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0. Introduction. All spaces under consideration are supposed to be
separable and metrizable. A subget X of a space M is said to be densely
connected in M if for any open connected subset U of M, U ~ X is con-
nected. This notion is due to A. Lelek (see [4]). In [4], A. Lelek restricted
himself to the case where M = S", the n-sphere, and proved the follow-
ing interesting theorem:

THEOREM 0. Let X be a non-degenerate densely connected subset of
S" and h a homeomorphism of X into a compact metric space Y such that

dim[Y —h(X)] < 0.

Then dim Y = n.

In the same paper, A. Lelek posed the following question:

(Q) Given the hypothesis of Theorem 0, and h(X) is dense in Y,
is it true that every closed separator of Y has dimension = n—17?

In a series of papers, E. G. Sklyarenko studied the notions of perfect
mappings and perfect extensions (see [7] and [8]). As consequences of
Theorem 1 of [7] and Theorem 1 of [8], Theorem 0 and question (Q) can
be rephrased, respectively, as follows:

TuroreM 0. Let X be a non-degenerate densely connected subset of

8" and f a mapping of S" onto Y such that (i) f restricted to X is a homeomorph-
ism, and (i) dim[Y —f( .X < 0.
Then dimY = n.

(Q’) Given the hypothesis of Theorem 0', is it true that every closed
separator of Y has dimension > n—1"

It is in the form (Q') that we shall give an affirmative answer to
A. Lelek’s question (see Remarks following Theorem 4). Also Theorem
0’ follows easily from Theorem 2, and in fact, a strengthened form of
Theorem 0’ holds (see Remark of Section 3).

In another paper, A. Lelek also posed the following question (see [5]):

(P) If fis a non-constant map of 8" onto ¥ and if dimY = k <n—1,
is it true that the set ¥ = {yeY | n—k < dimf~'(y)} has dimension > 0 ?
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An affirmative answer was given by E. G. Sklyarenko (see [9]) with
the aid of sheaf theory. In this paper we show that this result may be
obtained by quite different methods (see Remark following Theorem 5).

1. Mappings on Cantor-manifolds. The following theorem is a ge-
neralization of a theorem of A. Lelek (see [5], Theorem 1). However,
it is interesting to note that the proof we shall give is quite different
from that of Theorem 1 in [5].

The following lemma can easily be proved:

LeMmA 1. Suppose f is a closed mapping of M onto N. Let N' be a
subset of Ny, M' = f'[N'] and g = f |syr. Then ¢ is a closed mapping
of M’ onto N'.

COROLLARY. Suppose f is a closed mapping of M onto N. Let

Dy = {we M | ff(2) = x}.
Then g = f| Dy is a homeomorphism of D, onto f(Dy).

o0
THEOREM 1. Let 8 =\ J8; be a countable union of ng-dimensional

t=1
Cantor-manifolds, co >n; =n =1 for i =1,2,3,..., and f a mapping
of S such that

dimf(S—D,) < 0.

Then dimf(8) = n or f(S) is countable.

Proof. If f(8) is not countable, then f is not constant on S;, for
some ¢ =1,2,... Let g =f| s; be non-constant. Then it suffices to
show that dimg(8S;) = n.

Suppose dimg(8;) < n»—1. Since ¢ is not constant, let p and ¢ be
distinet points of ¢(8;). Since D, is G, (see [107, p. 162), 8;—D, is F,.
But g is a closed map; therefore, g(8; —D,) is F,. Moreover, Dyo Dy~ 8y
and so dimg(8;—D,) < 0. By a theorem of T. Nighiura (see [6], p. 922),
there is a closed set € in ¢(8;) separating p and ¢ in ¢(S;) and such that
dimC < n—2, and C < g(D,).

By the corollary to Lemma 1, ¢ is a homeomorphism on D, and since
dimension is a topological invariant, dimg '[C] = dimC < n—2 < n;—2.
Thus ¢ '[C] cannot separate the n;-dimensional Cantor-manifold ;.
This contradicts the fact that ¢~ '[C] separates §; between ¢ '(p) and
g '(q), since O separates ¢(S;) between p and ¢. Thus dimg(sS;) = n.

