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The object of this paper is to answer in the affirmative the follow-
ing question of Wolibner (see [6]):

Does there exist an analytic single-valued function fulfilling the
following conditions:

1. it is a function of Pompeiu-Urysohn type (cf. [5]), i.e. the set S
of its essential singular points is non-void, zero-dimensional and perfect,
and at every point of S the function is defined and finite (hence it is
a continuous function on the whole plane);

2. it possesses a simple pole at infinity;

3. it is univalent (schlicht) in the whole plane (hence it establishes
an automorphism of the whole complex plane).

This problem is also mentioned explicitly in Stoilow’s book [4]
(p. 124-125). The first reference to this question, however, goes back
to Denjoy [1], as far as I know.

We are going to construct a function satisfying these conditions
and mapping a set of singularities of positive measure onto a set of zero
measure (plane Lebesgue measure), both these sets being zero-dimensional.

In § 2 we sketch the construction intuitively. §§ 3, 4 and b give the
technical details. These include a certain principle of “Gebietsstetigkeit”
(§4, Lemma 5) and a principle of “Randstetigkeit” (§4, Lemma 6).
Whether these lemmas, in the particular form I give them, are new, I
do not know; but I am convinced that very similar theorems have been
proved a long time ago.

1. Consider a (multiply connected) domain containing the point at
infinity and bounded by a finite number of smooth (1) Jordan curves,
so that its complement consists of a finite number of “islands”.

() “Smooth” is not really necessary. The reader may take it to mean, say,
twice differentiable, or piecewise analytic, ete.



62 - 7 F. ROTHBER(;ER

It is well known that such a domain can be mapped univalently
onto a slit-domain (Schlitzbereich) leaving the point at infinity fixed.
We may also specify, which is permissible, that the slits should be parallel
to the imaginary axis and that the function should be of the form

) a b
(1) w=z+-+4+=54...
2 <

(with constant term missing) in the neighbourhood of infinity.

We note that we have uniqueness: for each domain D there is just
one function f(z) satisfying these conditions. It can also be shown that
if all the islands are inside the disc || <1, the slits will all be inside the
disc|w| < 2, and 2 is best possible (see § 3, Lemma 2).

We shall consider such mappings and shall construct, by a certain
limit process, a function which

(a) maps the z-plane topologically onto the w-plane,

(b) maps a certain 0-dimensional set of positive measure (plane
Lebesgue measure) onto a 0-dimensional set of 0 measure,

(c) is regular every where else and satisfies (1).

2. The process consists of constructing a sequence of functions
®n(?) mapping n-tuply connected domains (n =1,2,...) onto slit-do-
mains (as specified in § 1), and then taking the limit. Roughly speaking,
take a domain bounded by n islands, something like the water on a map
of Venice (with an ocean around it). Then we dig more and more thin
canals, until, in the limit, we get a zero-dimensional perfect set. We
want it to be of positive measure and limg,(2) to satisfy the conditions
(a), (b) and (c).

We shall first explain it intuitively, taking all limit processes for
granted, and then give the details to justify it, in the next paragraphs.

Let ¢,(2) = #—1/z, which maps the domain |2l > 1 onto a slit do-
main whose slit is = 0, —2 < Y < +2.

Now, suppose ¢,(z) already defined, so that it maps a domain with »
islands (contained in the unit circle) onto a slit domain (fig. 1, very sche-
matic) and satisfies the conditions of the last paragraph, in particular
condition (1). Also, let U, be an already defined e-neighbourhood of these
slits (see fig. 2). For n = 1, we may take ¢ — 1, otherwise the ¢ should
be sufficiently small, say ¢ < 4, /2", where 1, is the length of the shortest
one of the slits; also such as to satisfy (2) below.

Next, cut one of the islands in two by a very thin “canal”, and let
#ni1(2) be the corresponding funetion, mapping the new, (n41)-tuply
connected domain onto a slit domain (fig. 3a and fig. 3b).

In this way, one of the slits will be replaced by a couple of slits nearby,
the other slits being slightly displaced and slightly modified (to justify
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this statement, we shall need a certain principle of “Gebietsstetigkeit”,
see § 4). We shall make the canal so thin that all the new slits are inside
U,. Now let Uy, be an e-neighbourhood of the new set of slits, such that

(2) Unyy © U, and the measure u(U,,,) < 3 u(Uy).

This condition assures that, when n — oo, the slit sets (2) will tend
to a limit set (®) of measure 0. Also, if the canals are sufficiently thin,
the island sets will tend to a limit set of positive measure. It remains
to make the limit sets zero-dimensional.

