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ON COMPACTIFICATION OF T\-SPACES
BY

L. RUDOLF (WROCLAW)

Wallman proved in [4] that the set of ultrafilters consisting of closed
subsets of a T,-space, with a topology introduced in the usual way, is
a compact T,-extension of this space. This method was used by Bana-
schewski in [1] to obtain compact 7',-extensions of spaces having the so
called Wallman basis (the ultrafilters of the Wallman basis are the points
of this compactifications). By a suitable choice of the Wallman basis,
Banaschewski obtained compactifications for several classes of spaces
such as the Cech-Stone compactification of normal spaces, the Alexandroff
one-point compactification of locally compact T',-spaces, the Banaschewski
compactification of null-dimensional T,-spaces and the Freudenthal
compactification of rim-compact T,-spaces. In this paper, a similar meth-
od is used to construct some compact extensions of 7-spaces.

1. The space 2. Let 2 be a finitely multiplicative family of subsets
of a set X, @ — the set of all ultrafilters of the family %, Q" — the set
of some filters of this family (not necessarilly all of them; filters are well
defined because of the multiplicativity of 20).

Let Q = Q' v Q" and Q, = {£Q: A&}, The points of 2 are filters,
hence (for each £e¢Q) A ~ Be& iff Ae& and Beé, ie.

(1.1) 4 = 4 ~ 25, A, B

Moreover,

(1.2) 2, =0 iff A = 0.

In fact, if A # @, the filter {4} may be extended to a maximal
filter &, i.e. to an ultrafilter £eQ; clearly £¢(2,. The converse implication
is obvious, because @¢E.

Taking the family {Q2,}4q as a subbasis of the family of closed
subsets, we introduce a topology in f2. The sets

Qupo i v Ray Ary ey Apell,

form a basis B for the family of all closed sets in £2.
(1.3) The basis B is finitely multiplicative.
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Proof. Let B,, ..., B;¢B,i.e. B, = Q ATNNT
1

According to (1.1) we have
n [ 7Ilk n
NB=NUL:= U N2, U Qn =02,
k=1 k=174=1 “j (F1yenusin) k=1 Tj (1yesin) gl iy, tel’
lgjkgm.k ]§j/\ =Mmy o

n

where 7' is a finite set and A4,¢2. Thus M B B.

k=1

TuroreEM 1. Q is a compact Ty-space.

Proof. To show the compactness, we must prove that each maxi-
mal centered family B = {B;};» of closed subsets from the basis B
has a non-void intersection.

First we prove that

(1) for each B, — QA, w2 t there exists an integer &k = k(1),
1

- ny
1 <k <n, such that Q A eB.

I.
Suppose, for some By, eB and each k,1 <k < Ny QAZ-“ ¢B. The

set Q2 o belongs to the basis B and B < B is a maximal centered family,
L

thus for each & there exists a By, B such that 'Q,fu ~ By = @. Hence,
) Sk '

gy ity
for each k, 1 <k <n,,Q , ~ B, = 0. Thus, by U 2 ,; = B, ,
¢ A gy F k=1 "1,9 v
iy 'n.to v
we have B, ~ (N B, = 0. By (1.3), N By, belongs to B. But B B,
k=1 =1 " '
'nt
and B < B is a maximal centered family, therefore M By eB. By
k=1 ’

g
By ~ IDOI By = 0, we have By ¢B, contrary to the assumption.

Consider the set & — {4 <: O cB). We shall prove, that

(2) & is an ultrafilter of the family 2.

First, let us see that

(a) & is a filter of the family 2.

Since 2, + @ for each 2, eB, we have 4 -+ @ by (1.2). Thus, by
definition of &, 0¢& Let A, Bef (i.e. Q4, QpeB); then Q, p = 2, ~
~ QpeB (for B is a maximal centered family of sets belonging to the
multiplicative basis B). Thus 4 ~ Be& Finally, let A& (i.e. 2,4¢B)

and 4 <« B, BA. The 2, < Q5 and hence, by the maximality of B,
QpeB, i.e. Be& Thus & is a filter.

