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If X is a compact metric space, it is well known that H(X), the space of
homeomorphisms of X onto itself, is a complete separable metric topological
group. [In nearly all the interesting cases, these spaces of homeomorphisms
turn out to be very badly not locally compact and very badly not abelian.]
This is unfortunate in at least one respect: Although topological groups and
topological transformation groups have been widely studied, nearly all that
work has been done in a locally compact or an abelian setting.

Nevertheless, spaces of homeomorphisms, and the homogeneity proper-
ties that go along with them, are of very deep interest to this author. In this
paper, we will consider a very natural compactification of the space of
homeomorphisms to see what information we can gain about our base space
X and our space of homeomorphisms H (X). Of course, as we gain compact-
ness, we generally lose our topological group structure. As much as anything
this paper represents an attempt to learn more about homogeneity properties
by looking at the “bad” places in the group of homeomorphisms. Ironically,
when the “bad stuff” is put in, the resulting space is in some senses a nicer
space.

1. Background, notation, definitions. In this paper a continuum will be a
compact, connected metric space. We will use N to denote the positive
integers. If A is a collection of sets, A* will denote the union of the members
of A.

If X is a compact metric space, H(X) will denote the set of all
homeomorphisms from X onto itself. As has been noted, H(X) is a complete
metric separable topological group [2]. The topology on H(X) is the
compact-open topology. There are several natural ways to define a metric on
H (X) compatible with this topology. We will look more closely at some of
these in the next section. Composition is, of course, the group operation on
H(X). We will use 1 to denote the identity in H(X).

Now H(X) acts on X, as does any subgroup G of H(X). Also, H(X) and
its subgroups act in a very natural way on many other spaces: For example,
H(X) acts on itself and on X", where neN. (In this last case we define the



42 J. KENNEDY

action of H(X) on X" as follows: If he H(X) and x = (x4, ..., x,) €X", h(x)
= (h(xl), h(X2), - h(x,,))EX)

Suppose that the topological group G acts on the metric space X. If
x€X, Gx = |h(x)| heG} is called the orbit of x under the action of G. The
action of G on X is said to be transitive if Gx = X for each xin X. If 4 = G,

Ax = {h(x)eX| heA}.

The action of G on X is micro-transitive if for every x in X and every open
neighborhood u of 1 in G, ux is open in X.

Next we state Ancel’s version of the Effros Theorem [1]: Suppose that a
separable complete metric topological group acts transitively on a metric
space X. Then G acts micro-transitively on X if and only if X has a complete

metric.
For more details and background about these ideas, the reader is
referred to [13].

2. H(X) as a subspace of 2¥ **, Suppose X is a compact metric space
and d is a metric on X compatible with its topology. Then ¢ will denote the
“sup” metric on H(X) with respect to d: ie., if g, he H(X),

(g, h) = lub {d(g(x), h(x))| xeX},

and if ¢ > 0,
N.(h) = {feH(X)| o(f, b <¢&}.

The sup metric is the one most commonly used by topologists when X is
compact metric, but H(X) is not generally complete with respect to this
metric, although this metric is certainly compatible with the compact-open

topology on H(X).
We will use ¢’ to denote the usual complete metric on H (X) with respect

to d: if g, he H(X),
0'(g, h) = max{e(g, h), (g™, h™1)}.
Further, if ¢ > 0, let

Ny(h) = {feH(X)| o'(f, b) <¢}.

If xeX, ¢ >0, D,(x) will denote {y e X| d(x, y) <e&}. Then d’ will denote
the “taxicab” metric on X? with respect to d; ie., if x =(x;, x,), ¥y
=(y1, y2) €X?,

d'(x7 y) = d(xl’ yl)+d(x2’ yZ)
If xeX? e>0,
D,(x) = {yeX?| d'(x,)) <e}.

We will use the Vietoris topology and Hausdorff metric on 2X**: If
C, De2X*X
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v(C,D)=glble >0| C =D,(D) and D = D,(C)!.
If Ce2X*X ¢>0,
S.(C) = {De2**¥ v(C, D) <¢}.

Now, if feH(X), f can be thought of as a closed collection of ordered
pairs in X x X or a point in 2¥*X. Thus, we will be associating f with grf
(and, when no confusion arises, be somewhat sloppy about it by calling both
f and grf just f).

OBSERVATION 1. Suppose (X, d) is a compact metric space. Then the space
H(X) can be embedded in 2*X*X. Further, if f, heH(X), then

og(fih=elf, h)=ov(f,h).

