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ON CONFORMALLY RELATED
CONFORMALLY RECURRENT METRICS
I. SOME GENERAL RESULTS

BY
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1. Introduction. Let (M, g) be a Riemannian manifold with a (pos-
sibly indefinite) metric g.
A tensor field Tﬁ"'i’”jl...jq of type (p, q) on M is called recurrenmt if

By iy _ iy o
(1) Ty g TV P e = TV Py ok g Pty

where the comma denotes covariant differentiation with respect to g.

Relation (1) states that at any point # € M such that T'(#) # 0 there
exists a (unique) covariant vector u (called the recurremce wector of T)
which satisfies the condition

(2) Til"'i”jl...jq,k(“’) = uklﬁlmipjl...jq(w)°

A Riemannian manifold (M, g) is called recurrent (Ricei-recurrent)
if its curvature tensor (Ricci tensor) is recurrent.

According to Adati and Miyazawa [1], an n-dimensional (n > 4)
Riemannian manifold (M, g) is called conformally recurrent if its Weyl
conformal curvature tensor

(3)  OChipx = Bpiji —

o (945 Bare — Gire Bpg + 9o By — gy Bixe) +

R
T (m—1)(n —2)

(9nic 91 — GinIng)

18 recurrent.

If Cpyx,; = 0 everywhere on M and dim M > 4, then (M, g) is said
to be conformally symmetric [3]. Such a manifold is called essentially con-
Sformally symmetric [6] if it is neither conformally flat (Cpy, = 0) nor
locally symmetric (Ej; = 0).

Clearly, the class of conformally recurrent manifolds contains all
conformally symmetric as well as all recurrent manifolds of dimension n > 4.
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The existence of essentially conformally recurrent manifolds, i.e., of con-
formally recurrent manifolds which lie beyond the two classes mentioned
above, has been established in [9]. Namely, using the expressions for com-
ponents of the Weyl conformal curvature tensor and its covariant deriva-
tive (see [9], Lemmas 2-3), one can easily verify the following theorem:

THEOREM A. Let M denote the Euclidean n-space (n > 4) endowed with
the metric g,; given by

(4) 900 do? = Q(do')? + K, do’ do* 2’ d®,
Q = [(exp(ml))ci.p_l'klp]mnw”’

where t,j =1,2,...,m, A, u =2,3,...,n—1, (k;,) 18 a symmeiric and
non-singular mairiz, and (c;,) 18 a symmetric mailriz salisfying

(€1a) # (ki)  amd  Ee,, =1 with (K*) = (k).

n—2
Then (M,g) is an essentially conformally recurrent Ricci-recurrent
manifold satisfying

(6) ka,lm— Clu'jk.ml =0

and its recurremce vector i3 non-zero everywhere on M.

Let (M, g) be an n-dimensional Riemannian manifold whose metric
g need not be definite. If g is another metric on M and there exists a func-
tion p on M such that § = (exp(2p))g, then g and § are said to be conform-
ally related or conformal to each other, and such a change of metric g —g is
called a conformal change. If p = const, then the conformal change of
metric is called trivial or a homothety.

Conformally related conformally symmetric metrics have been studied
by Adati and Miyazawa. Their main result ([2], Theorem 4.1) can be
formulated as follows:

THEOREM B. Let M be a conformally symmetric manifold with positive
definite metric g. If g is a conformally symmetric metric on M such that g
and § are conformally related, then both g and § are conformally flat or the
conformal change of g is a homothety.

Similar problems were studied by Miyazawa for positive definite
conformally recurrent metrics (see [7], Theorem 1.1) as well as for con-
formally recurrent metrics with the same recurrence vectors (see [8],
Theorem 3).

The purpose of the present paper is to investigate (without additional
assumptions) conformally related conformally recurrent metrics. More
precisely, we shall prove the following theorems:
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THEOREM 1. Suppose that M admits two conformally recurremt metrics
gand g conformall_y related by § = (exp(2p))g. Let a; and a; be the recurrence
vectors of C and C, respectively.