(b) & is maximal.
In fact, let Bel and B~ A £ 0 for each Ae& Then Qsn 24
= Op.4 # O for each Q4eB. Thus, by (1), 25 has a non-void intersec-
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tion with all B,eB. Since B is maximal, Q;eB, i.e. Be&. Thus & is a ma-
ximal filter, belonging to Q.

The definition of & implies &eQ,4 for each 2,eB. Thus, from (1)
it follows that &eB, for each B;eB and hence (1) B, o {&}. The family

BB

B has a non-void intersection, which is nothing telse as the compactness
of 0.

0 is a T,-space, for if &, &' eQ and & # &, then there exists an
A such that A <& and Ag¢&”, ie. &e, and &'¢2,; thus the points
£, & may be T -separeted.

(1.4) Q is a T,-space iff 2 = Q.

Proof. A filter £¢02° Q" may be extended to an ultrafilter £*eQ.
If ey, ie. Aek, then Aef* and £*eQ2,. Thus the point & cannot be
T,-separeted from &*, hence 2 is not a T,-space.

Let &, & be two-different ultrafilters from 0 = Q'. Then there
exist & <& and £ <&’ such that & ~ &' = @,i.e. & ¢& and &¢& . Hence
ef’eQS; and E"¢.QE;, §’¢Q§~ and 5”5.(25,,. Thus 2 is a T';-space.

In the sequel we shall assume that the (finitely multiplicative)
family 2 covers the set X. Then, for each point xe X, the non-void family
£, = {AeWU: xeA} (consisting of all A-neighbourhoods of ») is a filter
from £.

Assume that Q7 = {&).x (ie. Q=0 o Q" consists only of all
ultrafilters of 2 and filters of the form &, ze X).

(1.5) Ay oo v Ay =X aff Qq v w82y, =8

Proof. Let 4, ... v 4, = X and Q.

Let & — &, (i.e. & is the filter of neighbourhoods of x). There exists
an integer L such, that zed;, thus EmeQAk = Q__Jl Ve 824

Let & be an ultrafilter. Then there exists an integer & such that
Ay e (for if we have A,¢& for each k, then taking &, <& with the property

n " n

Ap~ &, =0, we have U din~ N &, =9, ie. X~ (& =09, con-
‘ k=1 k=1 k=i

"
trary to kﬂ &, # 0). Thus &efy, and, in consequence, Q = Q4 v
=1

V... £2,,. Conversely, let xelX. Then &eld = 24 v ... v D4, Thus
E,eQ,y, , ie. wedy. This implies X = A v ...u A,

(1.6) Q is a T,-space iff

(i) for each xeX and each AU, if xv¢ A, then there exists a B el such
that xeB and A ~ B = 0.

Proof. Due to (1.4), 2 is a T,-space iff £, is an ultrafilter for each
each zeX.

Now, let &, be an ultrafilter. If x¢ A, then A¢&,. Hence there exists
a Beé&, (thus xeB) such that 4 ~ B = 0.
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Conversely, we must prove that &, is an ultrafilter for each relX.
Let A ~ & = @ for each 2-neighbourhood & of . Now, in virtue of
(i), wed, i.e. Ae&,, whence &, is an ultrafilter.

(1.7) Qis a Ty-space iff Q is a Ti-space and

(ii) for each A,Bel, if A ~ B = @, then there ewists a collection
{Ad1y..., A, By, ..., B}, A, iy Apy Byy ...y, By such that

m n m n
ArnUdr=0, B~A~UB =0 and JAdyv |JB —X
k=1 =1 k=1 I=1

(v.e. 2 is a Ty-space iff Q2 is a T\-space and A is “structurally” normal).
Proof. Let 4, Be2 be disjoint sets. Then Q4nQp=04.p=0,

whence, in consequence of normality of the compact T,-space 2, there
exist disjoint open sets

U=U@R\B), V=U®RB,).
teT el
(B, B, are closed sets from the basis in £2) covering the sets 2, and Qj
respectively, i.e. 2, < U and Q4 < V. But the sets Q2,4 and 24, being
closed subsets of a compact Space, are compact, and therefore we can
choose finite subcoverings of them:

m n
R4 c U( \\Bti) = U,, Qp c ) (.Q\B,j) =V, (Up ~ Vo = 9),
1=1 j=1
of course). The first inclusion implies, in virtue of (1.3), that

