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1. Introduction. Let @, be the field of p-adic numbers and Z,, its ring of
integers. In this paper we determine all finitely generated and Z -torsion-free
Z,[G]-modules for a class of metabelian groups G (Theorem 2.4). This
generalizes Théoréme IL1.5 of [3]. An application of this result to the study of
the Galois structure of unit groups in certain real algebraic number fields will
be given elsewhere (see [4]).

In the sequel G will denote a non-abelian group of order pm which is
a non-trivial semidirect product of the cyclic group S of order p by an abelian
group T of order m such that the order of every element of T divides p—1. It
is known (see [3], Proposition 1.3) that every such group G is uniquely
determined by S, T and a non-trivial p-adic character y of T We have then
tst~1 = s*® for seS, teT

We shall apply the method of Rosen [7] which utilizes skew group rings.
The same approach was earlier used by Pu [6] for classifying integral
representations of metacyclic groups of order pq (with prime p, g).

Let R be an integral domain and let A be an R-algebra. A left A-module
which is finitely generated and projective as an R-module will be called
a A-lattice. Observe that in the case of a Dedekind ring R every finitely
generated and torsion-free module is projective.

If I' is a finite group, R 1s a ring and Aut(R) denotes the group of all
automorphisms of R, then the skew group ring R I" is defined as a free left
R-module with I' serving as a system of free generators, in which multi-
plication is defined by putting

(1.1) rx-sy =r¥.(s)xy
(for x, yeT, r, se R), where ¥ is a fixed homomorphism of G into Aut(R). The
image of x under ¥ will be denoted by Y,.

Let M, N be R[I'}-modules. We treat Homg(N, M) as an R[I']-module
with the action of I' defined by
(1.2) (ef)(m) = xf(x™ ' m)
for xeI', me N and feHomg(N, M).
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Every cocycle Fe Z' (I', Homg(N, M)) (i.e. a map I' - Homg(N, M) satis-
fying F,, = xF,+F, for all x, yeI') defines an R[I']-extension of M by N
(treated both as R[I']-modules), which is defined as the R-direct sum M@ N
on which I' acts by

x(m, n) = (xm+F,(n), xn) (meM,neN, xel).

We shall denote this extension by (M, N; F), and in the cases where the
choice of F is obvious we write simply (M, N).
We shall use the following two lemmas:

(1.3) LeMMA ([5], Lemme 111.2). Let I' be a finite group, A its normal subgroup
and M an R[I']-module such that M = Q. If we define the action of I'/A on
H'(4, M) by the formula .

(xA)F, = x " 'Fyyx-1+ for geA, xeI' and FeZ'(4, M),
then the groups H (I', M) and H'(4, M)'? are isomorphic.

(1.4) LemMa ([1], Corollary (3.45)). Let M, N be R[I']-lattices and let F, F' be
cocycles in Z'(I', Homg (N, M)). Then the extensions (M, N; F) and (M, N; F')
are R[I}-isomorphic if and only if there exist

acAutgr(M), beAutyn(N), ceHomg(N, M)
such that for all xell
aF  (xm)— F',(xbm) = xc(m)— c(xm).

We shall consider skew group-rings of the form R * T, where R is either
Z,[&] or Q,(¢), and the homomorphism ¥ in (1.1) is defined by ¥,(¢) = £* for
any teT, where ¢ is a fixed primitive p-th root of unity.

Some further notation is needed. We put:

L=Q,¢&), R,=Z,[f], T,=Kery, n,=#T,, n=m/n,,

t, is a fixed representative of the generating coset in T/T;,, and P = (1-¢)R,.

H will denote the character group of an abelian group H. For any X e T,
we choose a character X e T, whose restriction to T, coincides with X, and by
x; and y; we denote the principal characters of T;, and T, respectively. Finally,
for any XeT we set

ex = (). Xt 1) t)/m.

teT

2. Indecomposable lattices over the skew group-ring R, * T. Let

n—1
T= | Tt}
i=0

be the decomposition of T into disjoint cosets with respect to Tj,.
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(2.1) PROPOSITION. The left ideals Ley (where X € Ty) form a complete set of
simple L* T-modules.

Proof. Since L* T is obviously semi-simple, it suffices to show that all
minimal ideals of L* T are of the asserted form. First of all observe that

L+T= @ Le,.

XeT

Since all ideals Le, are minimal, it remains to show that for any X, Y in
T which coincide on T;, we have Le, ~ Le,. Indeed, under this condition the
element X (¢,)/Y(t,) of Q, is an n-th root of unity, whence its norm from Q, to
Q,(¢) is 1. Using Hilbert’s Theorem 90 we can write (with a suitable ce Q,(¢))

X(t,)/Y(t,) = ¥,,(c)c,
and this allows us to construct an L * T-isomorphism of Le, onto Le, mapping
aey onto ace, for aelL.
We need two lemmas:
(2.2) LeMMA. The ring R % T is hereditary.

