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METRIZABLE APPROXIMATIONS OF SEMIGROUPS

BY
MICHAEL FRIEDBERG (HOUSTON, TEXAS)

Introduction. In [6] Numakura proved the now well-known result
that a compact totally disconnected semigroup is the inverse limit of
finite discrete semigroups. A later work of Bednarik and Wallace [1]
generalizes this result to compact totally disconnected acts. By using
uniformity techniques, Hofmann and Mostert prove in their book [5]
that any compact semigroup is the inverse limit of compact metric semi-
groups having subinvariant metrics. Most recently, in a paper involving
the methods of universal algebra, Taylor [7] proves that a compact act
is the inverse limit of compact metric acts (without, however, the inclusion
of any subinvariance).

The general theme in all these results is to write a given semigroup
or act as the inverse limit of somewhat less complicated objects, but the
techniques vary considerably. Our purpose herein* is to develop a singularly
uncomplicated method of forming inverse limits which, besides repro-
ducing all of the above results, shows promise of being extremely valuable
in the theory of compact semigroups and acts. Our Theorem III, which
says that a compact UDC is the inverse limit of compact metric UDC’s,
is one example of the value of the techniques. We then conclude with
a suggestion as to one possible way in which this method might be em-
ployed.

Preliminaries. By a topological semigroup we mean a Hausdorff
space S together with a jointly continuous, associative multiplication
on S. If § does not contain a two-sided identity, S* will denote the topo-
logical semigroup obtained by adjoining to 8 a two-sided identity as
an isalated point; otherwise, 8! = 8. If X is a space, C(X) will denote
the algebra of continuous real-valued functions defined on S. All spaces
in this paper will be presumed Hausdorff.

Given a topological semigroup T and a space X, an act is a continuous
function

tG,e)>tx: TxX > X
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such that (§,%,)-® = t,-(t,-x) for all ¢,,#,¢T and all zeX. In this case,
T is said to act on X, and X is called a T-space. If both X and Y are
T-spaces, a T-morphism is a continuous funection f: X — Y such that
f(t-x) = t-f(x) for all teT and all xeX. If f is also a homeomorphism,
we shall refer to f as a T-isomorphism and say that X and Y
are T-isomorphic. If X is a T-space, and T has an identity 1,
we shall assume 1-z =2 for all xeX. If T does not have an
identity, we make X into a T'-space by defining 1l-x =« for
all zeX.

Assume we are given a topological semigroup 7. For each a in a di-
rected set D, suppose X, is a compact 7-space, and that for a < g,
a, BeD, we are given a T-morphism ¢f : X, — X, such that: (1) ¢ = 1,
= identity function of X, and (2) a<f <y, ¢log) =¢’. We infer
that (X,, ¢%, D) is an inverse system. Denote by invlim(X,, ¢?, D) the
set ({K(a,p): a< f}, where K(a, ) = {xe[[{X,: aeD}: ¢i(x,;) = x,}.
Then invlim(X,,¢?, D) is a compact 7T-space, where for teT and
zeinvlim(X,, ¢f, D) we define (t-x), = t-x, for all aeD.

Section I. Throughout this section, we assume that T is a topological
semigroup and X is a compact T-space.

ProroSITION 1.1. Given A < C(X), define a relation T(A4) on X as
follows: T(A) = {(z,y)e X xXX: f(t-@) =f(t-y) for all teT* and feA}.
Then:

(a) T'(A) is a closed equivalence relation on X.

(b) If A< Bc C(X) then T(B) < T(4).

(¢) Denote by X (A) the quotient space of X modulo T(A) and by 7,
the natural surmorphism of X onto X (A); then X (A) is a compact T-space
and n, 18 a T-morphism with respect to the action on X(A) by T.

Proof. (a) and (b) are clear.

Let (z,y)eT(A) and t,eT. For each feA and teT* we have f(¢-x)
= f(t-y). Hence, f(t'(to'm)) =f((tto)'w) =f((tto)'y) =f(t‘(to'?/)) and we
have (t,-@, t,-y) eI (A). It now follows that (t, 54 () > n(¢-x): TXX(4)
= X(4) is an act and (e) is established.