™m
g - QA m m Bti S ‘QA m (U ‘QAA) - UQII m QA]‘J
t=1 keK keK
where K is a finite set. Hence D4~ QAI.: = @ foreach ke K, thus .Q,,mfk = 1
and therefore 4 ~ 4, = O. Finally, 4 ~ ((JA4;) = @. Similarly, the

keK
second inclusion implies B ~ (UB,) = @, where L is a finite set.
leL
Moreover,

m n m

@ = Uﬂ M VO = U (Q\Btl) m \ (Q\BT]) = (‘Q\\ QBti) M (Q\ O]_ B‘r])

=1 i=1

= 2\(N B, v N B,).
1=1 7=1
Hence

m n
Q == ﬂ Bti () mB‘rj — UQAA. ) U"QBl'
i=1 =1

keK ' leL

Thus, according to (1.5), (JA4, o UB;, = X.
keK leL
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Conversely, let &, &’¢Q and & # &; thus there exists a &e&’
and a & €&’ such that & ~ & = O (&, & being ultrafilters). The last
equality implies the existence of a covering consisting of the sets A4, ...,

Ay, By, ..., By such that & ~ Apc &~ (Udr) =0, k=1,2,...,m
ke K

and & ~ B, =0, 1=1,2,...,n which means that A,¢&, Bi¢&",
E=1,2,...,m, 1=1,2,...,n Now, &ed\(Q4 v...vQ4) and
g e\ (Qp v .o v Qp ). But {A1q o0ey Ay Byy ooey By} covers the set X,
thU.S, by (1.5), ‘QAl WUges A .QAmu 'QBl Ul 'QBn = 2,

Since [QN\(L4, v ... v Ly, )] [2\(Qp, v ... v 2p)] = ON\(Ly4, v
Uew Ry, v Qpu...ufp)= @, the points &', & may be separated
by open disjoint sets. Thus £ is a T',-space.

In [1] there was given a similar necessary and sufficient condition
for the space 2 to be a T,-space.

2. The mapping @ and the extension 2y. Let us define a map-
ping @: X — Q by @(x) = &.

We introduce in X a topology taking as a subbasis of the family
of closed sets the family 2.

It is easy to check that

(2.1) @ is one-to-one iff X is a Ty -space.

(2.2) & HQ4) = A for each A

Proof. @ '(Q24) c A, for if we®d '(Q,), then ®(x) = £,¢02,, hence
A ek, ane, finally, zeA.

Now, let wed. Then Ae&, = @(x), which means that ®(x)eQ,.
Thus ze® '(2,) — the converse inclusion.

For each B belonging to the basis of X, i.e. for each set of the form
i == Al L R An, where Al, ...,AneQI let B®? = QAI U U 'QAn'

(23) X,c B=A4,v...u A, iff D(X,) = B~

Proof. Let X, =« B and let &e®(X,). Thus & = £, for some zeX,.
Then xeAy, for some integer k, hence &,efy < B

Conversely, let @(X,) = B? and xeX,. Thus ®(x) = E.eB% 1.
£yef)y, for some k. Hence xeA; < B.

(2.4) If Bp=A" v ... v At where ALeA, k =1,2,...,n, then
t?
®(\By) = B ~ (X).

teT teT
Proof. According to (2.3) we have

®(N\B) = D(N\B) ~ ®(X) € NP(B) ~ P(X) =« B ~ P(X).
teT teT teT teT

Conversely, let &e(\Bf ~ ®(X), ie. & = & and &eBy for each ¢
teT

Thus for each ¢ there exists an integer k = k(f) such that & = §$e!2dt.
k
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This implies that zed} = B,. Hence xe(\B,, and, finally, Eed (M By).

tel teT'
(2.5) For any closed sets B,, B, from the basis, if B, < B,,then BY < BY.
Proof. If &eBy, then (e , for some F.
=&
In the case & = &, we have xed) c B, ¢ B,. Hence there exists
an integer ! such that weA;. Then & — £,¢Q 5 < By
i
In the case when & is an ultrafilter, taking & such that £eQ 10 We
“k
have Ajeé. Now there exists an 43 such that A%e£. To show this, suppose
on the contrary that for each I there exists an element &y €& disjoint with
Aj. We get

m m
2
Udi~ Né&, = a,
1=1 1--1
m

whence B, ~ &, = O, where &, = Iﬂlg‘,leé. This leads to a contradic-
tion, for A} ~ &, < Bi~ &, = By ~ &, =@ and simultaneously A} ~
~ &, # O, because of Aje& and §i,€6. We conclude that £eBy implies
EeBy.

