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In my paper [2] I have shown that a large part of the classical diffe-
rential geometry is a part of linear algebra, more precisely — of the theory
of modules (see also [1]). Many notions (e.g., the notion of a covariant
derivative, curvature tensor, torsion tensor, etc.) can be formulated and
many theorems can be proved without introducing the notion of a diffe-
rentiable manifold. Thus the algebraic notion of a module seems to be
an adequate tool to investigate many fundamental notions in differential
geometry. The algebraic notion of a module is a common generalization
of various modules appearing in differential geometry, modules of vector
fields, modules of tensor fields, etc.

Of course, the algebraic notion of a module is too general to enable
the formulation of all geometric notions and theorems. In this paper I
define a notion, called differential module, which is less general than the
algebraic notion of a module but is also a common generalization of mo-
dules of vector fields or tensor fields appearing in differential geometry.
Elements of a differential module are functions whose domain is a diffe-
rentiable manifold (or, more generally, a differential space) and whose
values belong to linear spaces. A fundamental property of a differential
module is that it has locally a finite basis.

The definition of a differential module is given in Section 2 (p. 52).
Section 3 treats of modules of tangent vector fields which yield the simplest
examples of differential modules. The main aim of Sections 2, 4, 5 is to
give three methods of construction of new differential modules from the
given ones (Theorems 2.8, 4.7 and 5.3). The first method (restriction of
a module to a subset) is a particular case of the second one (modules
induced by mappings) but it is much simpler and, therefore, it is discussed
separately. Theorem 6.1 shows that the second method is commutative
with the third one (modules of tensor fields). In Section 7 to any diffe-
rential module #” there is associated a fibre space @ such that elements
of #° are identical, roughly speaking, with cross sections in .
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Sections 8-11 are devoted to study covariant derivatives in diffe-
rential modules. The main theorems are 9.3, 10.2 and 11.2 which assert
that each of the three methods of construction of new differential modules
from the given ones permits also to introduce, in a natural way, a cova-
riant derivative in the constructed module, which is uniquely determined
by the given covariant derivatives in the given differential modules:
Theorem 11.3 is a supplement to Theorem 6.1 on commutativity of the
three constructions of modules.

The notion of a differential module and the notion of a differential
space of finite dimension, introduced in Section 3, seem to be convenient
tools in differential geometry. The notion of a differential space of finite
dimension is much more general than that of a differentiable manifold.
It enables to generalize a big part of differential geometry to the case of
spaces more general than differentiable manifolds, in particular to diffe-
rentiable manifolds with boundary. For a systematic course in differential
geometry, based on the notions of a differential module and dlfferentla,l
space of finite dimension see my book [3], to appear.

1. Preliminary definitions. Let 3 be a topological space and let C be
a set of functions (with arbitrary values) defined on M. A function f defined
on a set A « M is said to be a local C-function provided for every peA
there exist a neighbourhood B of p in the subspace A, and a function
geC such that f|B = g|B. In other words, a function f defined on a set
A < M is a local C-function provided there exists an open covering %
of the space A, such that for every set BeZ there exists a function gpeC
with f|B = gz|B. The set of all local C-functions defined on a fixed set
A = M will be denoted by C.

11. If A =« Bc M, then (Cp), = C4. In particular, (C,) = Cy,.

1.2. If o7 is an open covering of M, f is a function defined on M, and
flA eC 4 for every Ae o7, then feCyy.

A set C of functions defined on a topological space M is said to be
closed with respect to localization if C,, = C. For instance, for every A ¢ M
the set C, is closed with respect to localization (see the second part of 1.1).

Let A be an open subset of a topological space M and let peA. A conti-
nuous real function g defined on M is said to separate the point p in the
set A provided

(1) B|B =1  for a neighbourhood B of p

and
(2) ﬁ]Ao =0 for an open set A, such that A U A4, = M.
Hence it follows that B < A.
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Let € be a set of continuous real functions defined on a topological
space M. The space M is said to be €-regular provided for every open set
A = M and for every point peA there exists a function fe € such that
separates p in_A.

Let € be a non-empty set of real functions defined on a set M. Con-
sider M as a topological space with the weakest topology such that all
functions in € are continuous. The set % is said to be a differential structure
on M provided that

(a) the set ¥ is closed with respect to localization, i.e., € = %,;;

(b) the set € is closed with respect to composition with smooth functions,
i.e., if ¢1,...,9,€¢ ¥ and o is a smooth real function (= infinitely diffe-
rentiable funetion) defined on the n-dimensional Euclidean space E", then
the composition

(3) o(Pi(P)y .oy pu(p)) for pe M

is a function in .

1.3. If % is a differential structure on a set M, then € is a linear alge-
braic ring over the field E of all real numbers. € contains all constant real
functions on M. The topological space M is €-regqular. The composition (3)
belongs to € for any ¢,y ..., 9, € and for every smooth function o defined
on an open set O — E™ such that (3) is defined for all pe M.

1.4. If € is a differential structure on M and A = M, then €, is a diffe-
rential structure on A.

By a differential space we shall mean any pair (M, ¥), where M is
a set and % is a differential structure on M ; the set M is then considered
as a topological space with the weakest topology such that all real func-
tions in € are continuous. In the sequel we shall often. say “a differential
space M” instead of “a differential space (M, ¥)”.

If (M, ¥) is a differential space and 4 < M, then (4, %) is also
a differential space called a differential subspace of (M, €). We shall often
say that A is a differential subspace of M. Observe that the differential
subspace A considered as a topological space is then a topological sub-
space of the topological space M. )

If (M,€) is a differential space, then all functions in % are often
called smooth functions on M because they are an abstract analogue of
smooth (= infinitely differentiable) real functions defined on subsets of
Euclidean spaces. | "

The letter F will stand for the set of all real numbers.

Let (M, €) be a differential space. By a wvector tangent to (M, €) at
a point pe M we shall mean any linear mapping v: ¥ — K such that

(4) v(a, ) = v(a) - B(p)+a(p) - 0(f) for all a,pe¥.
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The real number v(a) is called the directional derivative of the function
ae® in the direction v and is often denoted by the symbol d,a. Thus (4)
can be written as follows

(4') d,(a- B) = d,a- f(p)+a(p)-9,f for all a,fe¥.

The set M, of all tangent vectors at a given point pe M is a linear
space.

14. If (M, %) is a differential space, ae® and a|A = 0 for a neigh-
bourhood A of a point pe M, then 0,a = 0 for every ve M,.

Consequently, if functions a,Be¥€ are equal on a neighbourhood of
a point pe M, then 0,a = 0,8 for every ve M,,.

Let (A, ¥,) be a differential subspace of a differential space (M, €)
and let peAd. If ved,, i.e. if v is a vector tangent to A at p, then the for-

mula
v(a) =v(a]d) for ae®

defines a vector v¢ M,. The mapping which assigns ve M, to any ved,
is a linear monomorphism of the linear space 4, into M,. We shall identify
v with 9. After this identification the following proposition is true:

1.5. The set A, of all vectors tangent at pe A to a subspace A of a diffe-
rential space M is a linear subspace of the linear space M, of all vectors
tangent at p to M.

If A is an open subset of M, then A, = M, for every peA.

Let (M, %) and (N, 2) be differential spaces. A mapping f: M - N
is said to be smooth provided aofe € for every ae 2. If f: M — N is smooth
and ve M,, then the formula

w(a) =v(aof) for ae 2

defines a vector w tangent to N at f(p). The vector w will be denoted by
df(v). The mapping
df: U M,—- U N,
peM qeN
which assigns. the vector df(v) to any vector v tangent to M is called
the differential of the mapping f. Note that the differential of a composition
of smooth mappings is the composition of the differentials of the mappings.

Every smooth mapping is continuous.

Let (M, €) and (N, 2) be differential spaces. A one-to-one mapping f
from M onto N is said to be a diffeomorphism provided both mappings
f: M—> N and f*: N> M are smooth. Then (M, %) and (N, 9) are
said to be diffeomorphic.

A differential space (M, ¥) is said to be an m-dimensional differential
manifold provided every point pe M has a neighbourhood A such that A
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is diffeomorphic with an open subset 4 of the m-dimensional Euclidean
space E™. More precisely, (M, €) is an m-dimensional differential manifold
if for every pe M there exist a neighbourhood A of p, an open set O =« E™,
and a diffeomorphism f from (0, &,) onto (4, €4). The symbol & denotes
here the set of all smooth (= infinitely differentiable) functions on E™
and, consequently, &, denotes the set of all smooth functions on the open
set O <« E™

By an algebraic ring we mean in this paper a commutative linear (over
the field E of real numbers) ring with the unit element 1. If C is an alge-
braic ring, then a C-module (or simply a module) is a set #  of elements
v,Ww,U,..., on which there are defined addition V4+We# (V, We#")
and multiplication aVe# (aeC, Ve #") satisfying the well-known axioms

V+W = W4V, (V4+W)+U = V+(W+ ),
if U+V = U+W, then V =W,

a(V+W) =aV+aW, (a+B)V =aV 487,
a- (V) =(a-p)-V, 1V =7V.

