COLLOQUIUM MATHEMATICUM

VOL. XL 1978 FASC. 1

GRADIENTS OF BOREL FUNCTIONS
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B. BONGIORNO axo P. VETRO (PALERMO)

In the last years the problem of characterizing functions (of a point
or of a set) having a.e. finite derivatives or having derivatives belonging
to the space L' was studied by various authors (e.g., L. Albano and
N. Fedele, V. Aversa, B. Bongiorno, P. de Lucia, R. Fiorenza, U. Oliveri,
B. Pettineo, P. Vetro, H. Wright and W. 8. Snyder).

In a recent paper [1] we have considered functions defined on an
open bounded subset of R", continuous separately with respect to each
variable, and we have found conditions under which the gradient exists
a.e. and belongs to the space L” for p > 0.

The aim of this paper* is to extend the results of [1] to the case of
Borel functions defined on a bounded Borel set. So our results will cover
also the case of approximate gradient.

1. Notation. We shall denote by R"™ the n-dimensional Euclidean
space, by # = (v, @,, ..., &,) its elements, by ||:|| the norm, by -, ) the
scalar product in R", by K, and R, the positive cones in B and R" (respec-
tively), and by {e;} the canonical base of R".

Moreover, for # € R" and A € R, we shall denote by [, 1] the closed
interval having # a8 a point with the smallest coordinates and #+ 4 as
a point with the greatest coordinates, and for 1 € R’} we put

n
r(3) = (max (4, 6;5) " [ [ <4, 6.
1<j<n ji=1

So for each # € R" and A € R, the number r(4) is equal to the pa-
rameter of regularity of the interval [x, A].

For each X <« R*andse {1, 2,...,n}, u,(X) will denote the s-dimen=
sional Lebesgue measure of X. For a real-valued function f defined on
a set X < R", we shall denote by grad f(x) (grad,,f(»)) the gradient (the
approximate gradient) of f at @.

* This paper was supported by G.N.A.F.A.
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For each interval [»,A4] such that ve X, #+<{4,¢)6eX for
jefl,2,...,n}, and for every p > 0 we put

Fp (@) = |f(@+ (A, e ¢;) —f(@)[P- <4, ep[*".

2. Lemmas.

LevMmA 1. Let E be a u,-measurable subset of R" and let a € (0, 1).
For almost every » € B there ewists c(x) > 0 such that if he(0,c(x)) s
a number fulfilling the ocondition ®+he,e E for some te {1,2,...,n},
then there ewists an tnterval [x, A] having the parameter of regularity greater
than a and such that

o+ (A, 6)6,€E for overy je {1,2,...,n} and h =maxd{a,e).
1<ign

Proof. Let E be the subset of E consisting of the points » fulfilling
the following condition: for every j € {1, 2, ..., n} the set

E(®,j) ={teR,: z+te e E}
is u,-measurable and has zero as a right-hand point of density. It is well

known (see [3]) that u,(B—E) = 0. If © € B, then there exists ¢(x) > 0
such that for every y € (0, ¢(#)) and j e {1, 2, ..., n} we have

mfte(0,7): v+to e B} > (L—a¥-)y,

Let he(0,o(x)) be such that #+he,e EF for some i€ {1,2,...,n}.
Then we have

{te (@™ Vh,h): »+te;e B} 0 for every jef{l,2,...,n}

Let 4 € (a¥™=Vh, h) (j # i) be such that z+ A6, € F and let A be
the vector having A, as the j-th coordinate and h as the ¢-th coordinate.
It is easy to verify that the interval [z, 4] satisfies the required condition.