Proof. Since the extension L/LT is tamely ramified, the trace map
Tr = Try,, = on integers is surjective, and hence there exists s, € Z ,[{] such that

Tr(so) = ), ,(s0) = 1o.
teT
If now M is a left ideal of R, * T, then it is also an R;-submodule of the
R;-lattice R, * T. Therefore it is R, -projective. Now let F: N—-M be an
R, * T'surjection of an R, *Tmodule N on M. Then there exists
ae Homg, (M, N) which splits F, ie. Fa=1,. Put

a = () tsoat™')/nye Homg, .r(M, N).

teT

Then

Fa' = () tsoFat™)/ng = () P.(so))/no = 1,

teT teT
whence a’ splits F, and this shows that M is R, * T-projective.
(2.3) LEMMA ([1], 26.12 (ii)). Let R be a Dedekind ring and assume that the skew
group-ring R x T is hereditary. Then an R = T-lattice M is indecomposable if and

only if K@ M is a simple K * T-module, where K denotes the quotient field of RT
(T acting on R by right multiplication, as defined in (1.1))."

Now we can prove the main result of this section:

(2.4) THEOREM. Every indecomposable R,-lattice is isomorphic to Pley with
a suitable 0 <j<n and XeT,.
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Proof From Proposition 2.1 and Lemmas 2.2 and 2.3 it follows that M is
an indecomposable R; * T-lattice if and only if L@ M = Ley with a suitable
XeT,

The module M has R,-rank one, hence it is isomorphic to R; as an
R, -module. Consequently, in view of M < L* T we arrive at M = R, xez with
a suitable x in L, and this is of the asserted form.

3. Indecomposable Z ,[G]-lattices.
(3.1) ProposITION. For XeT, YeT, and j=0,1,...,n—1 let

M = Hom, (Z ey, P'ey).

Ther the group H'(G, M) is cyclic of p elements if X = y'~'Y, and is zero
otherwise.

Proof. Since M®=0, Lemma 1.3 reduces our task to computing
H(S, M)%5,

Denote by ¢ a generator of S and let ¢ be a cocycle in Z!(S, M). It is
determined by c,(ey). The fact that the class of c is fixed by G/S is equivalent to
the existence of an element v of M such that, for any teT,

t lep-1—c, =t egrn—c, = (1=&)v.

Hence, with y, = (1—-&®)/(1-¢&), we have y,c,—tc, =(1—E*®)tv because
Coxtn = Y,C,. Since (tc,)(x) = tc,(t~'x) for any xeZ,ey, and with suitable
aeR; we have c,(ey) = (1—¢Yaey, we get

y(1—=Eaeg— X1 (t)(1 —EXO) W (a) Y(t) ey PP * 5.
Using y, = x(t) (mod P) and ¥,(a) = a (mod P) (for te T), we infer finally that
forall t in T
(3.2) aX(t)Y Y(t)—ay’~'(t)eP.

If now X # Yy/!, then a must belong to P, since otherwise we would
have X(t) = Yy/~! (mod P), which gives a contradiction since all ny-th roots of
unity are distinct (mod P). But a € P implies that ¢ must be the zero cocycle, and
hence H(G, M) =0 in this case.

If X =Yy ! then (3.2) is satisfied by all aeR,, which implies that
H(S, M)%S = H'(S, M), so it remains to show that the last group has
p elements. To do this consider a cocycle f which is determined by the value

filex) =(1—&Yaey  with aeR,.
Write « = a+h(1—¢) with 0 < a < p, he R, and put g,(ey) = (1 — &)Y aey. Then

ga(ex)—fa(ex) = (1 _é) weéy,

where we M and w(ey) = h(1 — &Y. Thus g and f are equivalent, and so define
the same element of H!(S, M).
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If two cocycles f, g are equivalent and
fa(ex) = (1 —é)jaef'a ga(ex) = (1 —f)ja'e,-,

with 0 < a, a <p and a # a', then there exists be M such that

f.(ex)—g,(ex) = ob(ex)—b(oey),

whence a = a’ (mod P), thus a = a/, a contradiction. This shows that H(S, M)
has p elements, and so the proposition is established.

(3.3) LEMMA. For every integer j satisfying 0 <j <n and every Y in To there
exists exactly one (up to Z,[G]-isomorphism) non-trivial extension of P'ey by
Zpexj—lir.

Proof. First we show that all non-trivial extensions are isomorphic. Let
M be defined as in Proposition 3.1, with X = y/~!'Y. Write

folex) = (1—&Yaey, filey) =(1—¢Vd e

with a, a'eZ,\pZ,. Since a/a’ is a p-adic unit, the Z,[G]-endomorphism
a: x—(a/a’)x of Ple; is in fact an automorphism. Since f,(ey)—of,(ey) =0,
Lemma 1.4 implies that the extensions defined by f and f' are Z,[G]-
isomorphic.