Then:

(@) PiC"u;+ P+ 0;C" i = O everywhere on M.

(b) At each given point of M we have C*y, = 0 = C", or @; = a,—4p,
and p"p, = 0, where p; = 0,p.

THEOREM 2. Suppose that (M , g) i8 conformally recurrent. If p is a func-
tion on M satisfying condition (a), then § = (exp(2p))g is conformally
recurrent.

THEOREM 3. Let (M, g) be conformally symmetric. If § is a conformally
symmetric metric on M such that g and § are conformally related, then both
g and § are conformally flat or the conformal change of g is a homothety.

We shall also show that there exist conformally related and non-
homothetic essentially conformally recurrent metrics.

All manifolds under consideration are assumed to be connected and
of class C*. The Riemannian metrics are not assumed to be definite.

2. Preliminary results. In the sequel we shall need the following
lemmas:

LEMMA 1. The Weyl conformal curvature tensor satisfies the following
well-known relations :

(6) Chijk = —'Cihjk = —Chikj = Vjknis

(7) Chii+ Chjis + O = 0, Oy = Ty = €7y, = 0.
LEMMA 2. If ¢; and T;; are numbers satisfying

(8) Ty +6;Ty+¢;Ty; =0,

then each c; is zero or each T,; is zero.
The proof is trivial.
LemMA 3. If ¢;, p;, and B, are numbers satisfying

(9) 1 Bpiji+ Pn Bugjr + Pi Buyji + P Bhi + Px B = 0,
(10) Bhijk = Bjkhi = _Bhikji Bhijk+thki+Bhkt‘j =0,

then each b; = ¢;+2p; 18 zero or each By, 8 zero.

Proof. Suppose that one of the b’s, say b,, is not zero. Then (9) with
l=h=Fk=gq gives b,Byy, =0, since By, =0 = B, and, conse-
quently, B, = 0 for all ¢ and j. Setting k¥ = b = ¢ in (9) and applying
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By, = 0, we get
(11) Pg(Biyjg+ Bgyu) = 0.

Assume p, = 0. Then ¢, = b, # 0 and, therefore, (9) withl =h =g¢
yields ¢,Bg; = 0 since By, = 0. Hence By, =0 for all 4, j, and &.
Setting now ! = ¢ in (9) and using the first equation of (10), we obtain
¢qBnjx = 0, whence By, = 0 for all &, 4, j, and k.

Suppose now that p, # 0. Then (11), in view of the first equation
of (10), implies

(12) Bgijn = Bgju:

But the second equation of (10) yields B + B, + Bgy; = 0, whence,
in view of (12), Byjx; + Bgjii + Bgsr = 0. Applying to By, the condition (12),
we obtain easily B,,; = 0 for all j, k, and ¢. Setting now h = ¢ in (9)
and taking into account B, = 0, we get p By, = 0, which, evidently,
completes the proof.
" LEMMA 4. If ¢;y p;y and Dw are numbers satisfying

(13) Dy +0; Digie + 25 D + Pie Dyy = 0,
(14) Dy = —Dyyy  Dyg+Djy+Dyyy = 0,

Y

then each b; = c;+-2p; 18 zero or each Dy is zero.

Proof. Suppose that one of the b’s, say b,, is not zero. Then, by an
argument similar to that in the proof of Lemma 3, we obtain D, =0
and

(15) pq (Dqu + 'qul) = 0 .

Assume p, = 0. Then ¢, = b, # 0 and, therefore, (13) withl =k = ¢
yields ¢, D, = 0 since D,;, =0 = D,,,. Hence D, =0 for all < and j.
On the other hand, setting I = ¢ = ¢ in (13) and using the first equation
of (14), we get ¢,D,; = 0, whence D, = 0 for all j and k. Now, (13)
with | = ¢ implies ¢,D,; = 0. Thus D,, = 0 for all 4, j, and k.