(2.6) ®(B)? = B? for each closed set B from the basis.

Proof. We have ®(B) < B? by (2.3).

On the other hand, B? is the minimal closed basic set in Q contain-
ing the set @(B). To show this, suppose @(B) = B{. Then (2.3) implies
B = B, and hence, according to (2.5), BY ¢ B2 Thus B is contained
in each closed set containing @(B). Hence ®(B)? — B,

D

(2.7) D(By ~ ... ~ B = ®(B)" ~ ... ~
sets B,,..., B,.
Proof. Clearly @(B, ~ ... ~ B,) « ®(B,) ~ ... ~ ®(B,) = d(B)" ~

Q

v sew iy D(BR) .

Besides, CD(BI)Qm cee (B,,)D is the minimal closed set F in 0
with the property @ (B,...B,) < F. 1In fact, if @By~ ...~ B,
c 04 v.u .QAm,then, inview of (2.3), B, ~ ... A B, c Aiv...ud,.
Hence (see also (1.3))

(B,,L)Q for any basic closed

Tk

m.ﬁl;‘;‘lc U mAk :Blr\...mlgﬂcx‘ilu...uf{m
k=1 in) k=

for each collection (j,,...,j,). Then, by (2.5), we have 2, p © 24 v

A,
kQ] Tk

oo 82y for each collection (j,, -vy jn). Thus, according to (2.6),

0 2 B noong
@(]fl) M oeee M ¢(Bn) = Bl AN s ]g'n = ﬂ U.Q

kl=j=1

k
Aj.
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m "

—- U mp.c U 2. cQqu...uy

(?1 ..... !") k=1 1/‘ (?1 ..... jn) n A. §
1< 7]‘5\!'/ ]k< ny; k=1 ]1

This proves formula (2.7).

(2.8) &(X)? = Q.

Proof. It is sufficient to show that any non-void open basic set
U=0\(24, v ... v8&4) has a non-void intersection with @(X). From
U+ @,ie. from Q4 v ... v Q,, # 2, we obtain by (1.5) Ay oo, s Ay
—~ X. Thus there exists a point xeX such that x¢ 4, for each k. Then
Ap¢é, = @(x) for each k, which means that @(x)¢2, . Thus @(x)eU,
ie. (X))~ U #0.

Formula (2.2) means that @ is continuous. Formula (2.4) means
that @: X — @®(X) is closed. Thus, if the topology generated by the fa-
mily 2 in X is T, then, by (2.1), the mapping @ imbeds the space X
into the space Q. By (2.8), @ is an imbedding onto a dense subset.

In other words, (2, @) is a compact T-extension of the space X.
We denote it by 2X. This compactification has the properties (2.6)
and (2.7).

Remarks. 1. The family 20 of all closed subsets of a T)-space is
multiplicative, covers X and has the property (i) from (1.5) (because
{x} = {x} for each ze.X). The extension AX, corresponding to 2, is simply
the Wallman extension, described in [3].

2. Let X be a locally compact (but not compact) 7-space, 2A'— the
family of all closed compact sets, 2" — the family of complements of
open sets with compact closure. The family 2 = A" oA’ is multiplica-
tive. Indeed, if 4 &', B, then A ~ Bis a closed subset of the compact

set A, thus 4 ~ B&'; if AeQ[", BN (i.e. the sets X~ A, X\ B are
compact), then X\ A4~ B = (X \4)u (X\B)=X 40 X\B 18
a compact set, thus 4 ~ Be‘l[ On the other hand, the family of open
sets with compact closure is a basis for the open sets in X, thus A" forms
a basis for the closed sets. 2LX is the Alexandroff one- pomt compactifi-
cation ([2], p. 150) of the space X. The proof is -analogous to that of [1].