A finite sequence W,, ..., W, of elements of a C-module #" is said
to be a C-basis (or simply a basis) of # provided every element We #  can
be uniquely represented as a linear combination W = «'W, with a;eC.
The usual summation convention used here will be also used systematically
in the sequel.

If C is the set I of real numbers, then the notion of an E-module
coincides with the notion of a linear space over E, and the notion of an
E-basis coincides with the usual notion of a basis of a linear space.

It follows from the definition that the set EF of all real numbers is
a subring of every algebraic ring C (identify any real number a with a - 10,
where 1 is the unit element in C). Hence it follows that every C-module
#" can be also interpreted as an E-module, i.e. as a linear space over the
field £ of all real numbers.

Let " and #  be C-modules, C being an algebraic ring. A mapping
L: V— W is said to be C-linear if it is additive, i.e.

L(V,+V,) =L(V)+L(V,) for Vy, V,e¥,
and C-homogencous, i.e.,
L(aV) = aL(V) for aeC and Ve7 .

Interpreting ¥~ and #  as E-modules, we say that a mapping L:
¥’ — W is E-linear provided that it is additive and E-homogeneous, i.e.;

L(aV) =aL(V) for acE and Ve7 .
Suppose that #°,, ..., #",,# are C-modules. A mapping
(5) L: WX co. X Wp—>W

4 — Colloquium Mathematicum XXIV.1
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is said to be C-n-linear (or simply n-linear) if the expression L(W,, ..., W,)
is a C-linear function of each of the variables W,, ..., W,, the remaining
variables being fixed. C-n-linear mappings (5) will often be called C-ten-
sors (or simply tensors). Replacing C by E we get the notion of an E-n-
-linear mapping (5) and E-tensor. The set of all C-n-linear tensors (5) will
be denoted by Lo(# 1, ...,# ,; #). Consequently, Lp(# 1, ...; ¥ ,;¥)
stands for the set of all E-n-linear tensors (5). Both Ly (#"y, ..., # ,; #')
and Ly (# 1y ..., # ;%) are (-modules with the obvious definitions of
addition and multiplication.

The simplest example of a C-module is the ring C itself.

By a linear space we always mean, in this paper, a linear space over
the field K of real numbers.

2. Definition of a differential module. Let (M, ¥) be a differential
space and let @ be a mapping which assigns a linear space @(p) to any
point peM. By a D-field on M (simply a field on M) we shall mean any
function W which assigns an element W (p)e®(p) to any peM. Sometimes
we shall say linear field instead of “field” to emphasize that the values
of W are elements of linear spaces.

As a rule we will not be interested in examining all @-fields on M but
only a ¥-module of certain ®-fields which should be considered to be
smooth. We shall examine mainly these modules W which are closed
with respect to localization, i.e. such that

(1) WV =Wy

(see p. 46). This hypothesis is a precise formulation of the fact suggested
by the intuition that the property “to be smooth” has a local character.

There is no general definition of smooth linear ®-fields in the case
of an arbitrary @. However, such a definition is possible for many spe-
cial @'s. Moreover, we can investigate some operations on modules of
linear fields, whose result is also a module of linear fields, such that when
these operations are applied to modules of smooth fields, the result is
also a module of smooth fields, or — more precisely — a module of linear
fields which our intuition suggests to consider as smooth fields. Con-
structions of this type will be the subject of Sections 4 and 5.

The following theorem yields also an example of such a construction
(the restriction to a subset).

21. If # is a €-module of D-fields on a differential space (M, €)
and A < M, then # 4 is a €, ,-module of (P|A)-fields on A, closed with
respect to the localization, i.e. such that

(2) (WA)A = WA-

Property (2) is a particular part of the second part of 1.1. The exami-
nation that #°, is a € ,-module is left to the reader.
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2.2. For any set %, of D-fields on (M, €), the set ¥~ of all linear com-
binations V = a'W;, where a'c € and W e W, is the smallest €-module of
D-fields which contains #", as a subset. The set ¥y, i8 the smallest €-module
containing #, and closed with respect to localization.

The first part is obvious. The second part follows from the first one
and 2.1 (where A = M).

A finite sequence

(3) Wiy ooy Wy

is said to be a vector basis of a ¥-module #  of ®-fields provided that
(a) for every point pe M the sequence W,(p),..., W, (p) is a basis
of the linear space @(p);
(b) (3) is a ¥-basis of the ¥-module # .

2.3. In order that (3) be a vector basis of a €-module # it suffices
that (a) and the following condition (b’) hold:

(b") every WeW# is a linear combination of the elements (3) with coeffi-
cients in €.

Every vector basis of a ¥-module #" is a €-basis of #” by (b). The
converse statement is not true, in general. A ¥-module %" of ®-fields can
have a #-basis without having any vector basis. On the other hand,

2.4. If a €-module # of D-fields has a vector basis, then every €-basis
of #" is a vector basis of #".

2.5. If (3) is a €-basis of a €-module W of D-fields, if dim ®(p) =m
for every pe M, and if for every pe M and we®(p) there exists a WeW
such that W (p) = w, then (3) i8 a vector basis of # .

The easy proofs of 2.4 and 2.5 are left to the reader.

2.6. If a €-module # of D-fields on M has a vector basis (3), then #~
18 closed with respect to localization, i.e. (1) holds.

Let (3) be a vector basis of #°. It follows from (a) that for any @-field
W on M there exist real functions al,..., a™ such that W = o'W,. If
WeW# ,, then these real functions are in %, and, consequently, We#"
which proves (1). In fact, for every point p e M there exist a neighbourhood
A of p and a field Ve# such that V|4 = W|4. By (b), V = ‘W, for
certain functions f'e €. Since V|A = W|A4, it follows from (a) that of|4
= B'|A e € ,. This implies, by 1.2, that a’c €,, = €.

Let A be a subset of the differential space M. If a sequence
Wiy eooy Woe# 4 is a vector basis of the € ,-module %", we also say that
Wiy ..., W, is a vector basis of #~ on A. In other words, a sequence W,,
ory W, is a vector basis on A of a €-module W of D-fields provided that

(a) for every peA, the sequence W,(p),..., W, (p) is a basis of the
linear space ®(p);

(b) the sequence W,,..., W, is a ¥ -basis of the ¥, ,-module # .
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2.7. If (3) is a vector basis on A of a €-module W of ®-fields and if
B c A, then
(4) “71‘B7 ceey ‘Wrm'B

i8 a vector basis of W~ on B.

The property (a) of the sequence (4) follows directly from the pro-
perty (a) of (3). It suffices to prove that (4) has the property (b). Let
Ve# 5. By (a), there exists a unique sequence of real functions g, ..., ™
on M such that V = g'W,|B. We shall prove that the functions ' are
in €5. In fact, it follows from the identity (# ), = # 5 (see 1.1) that
for any point peB there exist a neighbourhood B’ of p in the space B
and a linear field W e # , such that V|B’ = W|B'. By (b), W = a'W, for
certain functions a'e¢ ¥ ,. Hence it follows, by (a), that «'|B’ = g|B’
which proves that e (), = €5 (see 1.1).

A #-module #° of P-fields on a differential space (M, €) is said to
be a differential module (or a module of finite dimension) provided that %~
is closed with respect to localization (i.e., (1) holds) and. #" has locally
a vector basis composed of m fields, i.e., if every point pe M has a neigh-
bourhood A such that there exists a vector basis W,, ..., W, of # on A.
The number m is then uniquely determined, since it is the linear dimension
of all the linear spaces @(p), pe M. The number m is called the dimension
of # and is denoted by dim # .

2.8. If # is a differential module of @-fields on (M, €)and 0 # A < M,
then W, is a differential module on (4, %€ ,) and dim #° = dim #" .

This follows from 2.1 and 2.7.

Theorem 2.8 states that the operation of restriction to a subset yields
a differential module if it is applied to a differential module. In Sections 4
and 5 we shall introduce other operations which yield differential modules
when they are applied to differential modules.

Note the following supplement to 2.5:

2.9. If # is a differential €-module of ®-fields on (M, €), then for
every pe M and for every we®(p) there exists a We W such that w = W (p).

Suppose that (3) is a vector basis of #” on a neighbourhood A of p.
We have w = a'WV,(p) for certain real numbers a'. Since a’W,e # ,, there
exists a We# such that W|B = a'W,|B for a neighbourhood B of p,
B = A. Hence it follows that W (p) = w.

3. Vector fields. Let (M, %) and (N, 2) be differential spaces and
let f: M — N.

By a wvector f-field on M, tangent to N, we shall mean any mapping T
which assigns a vector V(p)eN,,, to any pe M. By the definition,
(1) Vi M- ) N,.

qeN
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In the case where M is a differential subspace of N and f is the iden-
tity mapping, instead of “vector f-field on M, tangent to N”, we say
vector field on M, tangent to N. In the case where M = N, ¥ = 2, and f is
the identity mapping, V is called a tangent vector field on M. By the defi-
nition, a vector field on M, tangent to N (M < N), is a function V which
assigns a- vector V(p)eN, to any pe M. A tangent vector field on M is
a function V which assings a vector V(p)e M, to any pe M.