Let X — R" be a Borel set and let f: X — R be a Borel function.
For any real number % > 0 and natural number m we denote by X,, , , the
set of all points » € X fulfilling the following condition:

|f (@ + he;) - f(@)| < hk

for every h € (0, m™') and for j e {1,2, ..., n} such that 2+ he, € X.
LEMMA 2. X, , , i8 & u,-measurable set.
Proof. Observe that X x (0, m~!) is a Borel set in B**!. Put

B, ;={®heXx(0,m"): s+he;e X} forje{l,2,...,n}

It is easy to see that the function y(x, h) = @x(®+ he;), where px
is the characteristic function of X, is a Borel function. B, ; is a Borel
set, since

Bpn; = {(z, h): p(2, h) =1}.
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Also h~'|f(2+ he;) —f(x)| is a Borel function on B,,,. Let 4,;, be
the projection of the set

{(=, b) € By 52 b7 |f(2+ he;) —f(2)| > K}
onto B". A4, ;, i8 a u,-measurable set (see [2]) and

Xm.k.f = X_jq Am.!.k'

Let now y: X — R be a non-negative u,-measurable function. For
any natural number m we denote by X, ,, the set of all points v e X

fulfilling the following condition:
|f(x + he;) — f(@)] < hy(x)

for every he(0,m™') and for je{l,2,...,n} such that x+he; e X.
LemMA 3. X,, , ;8 & u,-measurable set.
Proof. First step. Let y be a simple function,

1(®@) = D kyox, (@)
»
(where gx is the characteristic function of X,). Then we have
Xm,z.f = y(xpnxm,kp,f)

and we apply Lemma 2.

Second step. Let y be a bounded function and let {g,(»)} be a de-
creasing sequence of simple functions pointwise convergent to y(2). Then
we have

Xazs = vam.a..f

and we apply the first step.
Third step. If y is an unbounded function, then we put
%s(®) = min (x (), 8).
We have
mezof = U Xm,z..f
8eN

and we apply the second step.

3. Existence theorems.

THEOREM 1. If X <= R" i8 @ bounded Borel set and f: X — R i3 a Borel
SJunction, then the following conditions are equivalent:

(i) gradf ewxists a.e. in X.
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(ii) For almost every v € X, for every a € (0,1) and for every p e B,
there emist two positive numbers K, ,(v) and n(x) such that

1) . Fpylzy 2] < K, 5 (2) po ([, A])
holds for all je{1,2,...,n} and for each Ae R} satisfying (Al < n(w),
r(A) > a and v+ (A4, ¢;>¢; € X for every je{l1,2,...,n}.

(iii) For every a > 0, for every p € R, and for every a € (0, 1) there ewist
a u,-measurable set X, « X and two positive numbers M,, ., and 7,
such that

(2) pn(X—X) <o

and

(3) D Fpi([@ny ) < Mo
h

holds for every je{l,2,...,n} and for each finite sequence {[x,, 2,1} of
pairwise disjoint intervals satisfying

(4) r(A)>a, l<t,, wpeX, @+<{e)6eX

for je{l,2,...,n}.
Proof. (i) = (ii). Let # € X be such a point that gradf(w) exists
and is finite. Put

1
H(7) = max(2lgradf(@), 1), K.,(@) =_—H(2).

Let 7(2) > 0 be such that the inequality
(5) f(@+ <A, 6> 6) —f(2)| < H(2)<A, 6,
holds for every A e R" satisfying the conditions
Al < n(®), @+<A,6>6eX for je{l,2,...,n}.
In virtue of (5) we have, for every je {1,2,...,n},
f(@+<A, 6> 6) —F(@)P 1A, 631" P < H? () K4, 6>,
Then, if r(A) > a, we have
Fp ([, A]) < H’(w)!n_l[ Ayepa = K, (@) py ([, 4]).
(ii) = (iii). Using Lemma 2 we have
P (X —Xp 0n ) =0 for m — oo.
Hence for o > 0 there exists m, such that

ta (X "-Xma,ma,f) <o.
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Put X, = X,, s a0nd 7, = (m,)"'. Let I be an interval contain-
ing X and such that the distance between its boundary and X is greater
than 1. Put

1
MG.P.G = -1_1- (md)p.“n (I) .

Then for each finite sequence {[=, 4,1} of pairwise disjoint intervals
satisfying (4) we have