Proof. Surely, this is essentially already known. However, since the
author does not know where to find such a result, and it is crucial to what
follows, we prove it here. Define the function

¢: H(X) »Z, where Z = grf| feH(X) c2X*X
as follows:

é(f) =grf.

Thus ¢ is a one-to-one function from H(X) onto Z. We show that it is a
homeomorphism: .
Suppose ¢ > 0, he H(X). Then ¢(N,(h)) = S.(grh): If f €N, (h), then, for
each x in X,
d(f(x), h(x)) <&, (x,f(x)€D;(x, h(x)) < D;(grh),

and
(x, h(x))eD;(x, f (x)) = D, (grf).
Thus
grf <D,(grh), grh<Di(erf), grfeS.(erh),

and ¢ is continuous.
There is some & > 0 such that ¢~ ' (S,(gr h)) = N, (h): Suppose not. Then
for each i in N,

¢~ (S,-i(grh) & N.(h)

and

¢~ (S,-i(grW)oh™! £ N, (hoh™! = N,(1).
For each i, there is some f;, e H(X) such that

grfieS,_;(grh) and fih™'¢N,(1).



4 J. KENNEDY

For each i, there is x; in X such that
d(fih~'(x), x;) = ¢.
I.4et h—l(x.') = yi' Then

e<d(fih™ ' (x), x;)=d(fih ' (x), hh~'(x;))
=d ((yi’ﬁ(yi))’ (.Vn h(}’i)))-
Then we can find, for each i, z; in X that
d (v i), (i, (@) <27

There i1s some 6 >0, & <e¢/4, such that if r,teX, d(r,t) <6, then
d(h(r), h(t)) <¢/4; and so we can find MeN such that if m > M, then
2™ < §/2. Choose m > M. Then

& < d'((Vms S Vm))s (Vs B (V)
<A (Vs S Wm))s (2ms 1 (2) + 2 (s BZnd)s (V> B ()
<2TMm427"4e/4 <e.

But this is a contradiction. It follows that ¢! is a homeomorphism.

‘"Then H(X) can be embedded quite naturally in 2* *X. Hereafter, we will
dispense with distinguishing between f and grf and H(X) and Z. We have
also shown that v is a metric on H(X) compatible with its usual topology,
and that, for f, geH(X), o(f, 9) = v(f, g). It is clear that o'(f, g) = o(f, 9).

OBSERVATION 2. The group H(X) acts on 2X*X. If feH(X), then
H(X)(f) = H(X), and thus

(1) is a Gy-set in 2X*X;

(2) is a dense Gy-set in H(X) =Y < 2X*¥,;

(3) is a topological group lying in 2X*X

Proof. Again we include a proof only to ensure clearness.

‘Now H(X) acts on 2¥*X: Define ¢: H(X) x2X¥*X —»2X*X a5 follows:

¢ (h, C) = {(x, h(»)) (x, y)€C} for (h, C)eH(X) x 2% "X,

It is easy to check that ¢ (h, C)e2X** and ¢ is an action of H(X) on 2**X,
since ¢ is continuous, ¢(1,C) =C for Ce2*** and, for f, heH(X),
¢(fh, C) = ¢(f, ¢(h, C)). We denote ¢(h, C) by hC.

Since for feH(X) we have (in our abused notation)
H(X)(grf) = H(X)(f) = {Wf| heH(X)} = H(X),

the rest of the observdtion is true. (Recall that the completeness of H(X)
implies that H(X) is G, in Y and 2¥*X)
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CoroLLARrY 1. If X is a compact metric space, then H(X) acts on a
compact metric space Y which admits under the action of H(X) a dense G,-
orbit.

Proof. Of course, our Y = H(X) < 2**X, (Note that heH(X), CeY
imply hCeY)

OBSERVATION 3. Suppose X is a compact metric space.

(1) Define ¢: H(X) x2X*X = 2X*X 45 follows:

$(h, C) = {(x, 2)| there is some y in X such that (x, y)€h, (y, z)eC}

for (h, C) in H(X)x2X*X. Then ¢ also gives an action of H(X) on 2¥*X.
(2) Define B: 2X*X —2X>X py

B(O) =iy, 0 (x,y)eC} for Ce2¥*X.