Any vector f-field on M, tangent to N, is a &-field in the sense defined
in Section 2, p. 50, @ being the function

D(p) = Ny, for pe M.

If V is a vector f-field on M, tangent to N, and if ae &2, then the
symbol 0, « will denote the real function defined on M by

(2) dpa(p) = V(p)(a) = dp,ya  for pe M.

The function 0, a is the directional derivative of a with respect to V.
The symbol 0, will denote the mapping which assigns the function 0, a to
every ae .

A vector f-field V is said to be smooth if f is smooth and 0,: 2 — %,
i.e., if 0, ,ae % for every ae 2. If V is a smooth vector field on M, tangent
to N, then 0,-: 2 - % is an E-linear mapping satisfying the following
formula on the derivation of the product of two functions

(3) dyaf = 0pa- (Bof) + (acf) - 9y  for a,Be 2.

In the case where M < N and f is the identity mapping, formula (3)
has the from

t

(3") dyaff =0dya-f+a-dpf.

Conversely, if f: M —> N is smooth, then every E-linear mapping
from 2 into €, satisfying (3), is of the form 0, for exactly one smooth
vector f-field V. We shall often identify V with d,.. We see that after
this identification the notion of a smooth vector f-field has two inter-
pretations. In the pointwise interpretation it is a mapping of the form (1)
such that 0,-: 2 — €. In the global interpretation it is an E-linear mapping
from 2 into ¥ satisfying (3). Both interpretations are useful.

For any smooth mapping f:M — N the symbol W,(M,N) wil
denote the set of all smooth vector f-fields on M, tangent to N. It is easy
to verify that W,(M, N) is a C-module, because the expression 0, a is
a %-linear function of V. In the case where M = N and f is the identity
mapping, we write W (M, N) to denote the set (the €-module) of all vector
fields on M tangent to N. If M = N, ¥ = 2 and f is the identity mapping,
we write I(M) to denote the set (the €-module) of all tangent vector
fields on M.
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3. If Ve, (M, N) and g is a smooth mapping of & differential space
(M',€’), then VogeT, ,(M', N).
It is obvious that Vog is a vector fog-field. The following identity
is true for every ae 2
Opo @ = (0pa)og,

because for every point pe M,

aVoya(p) = aVoﬂ(p)a = aV(y(p))a = aVa(g(p)) = (0pa)og(p).

Since 0, ae ¥, we have 0, ,ae % for every ae 2. This proves that
Vog is smooth and completes the proof of 3.1.

Assuming ¢ to be the indentity mapping on a subset of M, we get
the following corollary.

32. If VeW,(M,N) and A c M, then V|AeW;, (A, N). If Ve
W(M,N)and A =« M < N, then V|IAeW(A,N). If Ve (M) and A <« M,
then V|AeW (A, M); if, in addition, the set A is open, then V|A W (A),

The last two sentences follow from the first, if f is the identity mapping
on M.

3.3. If f is a smooth mapping from (M, €) into (N, 2), V is a vector
f-field on M, tangent to N, o/ is an open covering of M, and, for every A es/,
the vector f|A-field V|A is smooth, then V' is smooth.

The following identity is true for every a ¢ 2

(9ya)lA = 0y 4a. |
Hence it follows that d,a|A « €, for every A /. This implies, by 1.2,
that d,ae %, = ¢. Thus V is smooth.
34. If VeW(M,N) and g is a smooth mapping from (N, D) into
a differential space (N', 2'), then dgo Ve, (M, N').
The symbol dgo V denotes here, obviously, the composition of the
mapping V: M — (J N, and of the mapping dg: (U N,— (U N,. The

qgeN geN geN’
following identity is true for every ae 2’

allyoVa = aV(aog)’
because for every pe M,
Oagoy (P) = 040(17(1»)“ = OV(p)(aog) = Op(aog) (p).
It follows from this identity that 0, ae ¥ for every ae 2’ which
proves that the vector gof-field dgo V is smooth.

3.5. If A is an open subset of M, then
W, (4, N) = (B;(M, V).
In particular,
) W,(M, N) = (QB/(M’ N))M’

i.e., €-module W,(M, N) is closed with respect to localization.
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If Ve(W,;(M, N))., then there exists an open covering o/ of A such
that for every Be &/ there exists a VzeW, (M, N) with V|B = V|B.
Thus V|B is smooth for every Be «/. By 3.3 (where M should be replaced
by A) V is smooth, i.e. Ve, (4, N).

On the other hand, if We2, ,(4, N) and peA, let f be a real conti-
nuous function which separates p in A4, that is,

gIB =1 for a neighbourhood B of p,
BlA’ =0 for an open set A’ such that 4 VA’ = M.
The vector f-field V defined by

Vig) = B(@)W(q) for ged,
0 for qed’,
is smooth by 3.3 since the open sets A and A’ form an open covering
of M, and the f|A-field V|4 and the f|A’-field V|4 " are both smooth.
Moreover, V|B = W|B. The point peA being arbitrary, we infer that
W e(2;(M; N)),. This completes the proof of the first part of 3.5. The
second part follows directly from the first one.

We say that vector f-fields W,, ..., W,eW,(M, N) are linearly inde-
pendent if, for every pe M, the vectors W, (p), ..., W,(p)eNy,, are linearly
independent in the linear space Ny, .

36. IfW,,..., W, e W,(M, N) are linearly independent and W = BW;
for certain real functions f° on M, then W e I,(M , N) if and only if B*c € for
t=1,...,m.

If fie €, then W e W, (M, N), because W,(M, N), is a €-module.

Suppose that WeW,(M, N), i.e.,, W is smooth. Let pe M. Since
the vectors W,(p), ..., W, (p) are linearly independent, there exist functions
o’ @ such that the determinant of the square matrix

_ VVi(p)(aj) (¢, =1,...,n)
is different from zero. The functions

i = 6Wi(aj)’ Y = oyd
are in ¥ and
(4) Bivi ="

Since the determinant of the system of equations (4) is different
from zero at p, it is different from zero in a neighbourhood A of p. Cal-
culating the functions gt from (4) by the Cramer formula we infer that
B'|A e €,. This implies, by 1.2, that f'c €.

3.7. A sequence Wy, ..., W,e W, (M, N) is a vector basis of €-module
W,(M, N) if and only if it satisfies the condition (a) in Section 2, i.e., if
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for every pe M the sequence W,(p), ..., W,(p) is a basis of the linear space
i)

In fact, it follows from (a) that for any vector f-field W on M there
exists a unique sequence a!, ..., a" of real functions on M such that W
= a'W,;. If WeW,(M, N), then a’e¢ € for i =1,...,n on account of 3.6.
This proves that the condition (b’) in Section 2 is also satisfied.

A sequence V,,..., V,, is said to be a vector basis on a differential
space (M, €) provided it is a vector basis of the €-module W (M), i.e.
Viyeoty V,, e B(M) and, for every pe M, the sequence V,(p),..., V,,(p)
is a basis of the linear space M, (see 3.7). It follows from 3.7 that

38. If V,,..., V, is a vector basis on a differential space (N, Z)
and f: M — N s smooth, then the sequence V,of,..., V,of is a wvector
basis of the module W,(M, N).

We say that a differential space (M, €) has differential dimension m
and we write

dim(M, ¥) = m or, less precisely, dim M = m,

if dimW(M) = m, i.e., if every point pe M has a neighbourhood 4 such
that there is a vector basis on (4, ¢,) composed of m vector fields. If
the differential dimension of (M, €) exists, then it is uniquely determined
by (M, €), because it is the common linear dimension of all linear spaces
M,, pe M. It is not always equal to the topological dimension of the
topological space M.

3.9. In order that dim (M, €) = m it is necessary and sufficient that
dim M, =m  for every pe M

and that one of the following equivalent conditions be satisfied:

(a) for every pe M and ve M, there exists a smooth tangent vector field V
on M such that V(p) = v;

(a’) for every pe M and ve M, there exists a neighbourhood A of p and
a smooth tangent vector field V on A such that V(p) = v.

We say that a differential space (M, €) is of finite dimension if there
is a positive integer m such that dim(M, ¥) = m, i.e., if the set W (M)
of all smooth tangent vector fields on M is a differential module.

4. The module induced by a mapping. Let (M, ¥) and (N, 2) be
differential spaces and let f: M — N be smooth. Let @ be a function
which assigns a linear space @(q) to any point ge N. Then @of is a function
which assigns the linear space @ (f(p)) to any point pe M.

If #° is a 2-module of ®-fields on N, then the symbol #°, will denote
the smallest ¥-module closed with respect to localization and containing
all @of-fields Wof, where We# . By 2.2,

(1) W= Y
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where 7~ is the smallest ¥-module containing all @of-fields Wof, where
Wew'. By 2.2, ¥ is the set of all finite linear combinations

a - W,of, where a'c% and W,e# .

Hence it follows that

4.1. In order that a Dof-field V belong to W, it is necessary and suffi-
cient that, for every pe M, there exist a neighbourhood A of p and a linear
combination o' - W.,of such that

(2) VIA = (a'- W,of)|4, a'c¢€, W,eW .

Let us examine first a particular case.

4.2, If (M, €) is a differential subspace of (N, Z) and f is the identity
mapping, then W, = W 4.

