the
construction has been carried out for S and 7, which entails no conceptual
difficulty.

We form two sets, G; and G,, in A.

To define G,, consider the square (interior and boundary) W with
vertices (&, 3, 3), &> 5> 3)» (3, 3> 3) and (&, %, ). Construct (see, e.g., [4, p. 135])
the familiar perfect nowhere dense subset V of W by first dividing W into
nine equal squares, retaining the four at the corners of W, and labeling these
four W, W,, W3, W, in the same order as the corresponding vertices of W
were listed above. Then divide each W, (j =1, 2, 3, 4) into nine equal
squares, retain the four at the corners of W), and label these four W;,, W,,,
W3, W4, in the same order as before. Continuing in this way, we obtain for
every sequence ky,...,k,, where each k, (m=1,2,...,n) is one of the
numbers 1, 2, 3, 4, a square W, _, . Then the set V is the set of all points of

the form

(1) Wi, "W, 0 oos OWoign, 0 -

where k,, k,,...,k,,... is any infinite sequence whose terms belong to the set
{1, 2, 3, 4}. Next we divide the square F into four equal squares F,, F,, Fj,
F4, then divide each F; (j =1, 2, 3, 4) into four equal squares Fj,, Fj,, Fj3,
F;,, and so on, each time labeling them in the same order as the correspond-

J
ing subsquares of W. Join the point (1) of the set V to the point

2 FrynFep,n oo 0F ) 0, 0 e

of the square F by a rectilinear segment. This segment shall contain the point
(1) but not the point (2). Define G, to be the union of all such segments.

The construction of G, takes place in the truncated pyramid M whose
base is F and whose upper base is W. The interior and boundary of the
pyramid, with the exception of the base F, are regarded as belonging to M.
Let

F>585,>85> ...>8>84>...>0, lims,=0.
For each n=1, 2, 3,... we define 2" planes. For n=1, each of the two
planes is determined by the center of the square W and one of the two lines
dividing the square F into the four equal squares F; (j =1, 2, 3, 4), where
we consider only that part of the plane that belongs to M. For n > 1, each of
the 2" planes is determined by the center of a square W, . _, and one of

1
the two lines dividing the square F, ,  into the four equal squares
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Fy,.x,_,i (G =1, 2,3, 4), where we consider only that part of the plane lying
in the truncated pyramid

Mn{(x, y, 2): 0<z<s,}

Define G, to be the union of all such parts of planes.

It is evident from the construction of G, and G, that G, NG, = Q. Let
D be the union of the segments used above to divide F, each F; , ca%h
Fi k,»---> €ach Fy 4, 4 _,... into four equal squares. Then clearly |D| =27°
and D is an everywhere dense subset of F. If Qe D, then there is a rectilinear
segment at Q belonging to G,; and there is a plane, and hence a rectilinear
segment, at Q belonging to G,. If Q € F\ D, then there is a rectilinear segment
at Q belonging to G,; and there is a simple polygonal rectifiable arc at Q
that is a subset of G,.

Turning now to S and 7, we may assume that we have constructed two
sets, G; and G,, in S, where G, is the union of rectilinear segments and G, is
the union of parts of planes, and an everywhere dense subset D of T, for
which the assertions in the preceding paragraph hold.

Let f(P) (PeS) be a real-valued continuous function mapping S onto
the unit interval in such a way that f(G,)=0 and f(G,)=1. Set G
=G, VG,.

Let

O<ro<ri<..<r,<rp;,<..<Il, lmr,=1,

n—x

and, for n=0,1, 2,..., set

Sp=1{(x, ¥, 2): x2+y*+2% <r?},

T, =A{(x,y, 2: X’ +y’+z* =rz},

K,=(8$,0T,u6)N(Sys+1 Y Tosy).

The next step is potential-theoretical. It is clear that K, is a compact set;
denote its complement by CK,. Consider any boundary point of K, (such a
boundary point is also a boundary point of CK,). A sphere with this point as
center and radius g contains on its surface a continuum belonging to CK,
with diameter greater than g, as is evident from the construction of G. It
follows [5, p. 294, Theorem 5.4'] that every boundary point of K, is a
regular point of CK,. Consequently ([5, p. 308, Theorem 5.10]) CK, is not
thin at any boundary point, and so ([2, p. 60]) K, has no unstable boundary
point. Therefore ([3]) any continuous function on K, that is harmonic at
every interior point of K, can be uniformly approximated on K, as closely as
desired by a harmonic polynomial.

With this in hand, it is now possible to construct, by a method like that
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employed in [1, pp. 153-154], a harmonic function h(P) (P€S) such that
lim [h(P)—f(P)] =0,

P-T
PeG

which implies our theorem. O

Remark. It would be interesting to know if there exists a harmonic
function h(P) (Pe€S) such that every point of T is a rectilinearly ambiguous
point of h.
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