Then BeH(2X*¥X).
Proof. Note that, for f, he H(X),

$(Hf, C) = C(hf) = $(f, $(h, C)) =(Ch) f, where Ch=(h, O).
The proofs of these statements are straightforward, so we omit them.

OBSERVATION 4. Suppose X is a compact metric space. Then C € H(X)
=Y implies that if x€ X, then there are y and z in X such that (x, y)eC and
(z, x)eC. If C and D are in H(X) =Y, and f,, f,, ... is a sequence of H (X)
which converges to C, hy, h,, ... is a sequence of H(X) which converges to D,
then each convergent subsequence of f, hy, f3 h,, ... converges to some subset
of CD = |(x, y)| there is some z in X such that (x,z)eD and (z, y)€C).

This is straightforward, so the proof is omitted.

Note that the operation defined in Observation 4 [If C, De2*X**, CD
= {(x, y) € X?| there is some z in X such that (x, z) €D and (z, y)eD}.] does
not make 2¥*X* or Y into a topological group: this operation is not
continuous, generally.

However, it is sometimes true that H(X) is locally compact or even
coimpact. In these cases though, X does not admit under the action of H (X)
an orbit which contains a nondegenerate continuum and is G4 in the space
[7]. If H(X) is compact, Y = H(X) = H(X) and Y is a topological group.
Otherwise, the composition operation on H(X) cannot be extended to Y to
make it into a topological group: H(X) is G, in Y, and, if this happened,
H(X) would be a dense G4-subgroup of the group Y and has to be closed in
Y. Otherwise, there is an h in Y such that

hH(X) nH(X) = @,
where hH(X) and H(X) are dense G,-sets of ¥, which is impossible. In fact, Y

may actually have a fixed point under the action of H(X). As we shall see
later, X? is often an element of Y.
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THEOREM 1. Suppose X is a compact metric space. Then X admits a
dense orbit if and only if, for each (x, y) in X?, there is some C,,, in Y such
that (x, y)€Cy.,)-

Proof. Suppose that X admits a dense orbit H(X)(z) and (x, y)e X%
For each ieN one can find h, e H(X), r; €D,_;(x), and s;€D,_;(y), such that
rieH(X)(z) and h;(r) =s;. Now hy, h,, ... has a limit point C in Y, and
some subsequence of h,, h,, ... converges to C. Then (x, y)eC.

Suppose that for each (x, y)€X? there is some C, in Y such that
(x, y)€Cy,,. We use here an argument very similar to one given by Lewis
[9]. Suppose by, by, b,, ... is a basis for X. If (xq, yo) €bo xb,, there is some
C, in Y such that (x4, yo) €C,, and there is h, in H(X) such that

ho(y,) = x; for some (x;, y;) €bgy xb;.
There is some open o, S b, containing y, such that
diamo, < 1/2, diamhy(0o) < 1/2,  ho(0g) S bo.

Consider b,. If (x,, yi)€ho(0o) xb,, there is some C, in Y such that
(x;, y1)€C,, and there is some h; in H(X) such that

hy(y;) = x, for some (x5, y,) €hy(0g) xb,.
Then there is some open o, < b, containing y, such that
diamo, <1/4, diamh,(0,) <1/4, h,(0,) S hy(0o).
Consider by and likewise obtain h, in H(X) such that
h,(y3) = x5 for some (x3, y3) €h,(0y) xbs.

Continue this process.
Now

hi(0) = {z} for some zeX.

Then H(X)(z) is dense in X: If u is open, there is some i > 2 such that
b; =u. Then

hi—1(y)) =x; for some (x;, y) €h;_;(0;-3) xb;;
hi—1(0i-4) g.hi—2(0i—2): diamh;_, (0;-,) <27 and 0;-1 Sb;.

Since z€h;_,(0;_,), we have h7 (z)eo;_, S b,.

THEOREM 2. Suppose X is a compact metric space such that every point
of X is a limit point of X. Then the following are equivalent:

(1) X*eY = H(X).

(2 If uy, u,,...,u, and 0,, 0,, ..., 0, are each n-element subcollections
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of nonempty open sets in X, then there is some h in H(X) such that, for each
i< n, there is x; in u; such that h(x;)€o;.

(3) There is a countable dense subset D = p,, p,, ... of X such that if
0y, 05, ..., 0, is an n-element subcollection of nonempty open subsets of X,
then there is some h in H(X) such that, for each i < n, h(p)€o;.