If Ve# ,,, then for every point pe M there exist a neighbourhood
A of p and a @-field We # such that V|4 = W|A. Thus the condition (2)
is satisfied, i.e., Ve ¥ ;.

Conversely, if Ve#7;, then for every point pe M there exist a neigh-
bourhood 4 of p and a linear combination a' - W;of such that (2) holds,
that is,

VIA = (a'|A) - (W,JA), a'eC =Fy, W,e¥W .
Since W, AeW ,, d'lAeb, = (2;) = D, (see 1.1), and ¥, is
a 2 ,-module, we infer that V|4 e # . Since every point p e M has a neigh-
bourhood A4 such that V|iAe# ,, we have Ve# , on account of 1.2.
To formulate the next theorem, let us consider a smooth mapping ¢
from a differential space (M’, €’) into (M, ¥).
4.3. The following identity holds

(3) Yiw = (W 1)g-

For every We # we have Wofe# ,and Wo(fog) = (Wof)oge(#7),.
Thus (#7), is a €’-module of linear Po(fog)-fields that contains all
Po(fog)-fields Wo(fog) with We# and is closed with respect to locali-
zation. Since #7,,, is the smallest ¢’-module with these properties, we have

Wi S (W))y-

Conversely, if Ve(#7),, then for every point p e M’ there exist a neigh-
bourhood A, = M’ of p and a linear combination a'-W,0g such that

Vid, = (¢' - W;09)|4,, d'e€, WeW,.

For every field W, there exist a neighbourhood A; of g(p) in the
space M and a linear combination o - W,; of such that

WilAi = (ai: : Wi,iof)IAi’ ai:e %, Wi,fe L4
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(no summation with respect to ¢). The common part A of the open set 4,
and of all the open sets g '(A4,) is a neighbourhood of p. Denoting by
p the product of the function o’ and of the function a}og, we have

VIA = (ﬂ""' W.io(fog)ld, pYe®€, W, eW .
Thus Ve#,, by 4.1. This proves that
#)g W ioy-
4.4. For every set A < M,
Wipa = (#))a.

This follows directly from 4.3 (where ¢ is the identity mapping from A
into M) and from 4.2 (where M and N should be replaced by 4 and M,
respectively).

4.5. If W,, ..., W, is a vector basis of the Z-module #", then W,of, ...

..y W,0f is a vector basis of the €-module #y. Thus Ve W, if and only if
V = a* - W,of for certain functions a'c €.
Let 7" denote, as on p. 56-57, the €-module of all linear combinations

V =a"-Wof, where a’c% and W;e# .
Since W, = BiW; for certain functions e 2, we-have
(4) V =y W,

where ' = a'- (Blof)e €. Conversely, every linear field (4), where y’¢ &,
belongs to ¥". Thus ¥  is the set of all linear combinations (4), where
v ¢ €. Since elements W,of(p),..., W,of(p) form a basis of the linear
space Pof(p), the sequence W,of,..., W,of is a vector basis of ¥ .
On the other hand, #, = ¥ 3, = ¥ by (1) and 2.6, which completes the
proof of 4.5.

Theorem 4.5 is a particular case of the following theorem :

4.6. If W,, ..., W, is a vector basis of the 2-module # on a set B < N,
and if A =« M, f(A) = B, then

(5) W.ofl4,..., W,ofl4
is a vector basis of the €-module #, on the set A.

Replacing in 4.5 f by f|lA, N by B, #" by # 5 and M by A, we infer
that (5) is a vector basis of the ¥ ,-module (# ), . On the other hand,

denoting by g the identity mapping of B into N we have, by 4.2, #', = #,
and, consequently, by 4.3 and 4.4,

#eha = W ohna = Yoopa =Wina = #ya-
This proves that (5) is a vector basis of (#7),, i.e., of #°, on the set 4.
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4.7. If dim ¥ = n, then dim ¥, = n. Thus if W is a differential
modulus, so is W.

If dim #° = n, there exists an open covering # of the space N such
that for every Be # there is a vector basis W,, ..., W, of the 2-module
#" on the set B. The sets A = f~'(B), where B¢%, form an open covering
&7 of the space M. By 4.6, for every set A </, the sequence (5) is a vector
basis of the #-module %7, on the set A. This proves that dim %", = n.

4.8. If the differential space (N, D) is of finite dimension, and %
= W(N), then ¥, = W,(M, N).

In other words, under the hypotheses of 4.8,
(6) W(N), =W,(M, N).

Let ¥ has the same meaning as on p. 56-57 or in the proof of 4.5.

If Vev, ie, if

V =d - W,of, where a'c¥ and W;e ¥,

then for every ye 9

(7) dyy = a' - (B, y)of,

because for every point pe M
dyy(p) = ai(P)awimp))V = ai(.p)alViV(f(P))-‘

It follows from (7) that 0, ye % for every ye 2, i.e., that the vector
f-field V is smooth. In other words, ¥ < W,(M, N). Hence ¥#; = ¥,
c (QB,(M y N))ar = W;(M, N) (see the second part of 3.5). Consequently,

%, < W,(M, N).

Suppose now that VeW,(M, N). For every fixed point poe M there
exists an neighbourhood 4 of ¢, = f(p,) such that there is a vector basis
Wiyoooy W, of W(N) on A. The set A’ = f~!(4) is a neighbourhood of
P, and

VA" = a' - W;o(f|4')
for certain functions a‘¢ €, (see 3.8). Let a function fe 2 separate the
point ¢, in the set A, i.e.
BB =1 for a neighbourhood B of ¢,, Bc 4,
plA, for an open set 4,y A U 4, = N.

Let

_ B(@)Wi(q) for ged
W.(q) = ! ’
O fOI‘ qEAO'
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By the definition, W,e W (N). The set B’ = f~!(B) is a neighbourhood
of p,, B’ = A’, and

(8) VIB' =y"- W;o(fIB'),

where »' = a'|B’. So we have proved that every point p,e M has a neigh-
bourhood B’ such that V|B’ is of the form (8), where y'c €5, and W e #".
Hence Ve #",. This proves that

4.9. If (M, %) is a differential subspace of the differential space (N, 2)
of finite dimension, then

(9) W(M) <« W(M, N) =W(N),,-.

For every WeW (M) and for ebery point pe M there exist a neighbourhood
A of p in the space M and a Ve W (N) such that

(10) VIMeW(M), VA= W|A.

It is obvious that W (M) < W(M , N). The identity W (M, N) = W (N ),
follows from 4.8, where f is the identity mapping on M (see also 4.2).

Let WeW (M) and pe M. Since WeW(M, N), it follows from (9)
that there exists a V,e¢IB(N) such that W4, = V,|A, for a neighbourhood
A, of p in the space M. Let A, be an open subset of the space N, such
that M N 4, = A,, and let fe« 2 be a function separating p in 4,. The
field V = gV, and the set A = M N B, where B is a neighbourhood of p
such that g|B = 1, have the properties required in the second part of 4.9,

5. Modules of tensor fields. Let (M, ¥) be a differential space.

In this section we shall consider n-+1 fixed functions @; (j =1, ...
..., 7 +1) which assign linear spaces @;(p) to any pe M. We shall also
examine n -+ 1 fixed ¥-modules #7; (j = 1, ..., n+1). Elements of #°; are
@,-fields.

The letter @ will now denote the function which assigns, to every
pe M, the linear space

(1) D(p) = Ly (P1(P)y -y Do(P); Drsy (D))

of all E-n-linear mappings of the product @,(p) X ... X D,(p) into D, ,(p).
Therefore a @-field on M is now a function which assigns, to every point
pe M, an E-n-linear mapping (an E-tensor)

(2) L(p): D1(p) X ... X Du(p)—~> Py (D).
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Linear fields of this kind will be called tensor fields. 1f L is a ®-field (2),
then the symbol L’ will denote the function which assigns, to any
Wie# 'y, ..., W,e#,, the function L'(W,,..., W,) defined on M by

(3) LWy, ..., W) (@) = L(®)(Wi(p), ..., W,(p)) for pe .

By the definition, L'(W,, ..., W,) is a @, ,-field. Let #" denote the set
of all @-fields L such that

(4) L'(Wy .., W)e# ',y for all Wiyew,,..., W, e#,.
In other words,
(5) Lew if and only if L'eQu(# 1, ooy W 0s Wat)s

ie., if L' is a ¥-tensor, L': #" X ... X W, > W# 1.
5.1. If the €-module W, , is closed with respect to localization and A is
an open subset of M, then #~ , is the set of all (P|A)-fields L such that

(6) L'(Wyy ooy W)e(# 1)
for arbitrary linear fields
(7) Wie# Vayeees Woe(# )4
If Le# , and (7) holds, then for every point peA there exist a nei-
ghbourhood B of p in the space A, a ®-field Le %", and fields
(8) WeeW s, .l Woew,
such that L|B = L|B, W,|B = W,|B,...,W,|B = W,|B. Thus, by (4),
L'(Wyy ooy, WIB =L (Wyy ..y, W) Be(W pi1)i-
This proves (6).