1
D Eys(lons ) < M7 D) Koy 631" < (me)? D pallon, )
h h h
1
< '; (ma)”.un(l) = Mc,p,a'

(iii) = (i). Let Y, be the set of points in which f has an infinite right-
hand upper derivative or infinite right-hand lower derivative with respect
to @;. Since f is a Borel function, Y, is a u,-measurable set; moreover,
in virtue of the Denjoy-Young-Saks theorem, the finite derivative f;,

n

exists a.e. in X — ¥;. Therefore, grad f exists and is finite a.e. in X —(J X;.
J=1
We shall prove, under the assumption of (iii), that u,(Y;) = 0 for every
je{1,2,...,mn}. |
Suppose that there exists j such that

(6) Ua(X;) > 0.
Let 0 < ¢ < }4,(Y,). Then in virtue of (2) we have
(7) pn(¥;NX,) > 0.

Let ae(0,1) be fixed. From Lemma 1 it follows that for almost
every s € ¥;nX, there exists a sequence {[w, 4,]} of intervals such that

r(4)>a, x+{4,,6)6e€X, 12,010, <4,,6;> < (4,, %
for ¢ e fl,?2,..., n},

2M, , . )"’

(8)
[f(@+ <4y, €0 0) —f(@)] > (4, ¢) (u,.m nX,)

Then in virtue of Vitali’s theorem there exists a finite family of
pairwise disjoint intervals {[w;, 4,1} of described type and such that

1
2 tin([ns ) > = i (T;0X,).
h
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At last, from (8) it follows that
D Fo (@ D) > M,y 0
)

which contradicts (3).

THEOREM 2. Let E be a u,-measurable subset of R* and let f: B >R
be a u,-measurable fumction. The finite approvimate gradient of f ewists
a.e. in E if and only if there ewists a sequence {C,,} of closed sets such that

(9) pn (B —EnJCm) =0

and grad(f|C,,) evists and is finite on O,, for every natural m.
This follows immediately from the theorem of Whitney (see [4]).
The following theorem is an immediate consequence of Theorems 1
and 2.
THEOREM 3. Let E and f be as in Theorem 2. The finite approvimate
gradient of f evists a.6. in F if and only if the following condition is fulfilled:
(iii),p, For every o > 0, for every p € R, and for every a € (0, 1) there
exist a u,-measurable set B, and two positive numbers M, , , and v, such that
EBE,cE and u,(E—E,)<c

and inequality (3) holds for every j € {1, 2, ..., n} and for each finite sequence
{[zn, 2]} of pairwise disjoint intervals such that r(4,) > a, |4, < 7., 2, € E,
for each h and x,+ (A, ¢;>6; € B, for each j.

4. Integrability theorems.

THEOREM 4. Let X and f be as in Theorem 1. For each p € R__ the fol-
lowing conditions are equivalent:

(i) gradf e L?(X).

(i)’ There exist a set X — X with p,(X —X) = 0 and a u,-measurable
SJunction o(®): X — R, such that for every a € (0, 1) there exists a positive
constant M, , such that

ZFp,j([w’l’ lh]) < Ma'p
A

holds for each je {1,2,...,n} and for each finite sequence {[w;, 2,1} of
poirwise disjoint intervals satisfying r(k) > a, Al < o(m), o, € X,
®y+ {4y, 6,>6; € X for every h and every je {1,2,...,n}.
(iii)" Condition (iii) holds and the constant M, , , is independent of o.
Proof. (i)’ = (ii)’. Let I be an interval including X and such that
the distance between its boundary and X is greater than 1. Put

(10) Ma,p = %[21)2” flf:lcj(t)lpdl‘n(t)"‘n'*‘.“n(-l)]
j=1 X
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and consider a pairwise disjoint sequence of closed sets {C,} such that
Hn (X _Uom) =0
m

and grad (f|C,,) is continuous for each m. Let 4,, be an open set containing
C,. and satisfying

