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A NOTE ON GENERALIZATIONS
OF TRANSITIVE SYSTEMS OF TRANSFORMATIONS

BY

J. ACZEL (WATERLOO, ONT.) axp A. D. WALLACE (GAINESVILLE, FLA.)

The principal purpose of this paper is to extend a result of Hosszu’s
which concerns what might be called a “transitive system of transforma-
tions” and to state the interrelation of our generalization of transitive
systems of transformations with that of R.D. Luce.

In order that accumulated genitives should not complicate our
statements all too much we will abbreviate “systems of transformations”
into “formations”.

Defitition 1. A formation is a continuous function 7'x X — X such
that 7 and X are non-void Hausdorff spaces.

The value of the anonymous function at the place (¢, 2) will be
written tx. If Z <« 1T and if aeX or A <« X, then Za = {za | 2eZ} and
ZA = {za|zeZ and aeA}, respectively. Universal quantifiers will gene-
rally be omitted.

Definition 2. A semigroup is a non-void Hausdorff space together
with a continuous associative multiplication, generally denoted by juxta-
position. More formally, a semigroup is such a continuous function
S xS - 8 that § is a non-void Hausdorff space and denoting the value
of the function at (x, y) by xy, we have x(yz) = (xy)z for all », y, zeS.

Thus a semigroup is a special instance of a formation. Background
material on semigroups may be found in Paalman de Miranda [7] and
all results of a topological nature used here can be found in Kelley [5].
This latter also contains requisite definitions and results on relations.
For discrete semigroups one may consult Clifford and Preston [2].

It may be helpful to make explicit the fact that a semigroup, as
defined in either of these books, is a special instance of a semigroup as
defined in this note. In fact, in the principal result, it is explicitly assumed
that certain spaces are either compact or discrete.

The literature contains a variety of conflicting terms for the con-
cepts used here, and nomenclature and terminology are so far from being



30 J. ACZEL AND A.D. WALLACE

uniform as to be confusing. Because of the brevity of this note and with
a desire to spare the reader, technical words are kept to the barest
minimum essential for adequate communication — thus hypotheses are
generally written in terms of the symbolism of the above definitions
rather than in words.

A morphism is a continuous function k: T — 8, 7' and S being semi-
groups, such that k(xy) = k(z)k(y) for all z, yeT. If k is also a homeo-
morphism onto 8, then % is termed an isomorphism.

THEOREM 1. In the formation T x X — X assume that each of T
and X s either compact or discrete, and that

(1) t(t'x) =t'(twe)  for all t,t'eT and all xeX,
(2) Ta = X  for some aeX.

Then X is a commutative semigroup under an operation o with a as unit,
such that

tx = (ta)ox  for all teT and all reX.

Conversely, suppose that X is a commutative semigroup with wunit
a wunder an operation o and that there is a continuous funetion from T onto
X whose value at t is denoted by ta. If, for each xeX , we define

tx = (la)ox,

then TxX > X is a formation such that (1) and (2) hold.
Proof. Let & <« T xT be defined by

(t,t)es ift g(1) = g(1)

where ¢(f) = ta. Then (Kelley [5]) there is an analytic diagram

T/)&
N
(p ‘ \
\
; Y.
q

Le., ¢ = yg. Moreover, T/& is Hausdorff because & is closed (g is con-
tinuous by hypothesis), and also v is a homeomorphism onto because
it is one-to-one (as is readily verified using (2)) and g and ¢ are continuous,
T and X being either both discrete or both compact.
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In the next diagram

n
Ti¢xT|€ -~ T/&

1 A
~
¢ X

/m
PxT

the function m is defined by

m(t, 1) = y(ig(t') = p(t(t'a)

and is certainly continuous. If f{,a = t,a and t,a = t,a, then we have
t,(t;a) = t;(tya), at once from (1). Since, by definition, (¢ x¢)(t, )
= (cp(t),qo(t’)) this implies, in virtue of the analyticity of the first dia-
gram, that from (¢ x¢@)(t,, t,) = (¢ X¢)(t, t;) We may infer that m(t,, t,)
= m(ty, t,). Thus there is a function n such that this diagram is analytic,
m = (¢ X@)n, and n is continuous in virtue of the continuity of the other
two functions and the compactness of T and 7/E, see Kelley [5]. (In
the discrete case there is nothing to be proved about continuity.)
For esthetic reasons we write

zow = n(z,w) for all z,weT/&

and, with the aid of the homeomorphism vy, define a continuous operation,
also denoted by o, on X by

zoy =y (p(x)ow(y))

so that y is an iseomorphism from the binary algebra (X, o) onto the
binary algebra (7'/¢&, o).
It should be observed that

g(t)og(t) = p(tg(t')) = y(t(t'a)),

as follows at once from the analyticity of the diagram and the notation
just introduced.