Conversely, if L has the property (6) and p is any point in 4, let
fe € be a function separating the point p in the set A, that is,

(9) pIB =1 for a neighbourhood B of p,
(10) BlA, =0 for an open set 4,, A U A4, = M.
Let
B(q)L(q) for ged,
0 for gqeA,.
Since L|A = BL and L|4, = 0¥, , we have
L'(Wyy ooy WA = BL (WA, ...y W A (W 1) a5
L'(Wiy ooy WA = 0e(W 1) 4,
for W,e#y, ..., W, e#",. This proves that, by 1.2,

(1) L' (Wi, eeo, W)e(# i)y =Wy for Wie 'y, ..., Woe W',
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It follows from (11) that Le %", and from (9) that L|B = L|B. Since p
is an arbitrary point in A, we infer that Le # .

5.2. If the €-module #, ., is closed with respect to localization, then
the €-module # 1is also closed with respect to localization.

This follows directly from 5.1 where A = M.

53. If #°y, ..., W ., are differential modules, then # is also a diffe-
rential module. If

dim ¥, =m,, ..., dim¥#, ., =m,,,,
then
dim# =m,...m,,.

Woe shall prove 5.3 only in the case n = 2 to simplify the notation.
It will be evident how to generalize the proof for an arbitrary .

By 5.2, it suffices to prove that if, for an open set A = M, there
exist

a vector basis Wy,..., W,, of #7, on the set 4,
a vector basis W',..., W, of #°, on the set 4,

and a vector basis W', ..., W, of #; on the set 4,

then there exists a vector basis of #~ on 4, which is composed of m,m,mg
fields.
Let LL" be a (®|A)-field such that for any pe A

L7 (p): @1(p) X Py(p) —> Py(p)

is a bilinear mapping and
L (p) (Wi(p), Wi (p)) = 887" (p),

where &, and ¢} are the Kronecker symbols.

Such E-tensors Ly"(p) (1 =1,...,my, r =1,...,my, k = 1,...,my)
exist and form a basis of the linear space @(p) = QE((DI(p), Dy(p); cbs(p)),
i.e., the fields L:" satisfy condition (a) in the definition of a vector basis.

If We(#,), and W' e(#,),, then W = o'W; and W = /W, for
certain functions o', e €.

Thus

Ly (W, W) = a'f'W, (W) 4.

This implies, by 5.1, that L;"e# .
It follows from the property (a) that any (®|4)-field L can be uniquely
represented in the form

. — k l,r
L = al.rLk ’
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where af , are real functions on A. If Le #", then of .« € ,, since L(W;, W)

= of W', L(W;, W/)e(#7),, and the W,” (k =1, ..., my) form a vector

basis in (#7),. This proves that the fields L;" have the property (b) in

the definition of a vector basis. Thus they form a vector basis for ¥ .
We shall now examine properties of the ¥-module

(12) W= 8eW 1y ooty Was Wata)
of all €-n-linear mappings (%-tensors)
(13) L: W X oo XW =W oir-

54. If Le W'y WieW s, ..., WoeW ,, if, for & positive integer j, < m,

there exists a vector basis V., ..., V, of the €-module #; on a neigh-

bourhood A of a point p, if the €-module #; is closed with respect to the
localization and if W, (p) = 0, then

L(W17 MR | TVn,)(p) = O‘

Let us assume, for simplicity, that j, = 1. We have W,|4 = &'V,
a'e €. Let fe ¥ separate the point p in the set A, i.e., # has properties
(9) and (10). The formula

- B(q)Vi(q) for geA,
Vilo) = lO for qeA,

defines a @,-field ¥, which is in #7,, because V, A = pV,e(# 1), Vild,
= 0e(#71) 4,, the sets A, A, form an open covering of M, and the module
#", 1s closed with respect to the localization (see 1.2). The formula

(g — B(g)a’(q) for geA,
0= 0 for ge4,

defines a function o'¢ ¢. Let W, = p2W, = o'V,. Since W,(p) = 0, we
have a'(p) = 0 and, consequently, a‘(p) = 0 for every i. Since f(p) = 1,
we get

E(Wyy .oy W,) (9) = B@IE(Wy, ..., W,) (p)
=E(Wy, Way ..., W,) (0) =E(@ iy Way ooy, Wo)(p)
=@ (P)E(Vsy Way ..., W,) = 0.

5.5.If #'y, ..., %, are differential modules, e W', pe M, W;, W;e#’;
and W;(p) = W,;(p) for j =1,...,n, then

E(Wy ..., W,)(p) =&(W,, .., W,) (p).
This follows from the identity
LWy, ..., W,)(p)—L(W,, ..., W,) (p)
=L(W,—W,, Wy ..., W,) (D) +L(W,, Wo—W,, ..., W,) (p)+
toe FEWyy oo, Wy, W —W,) (), '
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because all terms on the right-hand side of the equation are equal to 0
by 5.4.

It follows directly from the definition that the canonical mapping
from ¥ into #"’', which assigns L'e #”' to Le#", is ¥-linear. We shall
prove that

6. If Wy, ..., ", are differential modules, then the canonical mapping
i8 one-to-one and onto W', i.e., it i8 & module-isomorphism from # onto #"'.
Suppose that Le#”, Lew and £ = L'. If w;eD;(p) (j =1,...,n,
pe M), let W;e#"; be a @, field such that W,;(p) = w; (see 2.9). By (3),

(14) L(p) (wyy ...y w,) =L(Wy, ..., W,) (D).

Equation (14) determines L(p) uniquely for every pe M. Thus for
every Lie W' there exists at most one Le#  such that £ = L'.

On the other hand, if Ze #” is given, equation (14) defines an E-n-
-linear mapping

L(p): @1(p)X ... XDy (p)—> D,,(p)

for every pe M (the right-hand side of (14) does not depend on the choice
of the fields W;, j =1, ..., n, on account of 5.5). Thus (14) defines a ®-
-field L. It follows from (14) that L’ = £, which proves at the same time
that Le# .

The canonical isomorphism mentioned in 5.6 allows to identify (under
the hypothesis that ¥, ..., #°, are differential modules) any Le %~ with
L' e #'. The identification is very convenient in practice. We shall treat L’
as another interpretation of the @&-field L and, as a rule, we shall omit
the sign " at the symbol L. In other words, every ®-field Le # on M will
be often interpreted as a mapping (%-tensor)

LeQo(W 1y ooty W3 W nt)
which assigns to any linear fields W,e# ', ..., W,e# ", the linear fields
(15) LWy, oo, W)e# ',y
defined by
(16)  L(Wy,..., W) (p) = L(p) (Wi(p), ..., W,(p))] for pe M.

We see that, after the identification, the notion of a tensor field
Le# has two interpretations: pointwise and global (similarly to the
notion of vector field — see p. 53). In the pointwise interpretation L is
a function which assigns the E-n-tensor (2) to any pe M. In the global
interpretation L is a %-n-tensor with properties (15) and (16).

In consequence, we shall assume that

(17) W = Qe (Wyy oo, W s Wosr).
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Using the convention (17) we can formulat.e Theorem 5.1 as follows
(18) 2?((W1)A7 cey (W0) a5 (Wn“)A) = (Q‘K(WU vy Wi Wn-{-l))A-

6. A commutative theorem. In Sections 4 and 5 we have defined two
methods of construction of new differential modulus from the given
differential modulus (see 4.7 and 5.3). In this section we shall prove that
they are commutative — see Theorem 6.1 below.

Let (M, %), @;,, #;(j =1,...,n+1), D, # have the same meaning
as in Section 5 (see p. 60-61). Suppose that #7,, ..., #", ., are differential
modules and that f is a smooth mapping of a differential space (M’, €’)
into (M, ¥).

Applying the construction described in Section 5 to the differential
C-modules #°y, ..., # ,,, we get the differential #-module

(1) Beg(# 1y eoos Wy #nia)

whose elements in the pointwise interpretations are linear ®-fields L
on M such that

(2) LWy, ooy W)Wy for Woe Wy, .o, Woe W .

Applying the construction described in Section 4 to the differential
module (1) we get the differential €’-module

(3) LW 1y ooy Wi Wn+1)f

whose elements are linear (®of)-fields on M'.
On the other hand, applying the construction from Section 4 to the
€-modules #7,, ..., #,,, we get the differential ¢’-modules

(4) Wl,/’ cery W’n+1,/;

the elements of #7; ; are linear @0 f:fields on M’. Applying the construc-
tion from Section 5 to the differential #’-modules (4) we get the diffe-
rential €’-module

(5) 2?'(W1,ﬂ ceey Wn,ﬁ Wn+l.f)

whose elements, in the pointwise interpretation, are linear (®o f)-fields L
on M’ such that

L(Wl,...,Wn)eWn+1', for WieW '\ jyooey Woe Wy y.
6.1. The following identity is true
(6) Le(W 1oy Was W)y = LW ipy oo W15 Wangrp) -

To simplify notation, we shall prove 6.1 only for n = 2. It will be
evident how to generalize the proof for an arbitrary positive integer n.