3. The question of uniqueness of 2X. The extension 2X is mini-
mal with respect to the properties (2.6) and (2.7) in the following sense:
TIIEORLM 2. If (K, ) is a compact Ty-extension of the space X such that
1. {p( p(A) },69[ forms a subbasis for the closed subsets in K,
2 YAy Ao~ A = p(A)E A oA (A Ay, Ay,
then there exists an imbedding /z'h' Q- K for w hwh g0 ® = y.
Proof. 1° The family {lp 5, Etef} £eQ, is the filter of closed

neighbourhoods from the subbasis {y) (A) K o of a point kek.



48 L. RUDOLF

In fact, if & = £,, then xe&, for each & e&,. Therefore p(w)ey(E)
= qp(E‘) and, in addition, each nelghbourhood from the closed subbasis
of the point y(x) is of the form (&)X, For if p(x) ep(A)E, A€, then

vy (@) ey (p(4)%) = 4 (because y is an imbedding map and A is
closed in X), whence xed, i.e. Aek,. Thus, for & — &z, the family

{'y) (&) }5t€5 is the filter of neighbourhoods of the point k — p(x).
If & is an ultrafilter with void intersection, i.e. if Ee\ D(X), then
{1P &) }Etef is a centered family of closed sets in K. K being a compact

space, there exists a point keﬂzp &)
&€

Note that each nelghbourhood of & from {y; )%} 4q s of the form
p(&)E. Indeed, let keyp(A)X. Then, according to property 2 of (K, ),

kep(A)S A p(&)K = =w(4d ~ &%, whence A A & #0O for each §&eé.
Since £ is an ultrafilter, the last inequality implies Aekyie. 4 = 5,

2° Since K is a 7T-space, the point keK, whose existence for eaeh
£ef2 was proved in 1° is uniquely determlned by &. This enables us to
define a mapping ix: 2 > K by ig(&) = k.

3° The mapping ix is one-to-one. Let & # &”. Thus there exists
A €2 such that A& and A¢&”, which implies 4 # &' for each £ ¢&".

Hence y(A4)" 5 p(&') because the sets 4 and &’ are closed in X. Hence

p(A) S ¢y (g~ }E ..» thus the neighbourhood filters {q)(s;)K}E; 5,7{1#(55')3}; .
€ t(

are different and therefore determine different points ix(&’) and i (&),

4° Finally, for each A e, ix(&)ep(A)E A ix(Q) iff £¢Q,. For if
k= ig(&)ep(A)S A ig(RQ), then mK is a neighbourhood of %k, hence
Aef, i.e. EE.QA.

Conversely, let £eQr. Then Aef and, by defmltlon of g,
ix(&)ep(A)E A being one of the &e¢&. Evidently igx(£)eix(2). This is
the same as thp contmulty of ig. Moreover, the mapping ix: 2 — ix(Q)
is closed (ix(Q24) = p(4)% ~ ig(RQ)). By 3° it is one-to-one. Therefore
it is an imbedding. The commutativity (tx0D)(w) = ig (&) = p(x), xe X,
follows immediately from the construction of % for Fe 10 1%

Remarks. 1. There exist compact 7-extensions (K, y) of the space
X such that igx(Q) i K.

Flachsmeyer constructed in [2] a compactification of T,-spaces
(denoted in [2] by (yX, @)) having the properties 1 and 2 with respect
to the family 2 of all closed subsets of X. Let « = {4, ..., A,} be a finite
open covering of X, and let f = A} ~ ... ~ A%, where A% = 4, or A
= XN A4;. Let A be the family of all finite open coverings «, ordered
by set-theoretical inclusion. The points of K are collections {fa}aea for
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which f, = f; for « o p. The points of X are represented in K by collec-
tions {f.}ee4 With non-void intersection.

Now, take a countable set X = {2, #,,...}. Let 4, = {&;¢ X: 7 < n}
be the closed subsets in X and 2 —= {A,},.yv. X is a compact T,-space,
in just defined topology, and thus the spaces X and £ are homeomorphic.