Let 6, be the largest of the diameters of the islands of ¢, and, simi-
larly, let o, be the maximum length of the slits. It is then sufficient to
place the canals successively in such a way that 4, — 0 and o, — 0. The

(2) Here “slit set’” means “boundary ot the slit domain’’, i.e., strictly speaking
“the set of points on the set of slits”.
(3) “Limit set’” in the sense of definition 1, § 4.
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former is obviously possible, and the latter follows from the fact (to be
shown in § 5) that, by means of a suitable canal, a slit can be replaced
by two shorter ones (of approximately half the length; see fig. 3b). In
order to do both simultaneously, we might proceed thus: first make
a number of canals to reduce the size of the islands, then others to reduce
the lengths of the slits, and so on alternately; then, for a certain sequence
Nyy Mgy Mgy oen W g6 By s Onyy gy Onyy Oy ... With both the 6, and the
o, tending to 0.

Now let f(2) = limg,(2). To justify this construction and to prove
that f(z) satisfies the conditions of the theorem, viz. (a), (b), (¢) of §1,
we need to prove three things:

1. The ¢,(2)’s form a normal family and their inverses ¢, "'(w) also.

2. A certain principle of “Gebietsstetigkeit”.

3. The possibility of reducing the lengths of the slits (“halving
principle”).

The regularity and schlichtness outside the zero-dimensional set
follows at once, and the continuity on this set is easy to show; the same
goes for its inverse, f ' (w).

This set of singularities is a perfect set because it is closed and bound-
ed, and cannot have any isolated points; neither can it be the empty
set, since no regular function can map a null set onto a set of positive
measure, Or vice-versa.

In the sequel we shall need the following well known (cf. [7], The-
orem 6.7)

TOPOLOGICAL LEMMA. In the plane, or in n-space with n > 2, if
a domain which s complementary to a bounded zero-dimensional (closed)
set is mapped topologically (*) onto another such domain, the mapping can
be extended continuously to the zero-dimensional set, giving thus a topologi-
cal mapping of the whole plane. \

3. The normal family #. Let 2 be the family of all (multiply
connected) domains which contain the point at infinity and whose bound-
ary lies entirely within the unit disc |z] < 1.

Let # be the family of all functions w = f(z) which are schlicht
in some — not always the same — domain [De% and which are of the
form (1), viz.,

a b
w = 2+ = |- = = we ey

o

in the neighbourhood of infinity.

() For our purpose, we may assume the mapping to be conformal.
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We note that (1) can be put in a symmetric form, as follows:
(3) if 2->oc0 and w — oo, then

w :
lim— =1 and lim(w—z) = 0.

<

We want to show that # is a normal family.

LeMMA 1. If w = 2+0-+4e2’ 2"+ ... ds schlicht in the unit circle,
but not necessarily holomorphic (it may have one pole), then the “Koebe
constant” becomes equal to §, i.e., if & is a boundary point of the (unit
circle’s) image domain in the w-plane, then |&| > %.

Remark. Here the condition of holomorphism in Koebe’s distor-
tion theorem is replaced by the condition that the second derivative
vanishes at the origin.

Proof (ef. [3], p. 214). The function g(z2) = w/(1—w/&,) is schlicht
and holomorphic inside the unit circle if w = & throughout. We find
that g(0) =0, ¢'(0) =1, ¢"(0) =2/&, so that g(2) = s+at/& 4 ...
Thus, by a well-known theorem, [1/£,| <2 and |&,] > 3.

LummA 2. If f(z) belongs to the family F defined above, and if & 1s
a boundary point of the image-domain f(D) in the w-plane, then |&| < 2,
and 2 is the best possible. In particular, if the image-domain is a slit domain,
then all the slits lie in the disc |\w| < 2.

Proof. Let 2, = 1/z and w, = 1/w. Then, since f(z) satisfies (1),
the function w, = f,(z;) satisfies the conditions of Lemma 1, in parti-
cular, f,(2,) is schlicht inside the unit circle because (by hypothesis on
the domain D) f(z) is schlicht outside. Now, by Lemma 1, |&]| > 1, and
we may put & = 1/&,, and so [£] <2 and the boundary of f(D) lies in
the disc [w| << 2. That 2 is the best possible follows from the example
w=2z—1/z (cf. §2).

Remark. Restricting this function f(2) to the domain outside the
unit circle, we find that |2] = 1 implies |w| <2, and, similarly, the circle
2 =7r (1 <r < oo)is mapped onto some curve with |w| < 2r, Hence,
because of schlichtness,

(4) 2| <r implies |w| <2r (r >1).

Also
(4') lwlzl < |22/ =2 (]z] >1).

Incidentally, letting » — 1 in (4), we find that if z = 0 belongs to
D, then [f(0)] < 2.