§ — Colloquium Mathematicum XXIV.1 -
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We have to prove that

(6') LW 1y Was Wa)y = L (W10 Waps #s )
Let A be an open subset of M such that there exist a vector basis
(7) Wiy eoey Wi,
of the ¥-module #, on the set 4, a vector basis
(8) w, ..., W,',',2
of the ¥-module #°, on the set A, and a vector basis
(9) w, ..., 11’;;;

of the €-module #°; on the set A.
We shall prove the identity (6) first under the additional hypothesis
that

(10) f(M')c A.

In this case (see 4.5)
(11) Wiofy ..., Wy, of
i8 a vector basis of the €’-module ¥~ ,,
(12) Wiofy ..., Wyof
is a vector basis of the %¢'-module 77, ;, and
(13) W ofy ey Wy of

is a vector basis of the €’-module %7, ;.
In the proof of 5.3 we have shown that the vector bases (7), (8), (9)
determine a vector basis

(14) Lim (=1,.,my,r =1,..,my k =1,...,m)
of the €-module L, (#",, #',; #73) on the set A. Hence it follows that
(15) Ly of

is a vector basis of the %’-module Rs(W 1y W23 #5);. The construction
of (14) from (7),(8), (9) is of such a kind that if it is applied to the bases
(11)-(13), then it yields the vector basis (15) for the %’-modulus
e (W19 W 5,53 W 5y). Thus (15) is simultaneously a vector basis of both
modules appearing in (6'). Modules having a common vector basis are
identical. Thus (6’) holds.

Now we shall prove (6’) without the hypothesis (10).

Let .o/ be an open covering of the space M by means of open sets A,
on which there exist simultaneously vector bases (7), (8), (9). The class &
of all sets B = f'(A), where A ¢ <7, is an open covering of the space M.
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Replacing in the part of 6.1 just proved the mapping f by f|B (Be%)
we get

Rg(W 1y W a; Wa)llB =2 (#1718 W2,/]B; Wa,/u?);

€p
that is, by 4.4 and (18) from Section 5,
(16) ‘_ﬁw(Wu L&Y WS)I)B = (Q%"(r”/l,h LEWH Wa,/))B-

A (®of)-field L on M’ belongs to the module on the left-hand side of (6’)
if and only if for every Be# the field L|B belongs to the-module on the
left-hand side of (16). Similarly, a (®of)-field L on M’ belongs to the
module on the right-hand side of (6') if and only if for every Be# the field
L|B belongs to the module on the right-hand side of (16). Thus (6’) follows
directly from (16).

7. The differential space of a differential module. Let (M, ¥) be a diffe-
rential space and let @ be, as usual, a mapping which assigns to every
pe M a linear space @(p). Let #  be a differential ¥-modulus of ®D-fields
on M, and let n = dim #".

Let ¢ be the set of all pairs (p, w), where pe M and we®(p). By the
projection of Q onto M we shall mean the mapping n: @ - M defined by

(1) n(p,w) =p for (p,w)e@.

If 4 is an open subset of M and W,, ..., W, is a vector basis of #~
on the set A, then the formula

(2) f(p,q9) = (p,#*Wi(p)) for ped and q = (',...,2") e B

defines a mapping f: A X E"—Q (E" denotes here the n-dimensional
Euclidean space). Each mapping f of the form (2) will be called funda-
mental.

Let # be the set of all real functions a: @ — E such that, for every
fundamental mapping (2), the composition aof: A X E" — E is a smooth
function on the Cartesian product of the differential spaces (A, ¥,) and
(E", &).

Tt can be proved that the set # is a differential structure on the
set ¢. The differential space (@, %) is said to be the differential space of
the differential modulus # . By definition ¢ is a fibre boundle with the
basis M and projection n. The fibre is the n-dimensional linear space.
If (M, €) is an m-dimensional manifold, then (@, #) is an (m + n)-dimen-
sional manifold. '

For every ®-field W on M let W: M — @ be the mapping defined by

W(p) = (p, W(p)) for pe M.

It can be proved that We # if and only if W is a smooth mapping
of the differential space (M, ¥) into the differential space (@, %).
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8. Covariant derivative. Let (M, €) be a differential space, let @ be
a mapping which assigns to every point pe M a linear space @D(p), and
let #~ be a ¥-module of P-fields.

Suppose that for every pe M, for every ve M,, and for every We %~
there is defined an element

(1) V,We®@(p).

If VeI (M) is a smooth tangent vector field on M, then the symbol
V,W will always denote the linear ®-field on M (called the global inter-
pretation of the function (1)) defined by
(2) ViW(p) = VypyW for pe M.

A function V,W of two variables
velJ M, and We#

peM

is said to be a covariant derivative in the ¥-module # if it satisfies con-
dition (1) and condition

(3) ViWe# for every Vel (M) and every We ¥,
if it is an E-linear function of v, i.e.,
(4) VoW =aV,W and V, ,W=VW+V, W

for ackE, v,v,e M,, W ¥,
if it is an E-linear function of W, i.e.,

5) VoaW =aV,W and V,(W+W,)=VW+VW,

for ae W, ve M,, W, e¥#",
and if, moreover, it satisfies the condition
(6) VeaW = 0,0 W(p)+a(p): - V,W for ae¥®, ve M,, We¥ .

By .a global covariant derivative in the €-module #  we shall mean
a function which assigns to every Ve IB(M) and to every We# a ®-field
VyW on M in such a way that (3) holds, VW is a €-linear function of
the variable V, i.e.,

(7) VapW = alp: W and  Vyp p W =V, W+ V, W

for ae¥, V,V,eW(M), Wew,
VyW is an E-linear function of the variable W, i.e.,
(8) VyaW =aV,W and V,(W+W) =V, W4V, W,

for ael, VeW(M), W, W,eW,
and, moi'eover, that it satisfies the following condition

(9) VyaW =0pa-W-Ha-V,W for ae¥, VeW(M), We# .
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It is easy to verify that

8.1. The global interpretation of a covariant derivative in a €-module W
is a global covariant derivative in ¥ .

The following theorem is a partial converse of 8.1.

8.2. If the differential space (M, %) is of a finite dimension, then every
global covariant derivative in % is the global interpretation of exactly one
covariant derivative in W'.

If V)W is defined for every VeI (M) and We#", we define V', W
for a ve M, (pe M) and We# by the formula

(10) VoW = (VW) (p),

where VeI (M) is a vector field such that v = V(p). The vector field V
exists by 2.9. It is easy to verify that properties (7), (8) and (9) imply
properties (4), (5), (6), respectively, under the hypothesis that the defi-
nition (10) is correct, i.e. that the right-hand side of (10) does not depend
on the choice of V.

To show it, observe that for any fixed We %  the formula

Z(V) =V, W (VeWm(M))

defines a ¥-tensor ZeQy (W(M); #°). By 5.6 there exists exactly one linear
field L such that £ = L', i.e. that L assigns to every pe M an E-linear
mapping L(p): M, — ®(p) in a way such that for every Ve W(M)

L(p) (V(p)) = Z(V) (p).
- In other words, if pe M, ve M(p), Vel3(M) and V(p) = v, then
VoW = VyW(p) = L(p) (v).

This proves the correctness of the definition (10).
In the sequel we shall always denote by the same symbol I a cova-
riant derivative in %" and its global interpretation.

9. Covariant derivative on open subsets. As in Section 8, let (M, €)
be a differential space, let @ be a mapping which assigns to every point
pe M a linear space @(p), and let #  be a ¥-module of PD-fields.

9.1. If V is a covariant derivative in #°, A is an open subset of M and
We# is a ®-field such that WA =0, then V,W = 0 for every ve M,,
ped.

Let peA and let fe % separate p in A, i.e.,

BB =1 for a neighbourhood B of p,
fl4, =0 for an open set 4,, A VA, = M.
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Since fW = 0, we have, for any ve M,
0 =0,(W) =0, W(p)+B(p)- V,W.

Since B|B =1, we have 0, = 0 which proves that V,W = 0.

92. IfVisa covariant derivative in W, W,, WoeW ,and W,|B = W,|B
for a neighbourhood B of a point pe M, then V,W, = V ,W, for every ve M.

This follows directly from 9.1.

9.3. Let V be a covariant derivative in % and let A be an open subset
of M. There exists exactly one covariant derivative in W 4, denoted by V|[A,
such that

(1) (V]4),(W|4) = V,W
Jor every peA, ved, = M, and WeW.
Consequently, if ped, ve M,, WeW# ,, WieW# and W|B = W,|B
for a nmeighbourhood B of p, then
(2) (VIA)W = V,W,.
If VeW(A), V,eW(M), WeW ,, Wye#, VIB=V,|B and W|B
= W,|B for an open set B < A, then
(3) (P/A), W)|B = (V; W,)|B.
In particular,
(4) (V/A)y 4 W|4) =(V,W)A
for every VeW(M) and WeW .

If a covariant derivative I'/A in %", has property (1), then it has
also property (2). In fact, under the hypotheses formulated in (2) we
have, by Lemma 9.2 applied to V' /A,

(V/A),W = (V[A)(W,|4).

On the other hand, it follows from (1) that

(V]A)y(Wi4) = V, Wy,
which implies (2).