To show that each of the operations o is associative it is enough to
prove that one of them is, and to this end, noting that the function g
18 onto, we have, for p, ge X

p =g¢g(u) and ¢ = g(v) for some u,veT.
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Now
poq =y p@)oy (v(g)
=y~ (p(w) oy p(v)
=y~ p(w)op(v))
=y (p(ug(v)))
= ug(v) = ugq.
Hence, for z,y,zeX, we get

xo(yoz) = wo(lz) = t'(12),
y=g(@), x=g()
and also
(zoy)oz =1"2, xoy = g(t'),
so that

gt') =woy =t'y =t'g(1).
For some t,eT, 2 = t,a so that
1" ={t"-{ya =1,:t"a
= ty-1' (ta) = t'-1,(ta)
=t'l(tya) = t'-tz,
from which we conclude that
xo(yoz) = (voy)oz.

To show that o is commutative, the earlier notation is employed,
so that

poq =wuq, and gqop = wp
and
uq = u(va) = v(ua) = vp.
It is clear that a is a right unit for # because
xoa = ta with x = ta, i.e., xzoa = z.

The proof of the first part is complete and the converse is immediate.
Remark 1. In the discrete case and under the assumption that

(3) Tx =X for all xeX,

the above was proved by Hosszu [4] and a small modification of his
proof is employed here.

Remark 2. Formations satisfying (3) are called transitive. (2) 1is
evidently a weaker condition than (3). R. D. Luce has considered another
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generalization of transitive formations (see (4), below) in [6] (p. 380-
398; esp. 390-392), but only in the case where 7 and X are real inter-
vals. In a conversation between him and one of us (J. Aczél) at the Sym-
posium on Mathematical Learning Processes (Stanford, California 1964),
various problems arose and one of them is solved below.

We will need the following definitions:

A relation on a space X i8 a subset R of X X X. If R is closed (in the
usual topology of X x X), reflexive (in the sense that (x,x)eR for all
x€X) and transitive (in the sense that (z, y)e R and (¥, 2) e R imply (z, 2) e R,
whatever be x,y,2¢X) and if X is compact Hausdorff, then there is
at least one R-maximal element a. That is to say, there is an element
aeX such that (a, ) e R implies (z, a)eR, e.g. [8]. Of course X is assumed
to be non-void.

THEOREM 2. If, in the formation T x X — X, it is supposed that T
and X are compact and that

(4) for any x,yeX either xeTy or yelx
and that
T(Tz) «¢ Tx for each xeX,

then Ta = X for some aeX.

Proof. A relation R on X is defined by (z,y)eR iff Tx = Ty. 1t
is clear that R is reflexive and transitive and to see that R is closed one
may apply an argument well-known in connection with semigroups. If
(z, %) is not in R, then it may be assumed that {x is not in 7% for some
teT and hence that there are disjoint open sets U’ and W containing
tr and 7y respectively, because Ty is compact and hence closed. From
the fact that 7' is compact and W is open there is an open set V about
y with 'V < W, using the assumed continuity of the formation. Similarly,
there is an open set U about « with tU < U’. Then U x V is an open set
in X x X which contains («#,y) and which does not intersect R.

Now let a be an R-maximal element and assume that some z is not
contained in 7'a. Then, by (4), aeT> and thus Ta < T(Tx) =« Tz by
assumption. Since a is R-maximal we have Ta o T2 and thus Ta = Tx.
But xeTwx.

It follows from Theorem 2 that condition (2) of Theorem 1 can be
weakened somewhat and the conditions of Theorem 2 used in its stead.

A. Hajnal has remarked that a maximality argument similar to
that used in the proof of Theorem 2 was earlier used to prove that a finite
complete graph contains an element which may be joined to any other
element, e.g. [3] (p. 115-116). This observation has been extended to
the infinite case under suitable topological conditions (without them it
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surely is not true, cf. [3]) in a paper by A. R. Bednarek and A. D. Wal-
lace [1].

The authors are grateful to the National Science Foundation (USA)
for its support under GP 1907 and 2080.

REFERENCES

[1] A.R. Bednarek and A.D. Wallace, Some theorems on P-intersective
sets, Acta Mathematica Acad. Sci, Hungar. 17 (1966), p. 9-14.

[2] A. H. Clifford and G.B. Preston, The algebraic theory of semigroups,
Mathematical Surveys 7 (1961).

[3] G. Hajés, G. Neukomm and J. Surdnyi, Matematikai Versenytételek, 11,
Budapest 1958,

[4] M. Hosszu, Note on commulable mappings, Publicationes Mathematicae
Debrecen 9 (1962), p. 105-106. '
~ [5] J. Kelley, General topology, Princeton 1955.

[6] R.D. Luce, Some one-parameter families of commutative learning operators,
Studies in Mathematical Psychology, Stanford 1964.

[7] A.B. Paalman-de Miranda, Topological semigroups, Mathematisch
Centrum, Amsterdam 1964.

[8] A. D. Wallace, Struct ideals, Proceedings of the American Mathematical
Society 6 (1955), p. 634-638.

THE UNIVERSITY OF WATERLOO IN WATERLOO, ONT., CANADA
THE UNIVERSITY OF FLORIDA IN GAINESVILLE, FLA., U.S.A.

Regu par la Rédaction le 20. 5. 1965;
en version modifiée le 9. 12. 1965