If now p, # 0, then (15), in view of the first equation of (14), gives
(16) Dy, = Dy

On the other hand, the second equation of (14) implies D,;;, + Dy +
+D,,; = 0, which, because of (16), yields 2D, — D,,, = 0. But the last
result, in view of (16) and (14), gives D,; = 0 for all j and k. Setting now
¢ = ¢ in (13) and applying D,; = 0, we obtain easily p,D; = 0. Thus
the lemma is proved.
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LEMMA 5. Let §y; = (exp(2p))g¢j. Then we have ([6], p. 89 and 90)

k A
an (o = (i + o0+ gm—sta,
(18) Gh‘ﬁk = Ch{jk’
(19) Ry = Ry+(n—2)(p,;—p:2;) +(0"r + (0 —2)D"D,) g4y,

where p; = &;p and p* = ¢*"p,.
PROPOSITION 1. Let g and § be two conformally recurrent metrics on M.
If g and § are conformally related by § = (exp(2p))g, then p,C7y = 0.
Proof. It is sufficient to prove our assertion in the open subset of M

where Ohﬂ'k #* 0.
Differentiating (18) covariantly and using (17), we get

(20)  CPypa = Pyt + 80,0 —20,C* 5. — D" iy — D Oy — 2, CP iy, —
— 0 C% 5+ 9a 0" C* i + 950" O i+ G1a D" 1

where the semicolon denotes covariant differentiation with respect to §.
Since ¢ and § are both conformally recurrent by assumption, rela-
tion (2) implies C*;;, ; = ¢,0*,;, and C*,,., = @,C";;, where a, and @ denote

the recurrence vectors of C and C, respectively.
Hence (20) can be written as

(21) (@ — &) Ohix = IPrC g + 9P Crrj + 952" Cripc +

+ 91 P" Onijr —20,Crijr. — Pn Criji. — PsCrijic — Ps Onite — P Crists
whence, by Lemma 1 and contraction with ¢*, we obtain
(22) drCrijk = ('"’ _3)pr0rﬁk’

where d; = a@; — a;.
Transvecting now (21) with p* we get

(23)  ap, 0y = — oD, C i — 2" 0, Criji, ~ 0: 0. CTijp. —
— 00, Cak — PP C it — 9 T+ 91a T

where T;; = p"p®C,y,.
But (23), by transvection with p*, implies

(24) P°0(0,CT+0,C3) + 2, T + 9, Ty = —a7T,;.

Permuting the indices %, j, ! in (24) cyclically, adding the resulting
equations to (24) and using (7), we get

(dy+2p)) T+ (d +2p,)Ty; + (d;+2p;) Ty; = 0,
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which, evidently, is of the form (8). If, according to Lemma 2, d; = —2p,,
then (22) implies (n—1)p,C"y = 0. Hence Ty = 0 at each point.
Substituting the last result into (24), we obtain

prp’ (pa Ca{jl + ?,Caja) = 0 .

Suppose now that at a given point we have p"p, = 0. Then (23)
implies

(& +2) 2,C7 51 + 42,0705 + 030, O g + 912, Cg50 = 0.

Hence, in view of Lemma 4, we have d; = —3p; or p,C";; = 0.
If 4; = —3p;, then (22) yields p,0";, = 0.

Assume now p,0";;+9,0";; = 0. Then, in view of Lemma 1, we
have p,0"y = p,0";, which, in virtue of p,0%;+p,0;+p,0%; =0,
gives 2p,0"; —p,0"; = 0 and, consequently, 3p,07y; = 0. Thus our as-
sertion is proved.

3. Main results. We are now in a position to prove Theorems 1-3.

Proof of Theorem 1. It is sufficient to prove our assertion at
points where C*;, = 0.
Since p,.0";, = 0, (21) yields

(25) (& +2p,) Onijr. + Pn Oujr + 2i Cragr + P Opitre + 21 Crin = 0,

whence, using Lemma 3, we get @; = a; —4p;.
Hence (25) takes the form

(26) P Crijic + Pi Onajr + 2 Crare + P Onejo — 20, O = 0.