Proof. (1)=(2). Suppose X2 €Y. There is a sequence h,, h,, ... in H(X)
such that h,, h,, ... converges to X2. Suppose that u,,u,,...,u, and
0y, 0,, ..., 0, are n-element sequences of nonempty open sets in X. Without
loss of generality assume u,, ..., 4, and o, ..., 0, are both disjoint collec-

tions. Then for each i < n choose open u; # @ such that ;,f,c_: u; and choose
for each i < n open o] such that o] < o;.
Now X —{u/}* =u,,, is open, as is X—{oj}* =0,,,. Let
B={uyxol i<n+l,j<n+l}.

Let (B> denote the basic open subset of 2*¥ *X consisting of all points C of
2¥*X which have the property that C N (y; x0;) # @ for any i,j < n+1, and
C <= B*. Then X2e (B). There is M €N such that, for each m > M, h,, € (B).
Then

h,(u; x0) #@ for i<n,

and there is (x;, y;) €h,, N (y; x0;). Thus h,(x;) = y; for each i < n.
(2) =(3). Suppose B =b,, b,, ... is a basis for X. Let

B=d(1)x...xd(n)| neN and (d(1), ..., d(n))eB").

List the elements of B: b,, b,, ... Now there are e(1)eN and a collection of
open sets {d(1)}, ..., d(e(1))'} such that

b, =d(1)! x...xd(e(1))".

Let t, = X*D~1xb,. There are h, in H(X) and x, = (X4, ..., X1.0)) €b;
such that h,(x,)€t,. (Recall that h,(x,) = (hy (x1y), ..., by (X11y))) There is
some basic open subset

0, =0(1,1) x...x0(1, e(1))
of X° such that
x; €0, by, hy(x,)€h (3) Sty,
diamo,, diamh(o,) < 1/2.

Let a'(1) = e(1).
Now there are e(2) €N and a collection of open sets {d(1)?, ..., d (e(2))2}
such that

b, =d(1)* x... xd(e(2)".
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Let
d@) =e@+a()+1, bF=>5,xXxW,
where a(l) =a’(1)+1, and
t, = hy(0;) x X xb,.

There are h, in H(X) and x, by such that h,(x,) €t,. Then there is some
basic open set o0, such that

X, €0, Sb3,  hy(xy)€hy(0y) St
diamo,, diam h,(0,) < 1/4.

Continue this process, obtaining at the m-th step the following: There are
e(meN and a collection of open sets {d(1), ..., d(e(m))"} such that

by =d(1)" x...xd(e(m))".
Let
a(m) =e(m+a(m-1)+1, b =bh, xXV,
where a(m—1) =a'(m—1)+1, and
tm = Bm1(Om-1) X X*™ x by,

There are some h, in H(X) and x, €b, such that h,(x,) €t,. Then there
is some basic open subset o, of X¢™ such that

Xm€0m Sbp, iy (Xp) EHp(0p) S L,
diamo,,, diamh,(0,) <2~ ™.
Now for each ieN consider
10_ hy(o(j, @ (),
where 0; = 0(j, 1) x... x0(j, @'(j)), @'(j) = M; for each jeN. Note that
b; 2 hi(o(i, a () 2 h(0(i, @ () 2 h+1(0(+1, @ () 2
and since the diameters of the sets in this monotone sequence go to O,

ﬂ hj(o a (1))) is degenerate, but not empty. For each i, let

(n} = (10, a0)

and let D = {p,, p,, ...}. Then D is a countable dense subset of X.
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Suppose (1), 6(2), ..., 6(n) is an n-element sequence of nonempty open
subsets of X. For each i < n, there is some d(i) € B such that d(i) < o;, and
d(1),d(2),...,d(n) is a finite subsequence of b,, b,, ... If meN,

hu(0,) St € X1 xb; x X4? xb, x...x X¢™ xb,,.

Now

d(1) x... xd(n) = {web| w,eb(l, i) for ieta'(l), ..., a'(n}},

where b, = b(l, 1) x... xb(l, m) €B for infinitely many . Pick one such 1. Then
X Ebl# and h,(x,)EI,. Thus

h(xw@)€b; and  x,.,€d() for each i < n.
Also, hj(0;) =t,, and
D; Eh, (0 (I, a,(l))) o bi'

Then h; ' (p) e(o(l, a' (i) =d(i) <6;, and k]! is the desired homeomorphism.
(3) = (1). For each i€eN, suppose

Gl' = {g(la l)s ERRE g(l’ ni)}

is a finite open cover of X, has mesh less than 27/, and is a refinement of
G-, ifi=2
Consider

G, xG, = {g(1, i)XQ(l,j)l 1<i,j<n}={g(1, | i <ni}.