Identity (2) defines (V'/A),W uniquely (the right-hand side of (2)
does not depend on the choice of W, on account of Lemma 9.2 applied
to V). Thus if a covariant derivative V'/4 with the property (1) exists,
it is unique, viz. it is defined by (2).

On the other hand, it is evident that if the expression (V'/4),W has
property (2), then it has property (1) (replace in (2) W, by W, and W by
W|A4). Then it has also property (3) since under the hypotheses formu-
lated in (3) we have, for every peB,

(VIA)yW(p) = (V[A)pyW = VyWy = Vi (y W1 = V3 Wy(p).
Assuming B = A, V, = V and W, = W in (3) we get also (4).
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Thus, in order to prove 9.3, it suffices to show that the expression
(V/A),W defined by means of (2) is a covariant derivative in #" . The
properties (1), (4), (5) and (6) from Section 8 of '/A follow from the same
properties of ¥V and from (2). To verify the property (3) from Section 8
(where, of course, M should be replaced by A4, and # by # ) let us ob-
serve that for any Ve l3(A) and We# , there exists an open covering %
of A such that for every Be# there are V,e W (M) and W ,e# with
VIB = V4B and W|B = Wg|B. By (3),

(V]A) W)B = (Vi ,Wg)Be# , for every BeH.

This implies, by 1.2, that (V/A), We®# .

The only covariant derivative I'/A determined in #", by V in # will
be called the restriction of the covariant derivative V' to the open subset A.
For simplicity, we write I’ instead of I'/A. In other words, if V' is a cova-
riant derivative in #°, we extend the meaning of the symbol V' ,W to the
case where 1WVe % ;, A is an open subset of M, pe A and ve M,. By the
definition,

(5) VW = V,W,,

where W,e# is any field such that W|B = W,|B for a neighbourhood
B of p.
9.4. If A and B are open subsets of M, B c A, and V is a covariant
derivative in W, then
(V/A)/|B = V|B.

Let us observe that the following theorem can be proved in an ana-
logous way.

9.5. Let V be a global covariant derivative in W~ and let A be an open
subset of M. There exists exactly one global covariant derivative in ¥~ ,, denoted
by V/|A, such that

(VIA)y(WI4) = (V,W)|4

for every VeW(M) and WeW'. If Vel (A), Ve W(M), WeW#', W,e#,
VIB = VB and W|B = W,|B for an open set B = A, then

(V/A), W)IB = (V- W)|B.

The only V' /A4 in # , will be called the restriction of the global cova-
riant derivative I to the open subset A.

If VV is a covariant derivative in #7, then the restriction of the global
interpretation of I to A4 is equal to the global interpretation of the re-
striction of V' to A. This follows directly from the properties (3) and (4)
of the restriction of V.
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10. Covariant derivative induced by a smooth mapping. As in the two
previous sections, let (M, €) be a differential space, @ a function which
assigns to every pe M a linear space @(p), and # a ¥-module of P-fields.
Suppose additionally that f is a smooth mapping from a differential space
(M', €') into (M, ¥).

Generalizing definition (2) from Section 8 we introduce the following
notation: If VeW,(M’', M) (i.e.,, if V is"a smooth vector f-field on M’,
tangent to M), We# ", and V is a covariant derivative in #°, then V W
denotes the linear @of-field on M’ defined by

(1) (VW) (p) = VyppyW for pe M'.

10.1. If V is a covariant derivative in W, the differential space (M, €)
is of finite dimension, VeW,(M'y M) and We W, then V ,WeW,.

Let #Z be an open covering of M such that for every BeZ there exists
a vector basis V,,..., V,, of W3(M) on the set B. The sets A = f~!(B), where
Be#, form an open covering ./ of the space M’'. By 3.8 we have V|4
= a' - V,of|A for certain functions a‘c ¢,. Hence

(VyW)A =o' Vi oy W = a' - (VyW)of|A.

Since V,, We# 5, we infer that (V,W)|Ae(#g)q = (#,) 4. Con-
sequently, V,We#" by 1.2.

10.2. Let (M, %) be a differential space of finite dimension, let W~ be
a differential module of D-fields on M and let V be a covariant derivative
in W. There exists exactly one covariant derivative in #;, denoted by V/,
such that for every pe M'y ve M, and We#

(2) VL(Wof) = VaynW-
Consequently, for every Ve (M') and We W,
(3) Vi(Wof) = Vyy W.

Let # be an open covering of M such that for every Be% there exists
a vector basis of #” on B. The class & of all sets

(4) A =fYB), where Be&,

is an open covering of M’. _
Let pe M’ and ve M,. There exists a set (4) such that peA. Let
Wiy ..., W, be a vector basis of #° on the set B. By 4.6 the ®@of-fields
WoflAd (¢ =1,...,n) form a vector basis of #°, on A.
Suppose that V' is a covariant derivative in #7, such that (2) holds.
It follows from the considerations of Section 9 that the symbol V/W is
well defined for every We# ,, = (#,), and that the symbol Vg, W
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is well defined for every We # 5 (more precisely, we should write here
V'|/A and VB instead of V' and V). By (2),

(5) V{,(WOf|A) = Vdf(L)W for WE WB'

If Wew,, then W|A = da' - W,of|4 for certain functions a‘e €.
Hence

VIW = V(W|4) = V[(a’- W;of|4)

= 0,0’ Wi(f(p))—|~ai(p) - V(W;of|4),
that is, by (5),

(6) VW = 0,0 - Wy(f(p))+ o' (p) * Vg Wy

Hence it follows that if the required covariant derivative does exist,
it is only ome, viz., it is defined by (6).

Assume now (6) as the definition of the symbol V/W. By a simple
calculation we verify that the definition is correct, i.e., that the right-
-hand side of (6) does not depend on the choice of the set Ae¢ & and of
the basis W,,..., W, of #° on B. It follows directly from (6) that the
expression /W has properties (1), (4), (5) and (6) from Section 8 (where
M should be replaced by M'). It has also the property (3) from Section 8
since, by 10.1, for VeIB(M') and A e <,

(PyW)A = 0pa’ - (Wiof|A)+ o - Vapopia Wie(#)) 4
which proves, by 1.2, that V},We# ,. Thus (6) defines a covariant deri-
vative V/ in #7. _
.If We# and pede o/, lot Be#Z be such that (4) holds. Since W|B
= '+ W, for certain f'c¢ €5, we have '
Wofld = (fiofl4) - (Wiof|4).
Assuming in (6) o = ffof|A we get

Vi(Wof) = 0,(8°of) - W, (f(0)+ B (f (D)) Vayy W
= adf(v) ﬂi - W, (f(?))‘l'ﬂi(f(l’)) Vajmy Wi = Vdf(v)W'

This proves (2). And (3) is a direct consequence of (2).

The only covariant derivative P’ in %7, satisfying (2) will be called
the covariant derivative induced by V and f.

Suppose now additionally that (M’, €’) is a differential space of finite
dimension and that ¢ is a smooth mapping from a differential space
(M'",€") into (M’, ¢'). We shall prove that

10.3. The following identity holds

(1) (Ply = P,
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By the definition P/’ is the only covariant derivative in the %''-
-module #7;,, (i.e., in (#7), — see 4.3) such that

(8) V{f”( Wo(fog )) = Vd(/oa)(b)“f

for ve M, pe M"', and We# . Using property (2) for ¥/ and the analo-
gous property for (V’)? we verify that the covariant derivative (V')
satisfies (8) and therefore is identical with F/°’. In fact,

(P (Wo(fog) = (V((Wof)og) = Vigw (Wof)
= Vagago W = Vagporyn WV -

Consider now the case where (M’, ¢’) is a differential subspace of
(M, %).

10.4. If (M, ¥) is a differential space of a finite dimension, #  is
a differential €-module of @-fields on M, V is a covariant derivative in W~
and A = M, then there exists exactly one covariant derivative in W ,, denoted
by V-, such that for every peA, ved,, and for every We ¥

(9) VA4(W|A) = V,W.
Consequently, for every Ve W (M) and We#

(10) Vi (WI4) = (VW)|4.
If A is an open subset of M, then

(11) V4 =V/A.

To get the first part of 10.4 it suffices to assume in 10.2 M’ = 4,
%' = ¢, and f = the identity mapping on A. We recall that #', = ¥,
on account of 4.2. '

If A is open, then V' /A has property (9) by 9.3 (1). This implies (11).

Generalizing the definition on p. 71 we shall call ! the restriction
of V to A. '

10.5. If (M, ) is a differential space of a finite dimension, B < A < M,
(A, €,) is of finite dimension, W is a differential module of D-fields on M,
and V is a covariant derivative in W, then

(12) VE = (V4)B,

This follows directly from 10.3 where f is the identity mapping on 4
and ¢ is the identity mapping on B. |

To simplify notation, we often write V instead of V'’ or V-'.

To illustrate the notion of the covariant derivative I/, let us assume
that (M, ¢) is a differential space of a finite dimension (in particular,
a smooth manifold M with the class % of all smooth real functions on M)
and that f is a smooth curve, i.e., a smooth mapping f: (M', €¢') —> (M, ¥),
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where M’ is a bounded or unbounded interval of real numbers, and %’
is the class of all smooth (= infinitely derivable) real functions on M’
Let V be a covariant derivative on (M, ), i.e., in the differential ¥-module
W = W(M) of all smooth tangent vector fields on M. By 10.2, IV deter-
mines uniquely a covariant derivative ¥/ in # ; =W, (M’ M) (see 4.8).