The extension (K, y) has the properties 1 and 2 from Theorem 2,
thus there exists an imbedding ig: Q2 — K. But K p(X) £ O, because
the collection { M 'U},,e 4 Isapoint of K and has a void intersection. Finally,

Uea

by commutativity igo® = y, and since @ is a homeomorphism, we have
(ig0 @) (X) = ig(P(X)) = ixg () = p(X), i.e. 2 is imbedded as a proper
subset of I.

2. The imbedding ix uniquely determined. For let ji: 2 -~ K be
an imbedding with the property jgzo@® = y. Then it suffices to prove
that jg (&) = ig(&) for each §e2\ @ (X). Observe that

i (24) = jr(P(A)?) = j(B(A))ED = p(A)E A jx(Q).

But the subspace 2 @ (X), consisting of ultrafilters of U, is a 7,-

-space. Thus & = szt for each &e2 @(X). Finally,
&geé

(&) = jx (M Q) = Nix(2:) = Nw(E)S ~jx(R) = Nyp(&)" = ik (&)

Ege §pe& §es Egel

(the last equality follows from the definition of igx for £e 2\ @(X)). Thus
(&) = ig (&) for each &eN\P(X).

3. The extension ({2, @) is characterized by the property described
in Theorem 2. To prove the assertion, let (22", @) have also this property.
Then there exists an imbedding i,: 2" — Q such that i,0® = @. Since

ip(£') is a subspace of ©, the family {@'(4)*} .,y forms a subbasis for

the closed subsets in 2’ and the equality @'(4,... A,)" = @ (4,)% ~

Ao D (A,)Y holds for each A, ..., 4,¢A. But 2" &' (X) is a sub-
space of the T')-space 2\ @(X), hence, if (K, y) is an extension of X,
with the properties 1 and 2 from Theorem 2, then the corresponding
imbedding ix: Q' > K is uniquely determined (the proof is analogous
to that of Remark 2). Finally, by Theorem 2, there exists an imbedding
ig: 2 — £’ with the property i, 0@ = @'. But i,0®" = @, thus iy0 150 @’
= @ and igp0iy 0® = @, where i, iy is the imbedding 4y (correspond-
ing to the extension (2, ®)) and igo iy, is the imbedding 4, (correspond-
ing to the extension (£, @)). In consequence of the uniqueness of these
imbeddings, ig = eq and i, = e, (e, and e, being the identity map-
pings of 2’ and £2). Thus i, and 4y, are homeomorphisms and the spaces
2 and £’ are homeomorphic.
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4. If X is a T,-space and 2 satisfies the condition (i) from (1.5),
then 2X is the unique compact 7,-extension of X, with properties (2.6)
and (2.7).

First we prove a

LEMMA. For each ke K \y(X), {k} = (I} iff keig(R2)\yp(X).

Proof. Let k be a closed point, belonging to K> p(X). It is easy
to check that the non-void family & = {4 e2: key(A)%} is a filter of the
subbasis {y(A4%)} 4. Furthermore, & is a maximal filter. To prove this,

take any Be2 such that B ~ A #+ @ for each Ae& Then for each
Ayy..., A,e& we have

pBYE ApA) A (A = p(Brdinen 4) =y(BA A0,
where A — A, ~ ...~ Ayek. It means that the family {p(B)5}o

{'tp = 4 18 a centered family of closed subsets of the compact space
K. Hence
0 #y(B)" ~ ()" < Qw(A)K = {k},
for k is a closed point. This means that {k} = 1,0 ﬂ zp K. whence

key(B )K and, in consequence, Be&. This proves the max1mahty of ¢&.
The ultrafilter & is a point of Q2. By definition of ix, ig(&) = k. Then,
by the assumption, keig(2)\y(X).

To prove the converse implication, observe that
ig (2)\p(X) = ig(Q\P(X)), where O\ &D(X) is a T,-space and ig is
an imbedding. Thus {k} = {£}* for keigx(2)\y(X).

Now, if K is any compact T';-extension of X, with the properties 1
and 2 from Theorem 2, then, by the Lemma, zK(.Q) = K Thus the spaces
2 and K are homeomorphlc
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