There is a finite subsequence d(1, 1), ..., d(1, n?) of D such that, for each
j<ni,
d(lo.’) Eu(l,j)GGl
(where g(1, j) =u(l1, j) xv(1, j) for each j’ < n?). Let
dt=(d,1),...,d({1, nd).
There is some h; in H(X) such that
h, (@) ev(l, 1) x...xv(1, n?).
Consider
G, xG, =1{g(2, ) xg(2, )| 1 <i,j<n} =1{4(2, ) i <nj}.
There is a finite subsequence d(2, 1), ..., d(2, n3) of D such that, for each
j<n3,
d(2, j)eu(2, j)

4 ~ Colloquium Math. 56.1
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(again (2, j) = u(2, j) xv(2, j)) for each j' < n3). Let
d=(d@2,1),...,d(2, n)).
There is some h, in H(X) such that
hy(d¥) ev(2, 1) x...xv(2, nd).

Continue this process. The resulting sequence h,, h,, ... of H(X) has a
limit point C in Y. Thus, some subsequence f, f,... of hy, h,, ... converges
to C. Suppose that, for each i, f; is the g(i)-th member of the sequence
hl’ h2a o .

Suppose (x, y)€X? and &>0. There is /eN such that 27! <¢/16.
Suppose i > I. Then there is j < n}; such that

(x, y) cu(q (), j) xv(q (i), j) S Dyj2(x) x D2 (1),
and

£(d(q@, j))ev(qg@),j) with d(q(), j)eu(q(), j)

Thus (x, y)€C, and C = X2.

. A separable space X is countable dense homogeneous if whenever 4 and
B are countable dense subsets of X there is some heH(X) such that h(A)
= B. Ungar [14] has shown that if X is a countable dense homogeneous
continuum other than the simple closed curve, then X is strongly n-homo-
geneous for each n, ie., if {a,,a,,...,a,} and {b,, b,, ..., b,} are two n-
element sets in X, then there is some h in H(X) such that h(q;) = b; for each
i < n. Thus, if X is a countable dense homogeneous continuum other than
the simple closed curve or if X is the pseudo-arc (see [8]), then X%eY

= H(X). Now, if S is a simple closed curve, then S?¢ H(S). (S cannot satisfy
condition (2) of the preceding theorem.) However, S is a homogeneous
continuum with rather unique properties, and thus we ask the following:

QuestioN (P 1351). If X is a homogeneous continuum other than a
simple closed curve, is X?€Y = H(X)?

3. Connectivity relations. Keesli. '3 [6] has shown that if X is a compact
metric space and H(X) is locally compact, then H(X) is O-dimensional.
However, if X is a compact metric space and X admits under the action of
H(X) a complete orbit which contains a nondegenerate continuum, then
H(X) is not locally compact [7].

Now, it has been conjectured that if X is a homogeneous continuum
(nondegenerate), then H(X) is not O-dimensional. However, it is known that
H(X) can be totally disconnected [4]. We give here some relations between
the connectedness of X and the connectedness of Y.
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THEOREM 3. If the compact metric space X contains a nondegenerate
continuum P such that, for some x in X, P < H(X)(x) and H(X)(x) is

complete, then H(X) is not totally disconnected.

(In fact, one needs only to assume that G is a complete subgroup of
H(X) such that Gx 2 P and Gx is complete to conclude that G (closure
taken in 2¥*¥) is not totally disconnected.)

Proof. Suppose that G is a complete subgroup of H(X) and x€X such
that Gx is complete and there is some nondegenerate continuum P such that
P = Gx. If ¢ > 0, there is some J > 0 such that

Gx NnDs;(z) = N,(1)(z) for each z in P.

[We take some metric d on X, and the discs D,(y) for « > 0, yeX, with
respect to this d. Then we take ¢ on H(X) and G with respect to d, and here
N,(h) = {f€G| o(h,f) <a}.] =

Without loss of generality, assume x € P. Choose yeP, x # y. There is,
for each i in N, §; > 0 such that

Gx NDy(2) =N,-_;(1)(z) for each z in P.
Then there is a finite sequence
x=x(@,0),x@1),...,x(i,n)=y

in P such that d(x(i, j—1), x(i, j)) <; for each j such that 1 <j < n. And
then one can find f(i, /) in N,_;(1) such that

LG, D(xG, j=1) =x@, )
for ieN, 1 <j < n. In order to simplify notation, let
fG,j)ofl,j—1)o...of (i,2)0f (i, 1) =f(i,j) for ieN, 1<j<n;.