For every xe M’ let e(x) be the unit vector tangent to M’ at the point
x, 1.e.,

q(w) (@) = Ogya = a'(z) for ae¥’,

where a’ denotes the ordinary derivative of the function a. Thus e denotes
the tangent unit-vector field on M’ that assigns to every xe M’ the tangent
vector e(z)e M. If Wew,, i.e., if W is a smooth vector f-field on M’

tangent to M, then the derivative of W (more precisely: the V-derivative
of W) is the vector f-field DW defined as follows:

(13) DW = VIW, ie, DW(x) = V!, W for ae M'.

The following properties of W are equivalent:

1° W is a parallel translation on the curve f;

2° V'W =0, i.e., VIW = 0 for every ve M., xe M’;

3° DW = 0. -
The property 2° or 3° can be used as a definition of 1°.

11. Covariant derivative in a module of tensor fields. Similarly as
in Section 5 we shall consider in this section a differential space (M, %),
n+1 functions &; (j =1, ..., n+1) each of which assigns a linear space
®;(p) to any pe M, and n+1 €-modules #7; of ®;-fields (j =1,...,n41).
The letter @ will denote, as in Section 5, the function which assigns, to
every pe M, the linear space :

¢(p) = 8E(¢1(p)’ sy an(l’)’ ¢1L+l(p))7

and the letter ¥~ will denote the ¥-module of all @-fields L satisfying the
condition (4) from Section 5.

11.1. Let V' be a global covariant derivative in # ni=1,..,n+1.

There exists exactly one global covariant derivative V in the €-module
(1) W' =LeW 1y ooty Wi W)

n?

such that for every VeW(M), W, eW# 'y, ..., W, e ¥ ,, and Le#"’
(2) (VpL)(Wyy .oy W,)) = VPP L(Wy, ..., W,))—
—(L(Vy Wy Woyoooy W)+ L(Wy, V3 Woy Way ooy W)+ oo +
+L(Wyy ooy Wy, VRW,)).
The formula (2) defines uniquely a mapping
(3) VyL: WX oo X Wy—>W i
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Thus if a global covariant derivative I/ with the required property exists,
it is unique, viz., it is defined by (2). On the other hand, it is easy to verify
that the mapping (3) defined by (2) satisfies the conditions mentioned
in the definition of a global derivative (see p. 68). Thus it is the required
covariant derivative.

11.2. Let (M, %) be a differential space of a finite dimension, let

Wiy ooy W, be differential modules, and let V',..., V**' be covariant
derivatives in Wy, ..., W .., respectively. There exists exactly one covariant
derivative V in the €-module #" such that .

(4) (VL) (WD), ..oy Wo(p) = Vi (L(Wy, ..., W) —
— (L) (VaW 1 Wa(@)y s Wal@) + ... +
+ L(p) (WilD)s -evy Wouis(p), VoW,))

for every Wye Wy, ..., Woe#,, ve M,,, pe M and LeW .

Applying Theorem 11.1 to the global interpretations of the covariant
derivatives V', ..., "', we get a global covariant derivative in the mo-
dulus (1) which is identified with #” by the convention accepted in Section
5, p. 64. The global covariant derivative in #” is the global interpretation
of exactly one covariant derivative V' in #7, see 8.2. The covariant deri-
vative V' in #  is the only covariant derivative in #" having property (4).

To formulate the next theorem let us suppose that (M, %) is of a finite
dimension, #°,, ..., ¥, ,, are differential modules,

(5) v v

are covariant derivatives in #7,, ey W, +1 respectively, and f is a smooth
mapping from a differential space (M’, ¥’') of a finite dimension into
(M, €). The covariant derivatives (5) uniquely determine, by 11.2, a cova-
riant derivative I in the differential #-module,

(6) W = 8¢W 1y eoisWns Wnp):

By 10.2 the covariant derivative I/ in (6) uniquely determines a co-
variant derivative I’/ in the differential #-module

(7) W} = LW 1y ooy Was 1//n+1)/
such that
(8) V{’(Lof) = Vﬂf(v)L fOI‘ L€ W, Ve M;,, pf M’.

It follows from 6.1 that
(8’) W, = 2@,(%1’1, ..-,Wn,/; Wn+1,/)'
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The covariant derivatives (5) uniquely determine, by 10.2, covariant
derivatives V7, ..., P"*/in the differential €’-modules #°,;, ..., # ., ,
respectively, such that

9) ViI(Wof) = ViyW for WeW;, ve M,,, pe M', j=1,...,n+1.

The covariant derivatives uniquely determine, by 11.2, a covariant
derivative | in the %’-module (7) such that

(10) (Vo) (Wi(D), +.rs Wo(p)) = Vot (L(Wy, ..., W,))—
— (L) (V' Wiy Wa(®)y evny Wa(@))+ ... +
+L(p) (Wi(D), ..., Wosa(D), V2! W,))

for Wye# 'y y.c.y WoeW#pyy Ve My, pe M’ and Le#,. We shall prove
that

(11) VeTp.

In other words, we shall prove:
11.3. Under the hypotheses mentioned, the following identity holds

(12)  (VLL) (Wi(D), ...y Wo(@)) = V2HY (L(Wy, ..., W,))—
— (L) (V5 Wy, Wa(p)y -eny Wal@)) + ... +
+L(D) (WilD)y -y Wasa(®), V3 W,))
for WoeW ' yoocy WoeW, ;yve M, pe M' and Lew ;. Consequently,
(13) P2 (Zof) (Wi eeey W) = (Vage) (Wa(®), -, Wa(p)+

+E(f @) (F5' W1y Wa(D), ..., Wa(D)+
+ oo +E(f(D)) (Wi(D)y ..y Woi(D), Vi'W,)

for WoeW s eooy Woe W,y ve My, pe M’ and Le W .
We shall prove the identity

(14) VIL =v,L (veM,, pe M)

first in the case where L = ZLof, Le #". Let w,e®,(f(p)), ..., w, D, (f(p))
be arbitrary but fixed, and let V,e#",, ..., V,e #°, be such that

Vl(f(p)) = Wy, cery V’n(f(p)) = Wy,.

The linear fields W, = V,ofe#",,,..., W, = V,of e #", ; satisfy the
equations
Wilp) =wyy, ...y Wau(p) = w,.
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Consequently, by (7), (9), (4) and (10),

(VLL) (wyy .y w,) = (VIEOS) (w1, vy w,) = (Vagys) (w1, ..., w,)
= Vi E(Vay ooy V) = (D)) (Phgey Ve Way ooy wa) + 0 +
FE(F(P)) (W15 evny W1y Viy Vi) = VEFYL(Wy, ..y W,)—
— (L(p) (VYW oy way ey W)+ oo +L(D) (0 «eny Wa_yy VIIW,))
= (V,L) (wyy ..., w,).

This proves (14) in the particular case under consideration.
For every Le# ", and for a fixed point pe M’ there exist a neigh-
hourhood A of p, functions a‘e¢ €’ and F,¢ ¥ such that

LA = (¢ - E, 0f)|A
Consequently, for ve M,

ViL = Vi(a' - Liof) = 0,a" - Lo f(p) + ' (p) - Vi(&;of)
= d,a" Lof(p) +a'(p) * VolZyof) = Vy(a* - Eiof) = 7, L.

This proves (14). Since L is arbitrary in (14), (11) is true. (12) is another
formulation of (11), and (13) is a particular case of (12) (if L = Zof,
LieW).

To illustrate Theorem 11.2 let us suppose that (M, ¥) is a differential
space of a finite dimension. Let T be the smallest set such that

1° the numbers 0 and 1 are in 7,

2° it t,...,t,.,¢T (n > 0), then the sequencet = (¢;, ..., 1,,,)isin T.

We shall define, by induction, functions @, on M and modules #", of
@,-fields as follows:

1) @y(p) = E for every pe M and #, = ¥,

2) @,(p) = M, for every pe M and #, = W(M),

3)if t = (t;,...y%,41)€eT, then

D,(p) = LE(¢z1(p), vy Dy (D)5 ¢tn+1(p)) for pe M,

and #, is the %-module of all @,-fields L on M such that L,(W,, ..., W,)
Wy, for Wie#', ..., Wye ¥, (see Section 5 (3)).

It follows from 5.3 (by induction with respect to ¢) that, for every
teT, #, is a differential module.

Suppose that V is a covariant derivative on (M, %), i.e., in the diffe-
rential module #°, = W(M). There exists exactly one function which
assigns, to every te7, a covariant derlva.tlve V' in the differential module
#7, in a’ way such that
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a) V' =0, ie., Vla = d.a for ve M,, pe M and ae¥;

b) V' =V;

¢) if ¢ = (t,...,8,41)eT, then I’ is the only covariant derivative
obtained from P, ..., V»+1 by means of Theorem 11.2.

In the p01ntw1se mterpretatlon, ¥, is the €-module of all smooth
tangent tensor fields on M of type teT.
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