(A, —0,) < 2-<m+2)/(2‘ max | f,,‘l”+1)

i=1 ZEO

Since grad f is continuous on the compact set C,,, | f, |? is uniformly
continuous on C,, for every je {1,2,...,n}. Let o, be a pomtlve number
smaller than the distance between 0 a.nd the boundary of 4,, and such
that for every =, y € C,, with ||z —y| < o,, we have

|1fz; (@)1P — 1fe, @)IP| < 27+ [, (4,,)  for je{L,2,...,n}.
If {[@,, A4} is & finite sequence of mon-overlapping intervals such
that =, € C,, and ||4;]| < o, for each je {1,2,...,n}, then

(11) Zlf,,(w;.)l’#..([w,.,l,.])< 2( min  |f,, (@)P) pa (04, Ap])+27 "+

zeCpy N [zp, 23]

<Z( min |fzj(w)|p)”n([wh7 ;'h]ﬁom)'l“

zeOpN[Zp. Ay
+max|fzj (@)1P 4 (A — Cpp) + 2~ ™2
zelp,

< Jif P2,

The function
x2(z) = max {2 max |f, ()], 1}
1<i<n

is p,-measurable, so, by Lemma 3, X, , ,i8 a u,-measurable set and
pa (X — L".‘J Xow,1s) = 0.
Put
= (UCm)n(uXm'.x.!)
m m

and let
o(#) = min{o,, [inf{m': © e X, ,,}17'}, @eC,.

Fix a €(0,1). Let {[w,, 4,]} be a finite sequence of pairwise disjoint
intervals such that z, € X, |4l < o(w,), and r(4;) > a for each h and
@4+ <4y, 6,56, € X for each je{l,2,...,n}. From (10) and (11), after
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not difficult computations, we obtain

D asllon D < = (3 s w20 < Mo

(ii)’ = (iii)’. Observe that for every o > 0 there exists m € N such that

tn({eX: o(@)<m™}) < o.
Put
X, =oeX: o@)>m™}, v,=m"', M,,,=M,,.

(iii)’ = (i)’. In virtue of Theorem 1, gradf exists and is finite a.e. in X.
Using the method similar to that in [1] (proof of (y) = («)) we infer that
for every o > 0 there exists a closed set I', « X such that y, (X —I,) <o
and

@ [1OP 0 < Hepto(24 5 @amT+op).

Ty

Since M, , . is independent of o, the required inequality follows
when o— 0 in (12).

THEOREM 5. Let E and f be as in Theorem 2. For each p € R__ the fol-
lowing conditions are equivalent:

(i) grad,,f e L*(E).

(ii)"”" There ewists an increasing sequence {C,,} of closed sets satisfying (9)
and such that, for each m e N, f fulfils on C,, condition (ii)’ and the
constant M, , i3 independent of m.

(iii)"" There ewists an increasing sequence {C,,} of closed sets satisfying (9)
and such that, for each m e N, f fulfils on O, condition (iii),, and the
constant M, , , i8 independent of o and m.

Proof. (i)’ = (ii)’”’. From Theorem 2 it follows that there exists.
an increasing sequence {C,} of closed sets satisfying (9) and such that f|C,,
has a finite gradient on C,. Obviously,

grad (f|C,,) (®) = grad,,f(x) for almost every # € C,,.

Now it suffices to apply Theorem 4.

(ii)” = (iii)”". For every m € N and for every ¢ > 0 put (C,,), = Cpp..

(iii)”” = (i)”’. Using Theorem 4, for every o € R, for every a € (0, 1),
and for every m e N we have

J F10m)ey P dun () < Mop,a  for je{1,2,...,m}.
Cm)s
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But M, , . is independent of ¢. Hence

d[ |(F1Cm)ey (O] Bt () < M 5,

for every je {1, 2, ..., n}, for every a € (0, 1) and for every m € N. More-
over, since grad(f|C,,) () = grad,,f(«) for almost every @ € 0,,, the con-
clusion follows from (9) in virtue of the independence of M, , , from m.
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