COROLLARY. Let S be an n-dimensional Cantor-manifold (n = 1) and
[ a non-constant map of S such that

dimf(§—Dy) < 0.
Then dimf(8) = n.
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2. Mappings on manifolds. A natural question arises as to whether
or not the conclusion of Theorem 1 can be strengthened to that of equa-
lity. The following example shows that the answer is negative. However,
in case S8 is a manifold, the strengthened conclusion holds true, as is
given by Theorem 2.

Example. There exists a non-constant mapping f of a 1-dimen-
sional Cantor-manifold S, namely the Sierpinski curve, onto a closed
2-cell such that f(S—Dy) is countable.

Let I* be a closed 2-cell and S a Sierpiniski curve in 1%, as constructed
in [3], 5, p. 202. Since § is a 1-dimensional compact connected subset
of I*, § is a 1-dimensional Cantor-manifold. Let

P =({U| U is a component of I*—8 in I*}.

Then P is a null sequence (see [10], p. 67) of disjoint continua in int (I*),
the interior of I*. The set

Q =(I*—~\UP) v {U|UeP}

is an upper semi-continuous decomposition of I?, which contains no
separator of I*. We note that Proposition (2.1), of [10], p. 171, implies
“the hyperspace of any upper semi-continuous decomposition of a
closed 2-cell I* into continua, not separating I° and whose non-
degenerate continua are contained in int (I*), is topologically a closed
2-cell”. Hence Q is a closed 2-cell. Let g be the mapping of I* onto ¢
induced by the decomposition @ and f = ¢ | . Then g is clearly a non-
constant map of § onto Q. Since I’ —&8 has only a countable number of
components in I*, f(8§—1D) is countable.

. THEOREM 2. Let M be an n-manifold and f a non-constant mapping
of M such that
dim[f(M —D,)] <0.
Then dimf (M) = n.
Proof. The theorem is obviously true for n = 0; so assume n > 1.
Since an n-manifold is a countable union of closed n-cells, f is non-
-constant and M is connected, the inequality dimf(M) = » follows from
Theorem 1. To show that the reverse inequality holds, let D be a countable
dense subset of the interior of D;. Then the set (M —1)) v D is dense
in M and its complement D;—D contains no non-void open subset of
M. Since M is an n-manifold, dim(D;—D) < n—1 (see [1], Corollary 1,
p. 47). D, being a countable set (or @), is at most a 0-dimensional F,
subset of M. As in the proof of Theorem 1, M —Dyis F, in M. Since M
is a countable union of compact sets, namely closed n-cells, and since
a closed subset of a compact set is compact, a F,'subset of M is actually
a countable union of compact subsets of M. It follows that f(D) and
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J(M —Dy) are both F, in f(M) and both are 0-dimensional. Applying
the Sum Theorem (see [2], Corollary 1, p. 172), dim (Do (M—Dy)| < o.
Hence (see [1], Property B, p. 28),

dimf(M) <14dimf(D;,—D)-dim [_f(l) u (Mk])f))]
<14n—1+0
= ¥}

Le., dimf(M) < ».

3. Some Lemmas.

LemMA 2. Let X be a dense subset of S, f a mapping of 8 and g =[x
@ homeomorphism on X. Then X < Dy.

Proof. Let z be in X and ¢ = f~'f(x). Let y be an element of (.
Since X is dense in S, there is a sequence y;, in X converging to y. By
the continuity of f, f(y;) converges to f(y) = f(xz). By hypothesis, ¢ '
iIs continuous on f(.X) to X; therefore, 1, = g 'f(yx) converges to
@ = g 'f(x). Since 8 is Hausdorff, f'f(#) = x and  is in Dy. Thus X < Dy.

LemMA 3. Let X be a dense and connected subset of an n-dimensional
Cantor-manifold S (n = 2) and f a mapping of S such that f restricted to X
is a homeomorphism. Then fy) does not separate 8 for any vy in f(8).

Proof. Let y be a point of f(S) and suppose f '(y) separates .
Since X is dense in S, f~'(y) ~ X separates X. Because X < I); and
f () is non-degenerate, f~'(y) ~ X — @. But X is connected; we have
a contradiction. Hence f~'(y) does not separate S.

Lemya 4. Let X be a dense and connected subset of an n-dimensional
Cantor-manifold 8 (n = 2), f a mapping of 8 onto Y such that

(i) f restricted to X is a homeomorphism,
and

(i) dim[ Y —f(X)] < 0.