PRrOPOSITION 1.2. Let A < C(X) and B < C(X) with A < B. There
exists a T-morphism ¢5: X(B) - X(A4) of X(B) onto X(A) such that
@aOTME = 14-

Proof. By proposition 1.1 (b), T(B) < T(A) and the function ¢f
is the function induced in the diagram

A
X (B) — X(A)

AN A
B \X/ N4
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PRrOPOSITION 1.3. Let A be a family of subsets of C(X) which is directed
by inclusion. For A eW, let T(A), X (4), and 1, be as defined in Proposition
1.1. For A, BeW with A < B, let ¢5: X(B) - X(A) be as defined in Pro-
position 1.2. Then:

(a) (X(A), ¢%,U) is an inverse system.

(b) The function x> %: X — invlim(X(4), ¢5,A) defined by Z(A)
= n4(x) for all AW is a T-morphism and is onio.

(¢) If U separates the points of X (i.e., for @ #y,®,yeX there exists
felUN with f(x) # f(y)), the function x> % is a T-isomorphism.

Proof. (a) is easily verified; that # +— Z is a T-morphism follows
from the fact that each 7,: X — X(A4) is & T-morphism (1.1 (¢)). That
x+> % is a epimorphism is a well-known property of inverse limits (cf.
[6], p. 49). Finally, to prove (c¢) let z, ye X with & # y. There exists 4 A
and feA with f(x) ## f(y). Hence, f(1-2) # f(1-y) so that (z,y)¢T(4)
and Z(4) = n4(z) # n4(y) = y(4); consequently, Z # 7. It now follows
that ¢ — Z is one to one and, together with part (b), is a T-isomorphism.

PROPOSITION 1.4. Let T be a compact semigroup and X a compatct
T-space. Let A be a finite subset of C(X) such that for feA, f(X) is finite;
then X (A) is finite and discrete.

Proof. For feA and x<X, define G(f;2) = {yeX: f(t-y) = f(t o)
for all teT*}. Let {y,}.cp be a net in X —G(f; ) converging to y,eX.
For each aeD, there exists #,eT* such that f(¢,-y,) # f(f,-x). Since T'?
is compact, we may assume the net {i,},., converges to {,eI* and by
continuity of f, {f(t:¥a)}acp 304 {f(t.'®)}acp converge to f(fo-y,) and
f(ty ) respectively. But f(X) is finite, so eventually f(i,-v.) = f(fy*¥o)
and f(t,-x) = f(to @) and thus, f(fy-y) # f(ty-2). It follows that y,e X —
—G(f;#) and that G(f;») is open. Now #3'(ns(®) = {yeX: f(i-y)
= f(t-x) for all teT* and fed} = ({G(f; x): feA} is open in X since A
is finite; consequently, 7 ,(«) is open in X (A4) for each r¢X so that X (4)
is finite and discrete.

THEOREM I. Let T be a compact semigroup and X a compact totally
disconnected T-space. Let W be the family of all finite subsets A < C(X)
such that f(X) s finite for each feA. Then each X (A), AW, 18 a finite
discrete T-space and X is T-isomorphic to invlim(X(4), o5, A) under
the T-isomorphism x — % (of Proposition 1.3 (b)).

Proof. In view of Propositions 1.3 (¢) and 1.4, we need only show
that (JU separates the points of X. Given z,yeX, # # y, there exists
a compact open set E = X such that veF and y¢E. If f denotes the
characteristic function of E, then fz<C(X), fz(X) = {0,1} and fz(z) =1,
fe(y) = 0. The set A = {fg} belongs to A and we are done.

Let T be a topological semigroup and X a T-space. A metric d on
X is T-subinvariant if d(i-2,¢-y) < d(w,y) for all teT and o, yeX.

b — Colloquium Mathematicum XXV.1
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PROPOSITION 1.5. Let T be a compact semigroup and X a compact
T-space. Let A = C(X), A countable. Suppose that, for feA, sup{|f(x)|:
2xeX}<1. The T-space X (A) is metrizable with a T-subinvariant metric.