Permuting the indices I, j, k¥ in (26) cyelically, adding the resulting
equations to (26) and using Lemma 1, we obtain easily (a). But the last
result, together with p,C";,. = 0, implies p"p, = 0, which completes the
proof.

Proof of Theorem 2. Assume now (a). Then, by (6), we have
(9 Onaar. + Pi Crizi + D1 Cring) + (Pn Orip + Pi Orapre + 21 C i) = 0,
whence
(27) —4p, Ghij = —2p, Chijk —p" Cijr — Pi Ohljk —D; Cun— P Ghijl .
But as an immediate consequence of (a) we have p (", = 0, which,
together with (27) and (20), yields O, ;+4p, 0"y = C";,,. Hence

C*ia = (a,—4p,) C*;,. at points where C*;;, # 0, which, evidently, com-
pletes the proof.
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Proof of Theorem 3. Since ¢ and C are parallel, we may assume
that O%;, #0 # C"; everywhere. Hence, because of (2), @; = a; = 0.
But, in view of Theorem 1, the last relation implies p; = 0, which com-
pletes the proof.

PrROPOSITION 2. For each n >4, there exist n-dimensional pairwise
conformally related and non-homothetic metrics g, g,, g., g5 such that g satis-
fies (5) and

(i) g, g1 are essentially conformally recurrent,

(ii) go vs recurrent,

(iii) g, 48 essentially conformally symmetric.

Proof. As one can easily verify, in the metric (4) the only Christoffel
symbols not identically zero are

A . 1., n] 1 n) 1
{11}"" _—Z_k Q.a)’ {11}—_2_017 {11 _?Ql’

where the dot denotes partial differentiation with respect to coordinates.
It can be also found [9] that the only components of R;, E;;, and
Chix Dot identically zero are those related to

R,; =n—2+exp(z'), R, = exp ('),
1
Cowm = ("ap— PRy klu) exp (971)-

Moreover, we can easily show that a; = 4; and that condition (a) is
satisfied for p = ¢!, where ¢ is an arbitrary constant. In view of Theorem 2,

the metric §;; = (exp(2¢s4'))g,; is conformally recurrent. C* # 0 every-
where and @, = a;—4p; = (1—4¢)4;.

Hence § is recurrent if and only if its Ricci tensor R, satisfies
(28) Rij;k = EkEij'
In view of (17), (19), p;; = 0, and p"p, = p", = 0, we get

Eﬁ;k = Ry 1 —2p3 By — Py Byj. — s Ry +4 (1 —2) Py 0; 9y -

Thus (28) can be written as

(29) Ry, +2p. By —p; By — pj Ry — . By + (n —2) @, pyp; = 0.

If now ¢ = 1, then (29) is satisfied and the metric g, = (exp(2s'))g
is recurrent. If ¢ = 2, then we have R, , +-2p, R,, —p, By, — 9, B,y —a, B, +
+(n—2)a;p,p, = 3(n—2) # 0. Hence g, = (exp (4z'))g is essentially
conformally recurrent. Finally, if ¢ =}, then & = (1—4¢)é; =0 and
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g9, = (exp(34'))g is conformally symmetric. Since R,,, # 0, g, is essentially
conformally symmetric. This completes the proof.

As an immediate consequence of Theorems 1 and 2, we have the
following

COROLLARY. Let (M, g) be conformally recurrent and p a funciion on M.
Then § = (exp(2p))g i8 conformally recurrent if and only if p satisfies
condition (a). '

Remark. Conformally symmetric manifolds with positive definite
metrics are necessarily conformally flat or locally symmetric (see [4],
Theorem 2). On the other hand, as proved in [5] (see Theorems 2 and 4),
for each g € {1, 2, ..., n —1} there exist essentially conformally symmetric
manifolds with metrics of index g¢.

Theorem 3 deals therefore with a more general class of Riemannian
manifolds than Theorem B. Moreover, it implies Theorem B.

Theorem 3 can be also deduced from Miyazawa’s Lemmas 1 and 2
of [8]. Theorem 1.1 of [7] and Theorem 3 of [8] are consequences of The-
orem 1.
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