It remains to prove the existence of a non-trivial extension. Let
f.(ex) = (1—=&Yey. If the extension defined by f were trivial, then there would
exist a Z,[G]-automorphism o« of Pey and ce M such that

af (gey) = ac(ey) —c(aey) = (E—1)c(ey).
Since c(ey)€ P'ey, this would imply a((1—¢&Yey)e P/*'e;, and hence
a(Pleg) = Pi*le;.
Thus o could not be an automorphism.

Finally we prove our main result, giving a classification of indecomposable
Z [ G]-lattices:

(3.4) THEOREM. Every indecomposable Z ,[ G1-lattice is isomorphic to one of the
following modules: Z ey, Piey and (Pley, Z je,;-13), where XeT, YeT, and
0<j<n

Proof. Since p4[G:S], the Lemma in [2] shows that every indecom-
posable Z ,[G]-lattice is isomorphic to a direct summand of Z,[G]® M for
a certain indecomposable Z,[S]-module M. We have three choices for M,
namely Z,, R, and Z,[S].

Observe that

(3.5) Z,[G]~ @ Z,[S]ey,

XeT
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the isomorphism given by the map

x> Y xey (xeZ,[G)).
XeT
Since the element ¢ acts trivially on Z,, we have

Z,[S]ex®z,Z, = Z,ey;
hence

ZP[G] ®zp[s]zp o~ @(ZP[S] ex®zp[s]zp) o @A Zpex.
XeT XeT
Now consider

N = ZP[G] ®Zp[$]RL. o~ @ (th[S]®RL) ad @ t®RL
teT teT
Clearly, the Z -rank of N equals (p—1)m. Since S = 1 +o+0%+...+07 !
annihilates N, it follows that N (as a Z,[G]-module) is an R, * T-lattice,
because the rings Z [G]/§Z [G]and R, * T are isomorphic. Thus Theorem 2.4
implies

n no—1

N> @ @ Ple,
j=0 1=0
with suitable 0 <r;<n and Ye T,. Since N is Z ,[G]-cyclic, the summands
here are pairwise non-isomorphic. Hence

n—1

Z,[G1~Z,[G]®2,5Z,[S1= ® @ Ple;.
j=0 Ye?'o
In view of (3.5) it remains to decompose the modules Z ,[S]ey for X € T
Let X = ¥’ 1Y, where 0 < j < n and Ye T, and consider the exact sequence of
Z ,[G]-lattices:

(3.6) 0—2,[S1(1—0)ex—Z,[S]ex —SZ,ex 0,

where the last epimorphism is the multiplication by §

Now observe that the first non-zero term of this sequence is isomorphic to
Pley and the last one to Z e,. In fact, the second statement is obvious, and to
prove the first one write, for j=0,1,...,n—1,

= (2 X' e m.

teT

Using Proposition I1.7 of [3] we get R, v; = Pi(j=0,1,...,n—1). If we
put

e,(0) = (2 x(t™") o*)/m,

teT



INDECOMPOSABLE LATTICES 175

then by the Corollary (Scolie) to Proposition II.11 in [3] we obtain
e,(6) = (1—0) (mod(1—0)?),

and thus Z,[S]e, (o) = Z,[S](1—0).
Now we obtain the asserted isomorphism from

Z,[S1(1-0)ey-1y = Z,[S]e,(0) ey-1
to Z,[S]v;ey by putting, for geZ [ X],
g(o)e,(0) eys-17—g(&) v;ey.
Now (3.6) implies
(3.7 Z,[Slex =~ (Pley, Z,e4-1y)

for any XeT of the form X = y/~'Y.

To complete the proof of the theorem it remains to show that the modules
listed in its statement are indeed indecomposable.

The modules Z ey are obviously indecomposable. Every decomposition of
Pley, as a Z,[G]-module, would be also an R, * T-decomposition, which
cannot exist by Theorem 2.4.

For any Z,[G]-module M define

M = {meM: Sm=0}.
If we would have Z, [S]ey = M, ®M,, then
(Zp[S] eX)~ = Zp[S](l‘—'O')ex = M]_@Mzs

and bz the indecomposability of Z,[S](1 —o)ey as an R, * T-module we have,
say, M, = Z,[S](1—-0)ey. _

Comparing the Z -ranks we see thatif M, # M, then M, = Z [S]ey. If,
however, M; = M, then Z [S](1 —o0)ey is a direct summand of Z,[S] ey, but
this is impossible because Z,[S] ey is a non-trivial extension of Z,[S](1 —0)ey

by Z,ex. The theorem is thus proved.
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