LEMMA 3. F is a compact normal family. More precisely, any sequence

fneF is normal in the common part of the respective domains D, ( for n > ny)
and the limit function belongs to F also.

Colloquium Mathematicum XVII. 1 5
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Proof. It follows from (4) that # is bounded, and therefore normal,
in the circle of any radius » (1 < # << co0). As to the neighbourhood of
infinity, the normality of # follows from (4'). Also, from (4'), if f,e#
(and convergent), limf, cannot be a constant, and it easily follows that
limf, satisfies (1) (or (3)).

Let us now consider the family, say # !, of all inverse functions
¢ = f~'(w) where f(z)eZ. Because of (3), they have the same properties
as the functions in #, except that, by Lemma 2, the unit cirele is to be
replaced by a circle of radius 2. Hence:

LEMMA 4. The family F ' of all inverse functions f~'(w), fe#F, is
normal in the same sense as in Lemma 3, and contains all limit functions.

It follows that

The functions ¢,(z) of §1 form a normal family, and their inverse
functions ¢, (w) likewise, and, since they are schlicht and satisfy (1), the
same holds for the limat functions.

4. Gebietsstetigkeit. There is a well-known definition of distance
between closed sets, which annuls only when the two sets coincide. All
we need here, is the corresponding definition of limit of a sequence.

Definition 1. If {F,} is a sequence of closed sets, we define
lim ¥, = F if every neighbourhood of the closed set /' contains almost all
F.’s (“almost all” means “all but a finite number of”) and if no smaller
closed set has the property that every neighbourhood of it contains
infinitely many F#,’s. The sequence is said to be convergent if such a limit
set F' exists.

If 8§, is the boundary of a slit domain (“slit set” for short) in the
w-plane, we shall talk about lim 8, in this sense.

Definition 2. If D, is a sequence of domains, we say that
lim D, = D if:

(a) the complements CD, of these domains converge, limCD, = F,
say;

(b) CD = F,

(¢) D is a domain, i.e., an open and connected set.

It will be better to use the following equivalent definition:

Definition 3. We shall say that lim D, = D (the D,’s being do-
mains, as above) if:

(a) 2D if and only if there exists a neighbourhood U, contained
in almost all D,’s,

(b) if, for any given sub-sequence of the D,’s, D’ iy defined as in (a),
then D' = D,

(¢) D is a domain, i.e., open and connected.
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LemmA 5. Let f,(2), n = 1,2,..., be a convergent sequence of schlicht
functions mapping respectively domains D, onto E,, f.(D,) = E,, and
suppose the D,’s converge: im D,, = D. Then, if imf,(2) = f(z) = constant
and if the f,(z) belong to a normal family (in the sense of §3), e.g., fneF
(and the inverse functions f,*(w) likewise (°)), we have:

(I) f(z) is schlicht wn D,

(II) if f(D)= B, then E =limE,, i.e., f(D) = imf,(D,).

Proof. Statement (I) follows at once from the normality and the
definition of lim D,.. As to (II), let wyeX and let U, be a sufficiently
small neighbourhood of w,. Then, because of normality, we shall have
Uw, < By for almost all n.

On the other hand, if U, < E, (for all n > n,), then g,(w) = f," ()
is normal in U, . But limg,(w) is not a constant, thus limg, (w,) = a # 0.
Now let ¢,(Uy,) = U, (in the z-plane); then, by Koebe’s theorem, each
U, contains a circle C,, with center at ¢,(w,) and the same radius, inde-
pendent of n. These circles converge to a circle ¢ with center at lim g, (w,)
and the same positive radius. Thus ¢ <= D and, by definition, f(C) = E,
so that Uw, = Uy (for almost all n) implies that w,eE.

This settles condition (a) of Definition 3. As to (b), it is sufficient
to replace the sequences {f,}, {D,} by corresponding subsequences. Con-
dition (¢) is obviously satisfied, since / = f(D) and f is schlicht, q.e.d.

We shall now apply this lemma, which says, very roughly speaking,
that small modifications of a domain imply small modifications of the
counter-domain, to the situation in § 2.

Let D be a domain with a finite number of islands within the unit
circle, and let D, be the domain obtained from D by making a thin canal,
of width ¢ through one of the islands (see figs. 3a or 3b). Let f,(2) and
f(2) (both in #) be the (unique) functions mapping D, and D respectively,
onto slit domains the slit sets of which shall be called S, and S respec-
tively. Then, if ¢ —~ 0, we have lim D, = D and, at least for a certain
sequence of ¢’s, limf,(2) = f(2) and so, by Lemma 5, lim§, = §. This
shows that, for any given & we can make this canal so thin that the
slits will only be slightly displaced (less than ), except for one of them
which will be replaced by two slits in its e-neighbourhood.