Thus 4; = {1 = (i, 0), f(i, 1), f(i, 2), ..., f(i, m)} has the following proper-
ties:

(1) @(fG,j—1),f(, ) <27 for each j such that 1 <j<n;

@ £ 0() =1(9 =x;

@) £, n)(x) = y. .

Since, for each i in N, A, is a closed subset of Y = H(X), there are some
closed subset 4 of Y and a subseqttxgnce B,, B,, ... of A, A,, ... such that

By, B,, ... converges to A (in 2" < 22**X) Now 1B, for each i means 1€ 4.
Also, some subsequence g, g,, ... of f(1, ny), (2, n,), ... such that, for each
i, g; €B; for some j converges to some C in Y. Since (x, y) € £, n) for each i,
(x,)eC and C #1, A is not degenerate, but 4 is a continuum. Then
AcGcY

-Remark. If X is a compact metric space, and H(X) =Y contains a
nondegenerate continuum, then X contains a nondegenerate continuum. But
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this follows from an elementary fact: If Z is a compact metric space and 27
contains a nondegenerate continuum, then Z contains a nondegenerate con-
tinuum.

A space X is representable if for each xe X and u open in X such that
x €u there is some open set v in X such that xev cu, and if yev, there is
some homeomorphism from the space onto itself such that h(x) = y and h(z)
= z for each z¢v. [The preceding definition was actually first given as the
definition of strongly locally homogeneous. Bales [3] proved that these 2
terms are equivalent, however.] Each representable continuum is countable
dense homogeneous and locally connected. Observe the following: If X is a
representable continuum, and u is a connected open set in X, then if x, y ey,
there is some h in H(X) such that h(x) = y and h(z) = z for each z¢u. (For
more background, references for these terms, we refer the reader to [13])
Examples of representable continua include manifolds, including Hilbert cube
manifolds, as well as the Menger universal curve.

THEOREM 4. Suppose X is a representable continuum which is not a simple
closed curve. Then if C is a subcontinuum of X,

lu(CxC)eH(X) =Y.

Proof. Since X is not a simple closed curve, and X is countable dense
homogeneous, X is strongly n-homogeneous for each n. Also, no finite subset
of X separates X (see [14] and [15]).

Further, X has no local cut-points (see [5]), so X has a basis B of
connected open sets such that no finite set separates any b in B. For each j
in N, there is an open cover

Uj = {U(i, 1), ll(j, 2)9 (KRR u(ia nj)} SB

of C such that for i < n; the diameter of u(j, i) is less than 27/. Note that U}
is connected and that no finite set separates U¥. Next choose a finite subset
of (U¥)? as follows: For each (k, ) e{l, ..., n;}?,

x(j, k, Deu(j, k) and y(j, k, )eu(j, )
and for (k, l) # (k', I),
xU, k, ) # x(, kK, 1), yU, k, ) #yU, k', 1);

L

for (k, l), (k', I) (equal or not),
x(j, k, 1) # y(, k', ).
Then find f; in H(X) such that
fi(xU, k, D) =y(, k, 1) for each (k, ) in {1, ..., n;}?
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and
fi(z) =z for each z¢ U?¥.
To see how to do this — first find h, in H(X) such that
hy(x(, k, D)) =y(, k, ) for some (k,!) in {1,..., n;}?
and
hi(z)=z for z¢ U?¥.
Now U¥—1{y(j, k, I)} is connected, and there is h, in H(X) such that
hyhy(x(j, kK, ) =y(j, kK, I) for (K, I)e!l, s njt2—{(k, 1)}
and
hy(z) =z for z¢ U¥—{y(j, k, I)}.

Continue this process.
Then one can check that f,, f,, ... converges to 1 U(C xC).
Remarks. It is a corollary to the above theorem that if X is a
representable continuum, then H(X) contains arcs (see [16], p. 186).

However, it is not true that, for X compact metric, Y = H(X) contains

an arc implies X contains an arc. If P denotes the pseudo-arc, then H(P)
contains arcs, as we see below.

THEOREM 5. If P denotes the pseudo-arc, then H(P) contains arcs, and
H(P) is arcwise connected in H(P). Also, if P’ is a subcontinuum of P, then

lu(P' xP)eY.