Proof. Let A = {f;,fs,...} be an enumeration of A. For z,yeX
define:

o2 1 .
A(n4@), 14 (W) = D)5 Sup{lfa(t-0) —Fult-9)]: 1T},

It is a simple matter to verify that d is a well-defined metric on
X (A). Now let xeX and pick ¢ > 0. There exists N > 0 such that

a1 &
For each n, 1 <n < N, there is an open set V,, #eV,, such that
for yeV, and teT?,

f(ty) — fu(t2)] < 2.

Setting
N
V=M V. @V,
n=1
V is open, and for yeV,
N
1
A(n.4(@), 14 @) = D oz sup{lfa(t-9)—fult-@): e T+
n=1

00

1
+ D s {faty) —falt-a)l: 1Y

n=N+1
N 00 .
< € Z 1 P Z 1 < £ N € <
S Lom o S TS
n=1 n=N+1

Hence, 7,: X - X(A) is continuous in the metric topology on
X (4) and since X is compact, the metric topology equals the quotient
topology. Further,

d(to'ﬂA (@), to"?A(?/)) = d(’?A (to-)y ny (to'y))
> 1
= N sup{Ifa(t-(t ) it (to-y)): teT)

< d(’?A (%), 14 (?/)) ’

so that d is subinvariant and we are finished.
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THEOREM II. Let T be a compact semigroup and X a compact T-space.
Let A be the family of all countable subsets A of C(X) such that for feA,

sup{|f(®)]: veX} <1.

Then each X (A), AW, is a metrizable T-space with a T-subinvariant
metric and X is T-isomorphic to invlim (X (4), o5, A) under the T-iso-
morphism x +—> Z (of Proposition 1.3 (b)).

Proof. Again, in view of Proposition 1.3 (¢) and 1.5, we need only
show that (JU separates the points of X. However, this follows from
Urysohn’s Lemma.

Section II (Applications to semigroups). Let S be a compact topo-
logical semigroup and let 7 = S'x8'. We define multiplication in T
by (a, b)(c, d) = (ac, db) (Note the reversal in the second ccordinate).
With respect to this multiplication, T' is a compact topological semigroup
and 7' = T. The function (a,bd)'s+—asb: Tx8 -8 is an act and,
hence, S is a compact T-space.

* PrROPOSITION 2.1. Given A = C(8).

(@) T(A) = {(x, y)eS X8 |f(axb) = f(ayd) for all a,beS8* and feA}.

(b) T(A) ts a closed congruence on S.

() 8(4) is a compact topological semigroup and n,: S — S(A) s
a continuous homomorphism as well as a T-morphism.

Proof. Given 4 c C(X), by definition

T(A) = {(x,y)e8 x8|f(t-x) = f(t-y) for all teT* and fed}
= {(@,y)eS x 8|f ((a, b)-x) = f((a, b)-y) for all (a, b)eS? x S?
and feAd}
= {(x, y)e8 X 8|f(awb) = f(ayb) for all a,beS* and feAd}

and part (a) is established. That T(A) is a closed equivalence is Pro-
position 1.1 (a). If (z,y)eT(A) and se8 then for each feA and (a, b)
eS1x 8! we have f(a(sz)b) = f((as)ab) = f((as)ydb) = f(a(sy)b) so that
(sx, 8y)eT(A) and similarly (xs, ys)eT(A). We have established part (b)
and part (c) follows.

ProrosITION 2.2. If A < B < C(8) ¢5: 8(B) - 8(4) is a continuous
homomorg')hism. :

Proof. The function ¢Z%: §(B) - 8(4) is induced and satisfies
ghong = n4. Further, ¢f is a T-morphism by Proposition 1.2. Thus,
for a,be8, let t = (a,1); then we have ¢F(ng(a)np(b) = ¢ (ns(abd))
= g4 (np(t-b)) = t-9Z(ns(b) = t-na(d) = n4(t-d) = n4(ad) = n4(a)n4(b)
= ¢4 (n5(a)): ¢4 (n5(b)).
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As a result of the above and Proposition 1.3 (c) we have:

ProposITION 2.3. If A i3 a family of subsets of C(S) and | JU separates
the points of 8, then the function x+— % (of Proposition 1.3 (b)) is an iso-
morphism of 8 onto invlim (S(A4), o3, %).