As to the last part of the construction in § 2, viz., the passage to
the limit, we note that the domains D, corresponding respectively to
gn(2),n =1,2,..., obviously converge and, by Lemma 5 and the To-
pological Lemma, the zero-dimensional set limCD, will be mapped by
lime,(2) = f(2) onto lim&s,, where §, is the slit set belonging to D,,
provided the sequence {g,(2)} converges. Actually, it does, but it is suf-

(°) This hypothesis is redundant, but it saves trouble to assume it.
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ficient for our purposes to replace it by a convergent subsequence, which
is always possible because of the normality.

There still remains the problem of making a canal in such a way
as to cut a slit approximately in half (because we have to reduce the
lengths of the slits also). This will be done in the next section; for this
purpose, a certain principle of “Randstetigkeit” is useful. In the follow-
ing lemma the reader may suppose the arc a to lie on the boundary
of an island; that part of a neighbourhood of a which lies in the domain
and outside the island will be called a half-neighbourhood; more generally,
a half-neighbourhood of « is a region bounded by « and by another
Jordan are.

LEMMA 6. Let f,(2) be a convergent sequence of functions which are
schlicht and holomorphic in a certain (the same) half-neighbourhood of a Jordan
arc a (see fig. 4). If f,(z) maps a onto a straight segment s,, and if, for some
interior point z,, limf,(z,) = f'(2,) # 0 (where f(z) = limf,(2)), then f(z)
will map a onto lims,, and, if t is a point on a, not an end-point, limf, (1)
= f(t). We may add the hypothesis that the counter-domains of the half-neigh-
bourhood are wniformly bounded. (This simplifies the proof, and is suffi-
cient for our purpose).

Sketech of proof. If « is a segment, we may apply the reflection
principle, which puts « into the interior. Then, since normality is assured,
there is no difficulty. Otherwise, we can transform a into
a segment o = ¢g(a), where 2" = g(2), and consider
fulg ()

5. Halving a slit. Let f(2) be one of the functions ¢, (2)
of §2 and let t,,¢, be two points on the circumference
of one of the islands. Then f(¢,), f(t,) will be points on
the corresponding slit. Now let us make an e-canal con-
necting neighbourhoods of ¢, and ¢,, dividing the island
into two new ones, A and B. Thus the slit will be replaced by two slits
a and b (see fig. 3a or 3b). (We only consider mappings belonging to
Z.) Our object is to prove the following

LEMMA 7. An island can be cut in two by a thin canal in such a way
that the two new slits a and b will be approximately half the length of the
original slit, such as in fig. 3b.

The proof will follow from. the following lemmas 8 and 9.

Definition. We shall say that two slits a and b approximately
overlap if their projections onto the original slit overlap, i.e., if, when
the width ¢ of the canal tends to 0, lime and limb overlap, or, which
is the same thing, if, for small ¢, both a and b contain points in the
neighbourhood of f(¢,) and of f(¢,); that is, such as in fig. 3a, but not
as in fig. 3b.
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LeMMA 8. If f(t,) # f(ty), then a and b approximately overlap.

This follows easily from Lemma 6; only, to avoid difficulties with
the end-points of the segment [f(t,), f(f;)], we replace it by a slightly
shorter subsegment, say [{,, {,]. We find then that [{,, {,] is contained
both in lime and in limb.

LeMMA 9. If f(t,) = f(t,), t, # t,, there is no approximate overlapping
(that s, the two slits a and b will be “edge on”).

Proof. Let ¢ be a point moving along the circumference of the island
from t, to ¢, (counterclockwise, say) and let " move simultaneously from
ty, to t;, in the same manner. We note that f(t) = f(t'), except at the
end-points t,,t,. Now consider a canal between ¢ and ¢'. Then, if the
couple (t,t’) varies continuously from (¢,,1%,) to (¢, %), the canal will
“rotate” around 180° and the islands A and B will permute. Therefore,
the slits @ and b will also permute, so that, for some couple (¢, f,), they
will be “edge on”, that is, no approximate overlapping. But, by
Lemma 8, there is always approx. overlapping when f(¢) # f(t'), that
is, except when #, and f, coincide (in some order) with ¢, and ¢,, q.e.d.

Proof of Lemma 7. Let w, be the mid-point of the original slit
and let ¢, and t, be the corresponding points: f(t;) = f(f,) = w,. Then,
again by Lemma 6, for sufficiently small &, both @ and b contain points
in the neighbourhood of w,. But they are “edge on”; also, when & — 0,
the union of @ and b tends to the original slit. Thus, both a and b are
approximately half its length, q.e.d.
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