If Cis an (n—1)-dimensional Cantor-manifold in S which separates
8, then dimf(C) = n—1.

Proof. Let g be f restricted to €. Then, by Lemma 3, ¢ is non-con-
stant. Since D, > D; ~ ¢, we have

dim[g(C'—D,)] < dim[f(C—D,)] <0,

where the last inequality follows from hypothesis (ii) and Lemma 2.
Hence ¢ satisfies the hypothesis of the corollary of Theorem 1 and, there-
fore, dimf(C) > n—1.

The following lemma is well known (see [3], 3, p. 348):

LeMya 5. If Cis an irreducible closed separator of 8" (n = 2) between
@ and b, then O is an (n—1)-dimensional Cantor-manifold.

Lemma 6 can be easily proved by using Lemma 5.
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LuMMA 6. If C is an irreducible closed separator of 1" (n = 2) between
a and b, then O is an (n—1)-dimensional Cantor-manifold.

LEMMA 7. Let X be a non-degenerate densely connected subset of an
n-manifold M (with or without boundary), n = 2. Then X is connected
and, in case n =2, X is dense in M.

Proof. Since M is connected, X = X ~ M is connected.

Suppose n =2 and X is not dense in M. Then M — X is a non-void
open subset of M. Let U be a component of M—X. Then U is open
and connected in M. Since X is non-degenerate, there are non-void open
and connected subsets V and W of M which are separated and both
of which intersect U and X. Then U o Vo W is a non-void open
connected subset of M whose intersection with X is (X A V)u (X ~ W).
The latter set, however, is the union of two non-void separated sets,
which contradicts the densely connectedness of X. Hence, X 18
dense in M.

Remark. The inequality in the conclusion of Theorem 0’ can be
replaced, even under the weaker hypothesis that the set X is dense and
connected only (not necessarily densely connected), by an equality,
since X = D, by virtue of Lemma 2, and, therefore, the condition that
dim[Y —f(X)] < 0 implies dim[f(8"—D;)] < 0. The strengthened con-
clusion of Theorem 0’ now follows from Theorem 2, even in a more
ceneral case, that is for arbitrary n-dimensional manifold instead of a
sphere S".

4. Mappings on spheres.

TuroreM 3. Let X be a dense and connected subset of 8" (n =1),
f a mapping of 8" onto Y such that

(i) f restricted to X is a homeomorphism
and

(ii) dim[ Y —f(X)] < 0.

Then every closed separator of Y has dimension = n—1.

Thus, by the Remark following Lemma 7, Y is an n-dimensional
Cantor-manifold.

Proof. The theorem is obviously true for n = 1; therefore, assume
w =2,

Tet K be a closed separator of Y. It follows from the hypotheses
on X that we may suppose there are points @ and b in X such that A
separates Y between f(a) and f(b). Then f'[K] is a closed separator
of 8" between a and b. By a theorem of Mazurkiewicz (see [3], p. 176),
there is an irreducible closed separator ¢ of §" between e and b and
¢ < f'[K). By Lemma 5, ¢ is an (n—1)-dimensional Cantor-manifold

and the theorem now follows from Lemma 4.
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5. Mappings on manifolds (continued).

THEOREM 4. Let X be a non-degenerate densely connected subset of
an n-manifold M (with or without boundary), n =1, f a map of M onto Y
such that

(1) f restricted to X is a homeomorphism
and

(il) dim[ Y —f(X)] < 0.

Then every closed separator of Y has dimension = n—1.

Proof. The case when n = 1 is trivial. Assume n = 2.

Let K be a closed separator of Y. As in the proof of Theorem 3,
we may assume (' separates Y between f(a) and f(b) for some points
a,beX. Then f~'[K] is a closed separator of M between a and b. Since
M is locally connected, applying a theorem of Mazurkiewicz again, there
is an irreducible closed separator C of M between a and b and ¢ < K]
Since the boundary of M cannot separate MM, there is a point p in €' which
Is an interior point of M. Let I be a closed n-cell in M whose interior is
an open neighborhood of p. Then €' ~ I is a closed separator of I between
some points e’ and b’, a’, b’ €]. Applying the same theorem of Mazur-
kiewicz once more, let €’ be an irreducible closed separator of I between
o and b’ and ' <« C A~ I < f'[K]. By Lemma 6, C" is an (n—1)-dimen-
sional Cantor-manifold.