COoROLLARY 2.1 (Numakura [6]). If S is a compact totally-disconnected
gsemigroup, then 8 is (isomorphic to) an inverse limit of finite discrete semi-
groups.

Proof. If A denotes the family of all finite subsets 4 = C(8) such
that feA, f(S) is finite, then (U separates the points of 8§ and by
Proposition 1.4, 8(4) is finite and discrete. The result now follows from
Proposition 2.3. |

Given a semigroup 8, a metric d on § is subinvariant if d(sa, sb)
< d(a, b) and d(as, bs) < d(a,b) for all a,d and seA8.

COROLLARY 2.2 (Hofmann and Mostert [5], p. 49). If 8 is a compact
semigroup, then S tis (isomorphic to) an inverse limit of compact metric
semigroups each of which has a subinvariant metric.

Proof. Let A be the family of countable subsets A = C(X) such that
for fed, sup{|f(s)|: seS8} <1. Again, | JU separates the points of - §
For each AU, S(4) is a T-space and has a T-subinvariant metric d by
Proposition 1.5. By Proposition 2.1 (¢), S(4) is a compact semigroup
and 7,4: 8 - 8(4) is a homomorphism and a 7T-morphism. Thus, for
a,b, and se8, let ¢+ = (s, 1); then

d(ng(8)n4(a), na(8)n4 (b)) = d(n4(sa), n4(sD)) = d(ny(t-a), ny(t-D))
= d(tny(a), 1 nq b)) < d(ns(a), n4(D)).
Similarly,
d(n4(a)n4(8); na(B)ny (8)) < d(nq(a), 7.4 (b))

and d is subinvariant. The Proposition now follows.

A semigroup 8 is (uniquely) divisible if for each ¢S and each integer
n > 1, there is a (unique) y €8 satisfying y® = «. If 8 is uniquely divisible,
one can define positive rational powers of elements of §; further, if S
is commutative, the usual laws of exponentiation hold. If 8 is a compact
uniquely divisible commutative (UDC) semigroup and r is a positive
rational, the function # — 2" is an automorphism of S. The reader is re-
ferred to [2], [3], and [4] for a discussion of divisible semigroups.

THEOREM III. A compact UDC semigroup S is (isomorphic io) an
inverse limit of compact metric UDC semigroups, each having a subinvariant
metric. '

Proof. For feC(X) and r a positive rational, define f"eC(X) by
ff(z) =f(2"). A subset A = C(8) is rationally closed if whenever fed,
fTeA for all positive rationals r. Let A denote the family of all countable
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rationally closed subsets 4 = C(8) such that for fed, sup{|f(t)|: teS} < 1.
As in Corollary 2.2, for each AW, S(4) is a compact metric semigroup
with a subinvariant metric. Since 7,: S — S(4) is a surmorphism, S(A4)
is divisible. Now let x,yeS,n > 1 and suppose 74(x)" = n,(y)". Then
n4(2") = n4(y") and it follows that f(ax"b) = f(ay™d) for all a,beS?
and feA. Then for fed, a, beS* we have f/*¢ A and f(axdb) = f™(a"a™b")
= f"(a"y"b"™) = f(ayd) so that 7,(x) = n4(¥). Hence, 8(4) is uniquely
divisible. If z, yeS and z # y, there exists feC(8), sup{|f(s)|: seS} <1
and f(z) # f(y). Let A = {f": r positive rational}; then AW and feA.
Hence, (U separates the points of § and, consequently, 8 is isomorphic
to invlim(8(4), ¢4, %) by Proposition 2.3.

QUESTION. Using this method, can one find a reasonable category
of compact semigroups such that each semigroup in the category is the
inverse limit of finite-dimensional compact semigroups. It would seem
that if A is a “nice” finite subset of C(8), S(4) might have ¢-maps into
an n-cube. (P 785)
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