Proof. Suppose xeP and Cx denotes the composant of P which
contains x. Choose y # x from Cx. There is a copy P’ of the pseudo-arc in
Cx such that xe P’ and y e P'. There is an arc A, which is a monotone family
of continua in P, in 2° such that {x}, P'€A (see [16], p. 186). Let a: [0, 1]-
—.A be a homeomorphism such that a(0) = {x} and a(l) = P'.

Fix r€[0, 1]. For each jeN there is an open cover

U; = {u(, ), ..., u(j, n)}

of a(r) such that, for i<n; diamu(j,i) <27/ If r>0, for each
(k, ell, ..., n;}* choose a composant K(j, k, 1) of a(r) such that, for
(k, 1) # (K, D),

K@, k, 1) # K(, k', I).
There is a subcontinuum K (j, k, I) of K(j, k, I) such that
KRG, k,)nu(,k)#® and K(, k, )ou@,l)# 0.
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We now make use of the following theorem of Lewis '[ll]:

Let u be an open subset of the pseudo-arc P. Let p and q be distinct
points of P so that the subcontinuum M irreducible between p and q does not
intersect . Then there exists a homeomorphism h in H(P) with h(p) =q and
hlu = 1|u.

For us, this means that we may now choose a homeomorphism k,- such
that

k(® =% for x¢D,_;(a(),

kG, D)nuG, ) # @ for (k, )efl,...,n}>=F.

There is a collection E; = {E(j, k, )| (k, )€F} of mutually exclusive open
subsets of P such that

E} D, j(@()) and K(,k, ) <E(,k,I) for each (k, l)eF.
Obtain a homeomorphism h(j, k, l) for each E(j, k, I) such that
h(, k, D(u(, D) nu, ) # O

and

h(j, k, )(x) =x for X¢E(j, k, I).
Then “combine” the h(j, k)’'s to obtain k;. One can then check that
ky, k,, ... converges to some E, in H (P) such that

E, =10U(a(r) xa(r).

Let E, = 1. Note that E, = 1; E; = P'%;if r <r'in [0, 1], then E, & E;; and
{E,| re[0, 1]} is a continuum in H(P). Thus {E,| re€[0, 1]} is an arc in
H(P).

We could have taken P’ to be P above, and the result would be the
same; i.e, there is an arc E in H(P) (P) from 1 to P2. If he H(P), then h(E) is an
arc in H(P) from h to h(P?) = P2

Remarks. The pseudo-arc itself, of course, contains no arcs. Note _also

the following: Lewis has recently shown that H(P) contains no nondegener-
ate subcontinua [11], but each h in H(P) can be written as a finite composi--

tion of e-homeomorphisms for ¢ > 0 (see [10]). (It follows that H(P)-is a
continuum.)

QuesTion (P 1352). If X is a homogeneous continuum, does H (X) contain
arcs?

THEOREM 6. If X is a countable dense homogeneous continuum other than
the circle, Y =H (X) is a continuum.
Proof. Suppose D is a countable dense subset of X. Let

2
E = {e,, ey, ...} = D2
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Ungar [14] showed that H(X) acts transitively and micro-transitively on
F"(X) for neN in this case. Note that F"(X) is locally compact and if ¢ > 0
and

T= {x =(xl’ ey x,,)EX"l d(xi’ xj) 28 for i,]< n, l:)éj}9

then T is a compact subset of F"(X). If ¢, > 0, then there is some J, > 0
such ‘that if {z,, ..., z,} and {y,, ..., y,} are two n-clement subsets of X with

d(zy, yi) <6, for each k< n,
d(zy,z)=2¢, and d(n,y)=¢e, for Lk>n, l#k,

then there is some h in N, (1) such that h(z,) = y, for each k <n.
For each neN, j < n, choose a finite sequence

An,j)=a(n,j,0),...,a(n,j, mn,j)
of points of X as follows:

(1) Consider e¢; first, j < n, and denote e; by (d(j, 1), d(j, 2)). Choose
a(n, j, 0) such that

d(a(n, j, 0),d(j, 1)) <27" for each j
and
an,j,0 +#a(n,j,0 forj#j.
Choose a(n, j, m(n, j)) such that
d(a(n, j, m(n, j)), d(j, 2)) <2=" for each j
and |
a(n, j, m(n, j)) # a(n, j, m(n, j)) for j#j, j,j <n,
and
a(n, j, m(n, j)) # a(n, j, 0) for j,j <n.
(2) Now no finite set separates X {see [15]). Thus, if
B(n,j)=1{d(1,1),d(2, 1), ...,d(n, 1),d(1, 2), ..., d(n, 2)}
u U {an, k, 0), a(n, k, m(n, k))},

k#j

then X — B(n, j) is connected, locally connected [15] and arcwise connected
for each j < n. Suppose P(n,j) is an arc in X—B(n,j) from a(n,j, 0) to
a(n, j, m(n, j)). There is ¢, > 0 such that

&, <d(B(n, j), P(n, j))
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in X for j<n and ¢, <27 ". There is some 4,> 0, §, <g,, such that if
{zy, ..., 2z,} and {y,, ..., y,} are two n-element subsets of X with

d(z¢, yo) <6, for k<n,
d(zx,z)=2¢e, and d(y,y)=¢, for k,I1<n, k#]l,

then there is heNz_,,(l) such that h(z) =y, for k <n.
Now for each j<n choose a(n,j, 1), ..., a(n,j, m(n, )—1) so that
(1) d(a(n, j,i—1), a(n, j, )) <9, for 1 <i<m(n,j);
(2) a(n, j,i)eP(n,j) for 1 <i< m(n,j);
(B) A, )N Am, )= for j#j, j, j<n
Let

Y m(n, j) = m(n).

i=1
Choose a sequence f(n, 1), ..., f(n, m(n)) of homeomorphisms from N, _,(1)
as follows:

(1) f(n, 1)eN,_,(1) such that

f(n, )(a(n, 1, 0)=a(n1,1),
f(n, (an,j,0)=a(n,j0 forj#1.
(2) f(n, 2)eN,_,(1) such that
f(n,2)(a(n, 1, 1)) =a(n, 1, 2)

and
f(n,2)(a(n, j, 0) =a(n,j,0 for j#1
(m(n, 1)) f(n, m(n, 1))eN,_,(1) such that
f(n, m(n, V)(a(n, 1, m(n, 1)—1)) = a(n, 1, m(n, 1))
and '

f(n, m(n, D)(a(n, j, 0) =a(n, j,0) for j+1.
(m(n, 1)+1) Let m(n, 1)+1 =b. Then f(n, b)eN,_,(1) such that
f(n, b)(a(n, 1, m(n, 1))) = a(n, 1, m(n, 1)),

f(n, b)(a(n,2,0)=a(n,2,1)
and

oooooooooooooooooooooooooooooooooooooooooooooooo

(m(n, 1)+m(n, 2)) Let m(n, )+m(n,2) =b". Then f(n, b)eN,_,(1)
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such that

f(n, b)(a(n, 1, m(n, 1))) = a(n, 1, m(n, 1)),
f(n, b)(a(n, 2, m(n, 2)—1)) = a(n, 2, m(n, 2)),

and
fn, b)(a(n, j, 0) =a(n, j,0) for 2<j<n.

................................................

1
(), m(n, )+1) Let
i=1

n—1

b- Y m(n, j)+1.

j=1
Then f(n, E)GNZ_,,(I) such that
f(n, 5)(a(n, k, m(n, k))) = a(n, k, m(n, k)) for k <n-—1
and
f(n, b){a(n, n, 0)) =a(n, n, 1).

(m(n) = 3 m(n,j) f(n, m(n))eN,_,(1) such that

j=1
f(n, m(m)(a(n, k, m(n, k))) = a(n, k, m(n, k)) for k < n—1
and
f(n, m(n))(a(n, n, m(n)—1)) = a(n, n, m(n)).
As before, let

f(n’j) =f(n,j)Of(n,j—l)O...Of(n, l)

For each n, let B,= f(n, 1),...,f(n, m(n))]. Some subsequence of
By, B,, ... converges to a continuum B in Y. Now, for each ieN,
fGi, 1)eN,_;(1), so 1€B.

Since, for ieN,

£, m@)(aG, j, 0) = a(i, j, mG,j)) for j<i,

one can check that some subsequence of the appropriate subsequence of this
sequence converges to X?eB. We are done, since if he H(X), then h(B) is a
continuum from h to X2
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Question (P 1353). Suppose X is a homogeneous continuum. Is H(X)

= Y connected? (If X is a simple closed curve, H(X) is connected, although
the preceding argument would not give this.)
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