By Lemma 7, X is dense in M and, hence, X' = X ~ I is dense in
I. By densely connectedness, X ~ int(I) is connected, where int (1)

denotes the interior of I. Since X ~int(I) c X' < X ~ int(])
= X ~int(I) = I, X’ is connected. Hence g = f/r satisfies the hypo-
thesis of Lemma 4 and so n—1 < dimg(C') = dimf(C’). Thus dim K
=n—1. :

Remarks. 1. An affirmative answer to A. Lelek’s (question (Q")
for n = 1 follows by Theorem 3 and Lemma 7 as well as by Theorem 4,
and in both cases it is apparent for n — 0.

2. We do not know whether Theorem 4 still holds true if “den-

sely connectedness” is replaced by “non-degenerate, dense and connec-
ted” (P 580).

6. Mappings that lower dimensions of Cantor-manifolds * Let X
be a subset of an arbitrary space M. Then the n-dimensional degree of
X with respect to M will be denoted by d,(X) and is defined as the
infimum of the numbers ¢ > 0 for which there is a finite family of open
subsets ¢, ..., @, such that (ef. [3], p. 60)

* The author would like to express his thanks to Professor A. Lelek for his
help in proving Lemmas 8 and 9.
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(1) X < GO vl u...u Gm,
(ii) o(G;) < e for i =0,1,2,...,m
and
(iii) Gy Giy oo n Gy = @ for any 4 <y < v <y S M
LEMMA 8. Let K be compact and f a map of K onto Y. For any ¢ > 0,
and for any integer m =1, F, = {ye¥ | duf ' (y) = ¢} is closed in Y.
Proof. Let {y,}»., be a sequence in Fs Lonverglng to a point
pél.. Then d,f '(p) < e and, therefore, there is a finite family of
open subsets G, @, ..., G; such that
(1) fﬁl(p) clGyulu.. vl
(i) o(G;) < e,
and ‘
(iif) Gjy ~ Gy ~ oo Gy

b

=@ for iy < 5 < vis <UL
As the collection {f'(y)|yeY} forms an upper semi-continuous
1

decomposition of K, there is at least one yu, with f*l(yﬂo) < | G;. This
1=0

implies that d,,f ' (Yuy) < € which is a contradiction. Hence peF, and
F, is closed in Y.

LEMMA 9. Let K be compact and f a map of K onto Y. For any
integer m = —1, the set F = {ye¥Y | m < dimf~'(y)} is F, in Y.

Proof. In both cases m = —1 and m = 0, then /' = Y is F, in
Y. Assume that m > 1. For each er f'(y) is compact; so that
dimf '(y) = m is equivalent to d,,f'(y) > 0 (see [3], 1, p. 60). For each

integer j =1, let
1
{/eY | dpf  (y) = 3}

It follows from Lemma 8 that each F; is a closed subset of Y. As
F=\JF,Fis F, in Y.

1=1

TuroreM 5. Let S8 be an n-dimensional Cantor-manifold (n =1), f
a non-constant map of 8 onto Y and dimY =k < n-—1. Then the set
F={yeY |n—k<dimf '(y)} has dimension > 0.

Proof. Suppose dimF < 0. Since f is non-constant, let p and ¢
be distinet points of Y. By Lemma 9, ¥ is F, in Y and by a theorem
of T. Nishiura (see [6], p. 222), we obtain a closed separator (' of Y between
p and ¢, dimC < k—1 and ¢ ~ I = 0. Let g be f restricted to f~'[C].
Then ¢ is a continuous function of the compact set f~'[C] onto C and
as C ~F =0, dimg ' (y) <n—k—1, for any yeC. Hence Hurewicz’
Theorem gives dimf~'[C] <k—1+4+n—k—1 = n—2 which is a contra-
diction since f '[C] separates the n-dimensional Cantor-manifold S.
Hence dim ¥ > 0.
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Remark. Now an affirmative answer to question (P) follows from
Theorem 5 in case n > 1, since 8" is an n-dimensional Cantor-manifold.
In the case when »n = 0, (P) is trivially true.
Finally, the author would like to express his sincere thanks to Pro-
fessor Togo Nishiura for his valuable assistance and direction during
the duration of these investigations.
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