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THE WEAK BASIS THEOREM
BY

CHARLES W. McARTHUR (TALLAHASSEE, FLA.)

1. Introduction. The purpose of this paper * is to present another

of of the theorem of Bessaga and Pelezynski ([4], Theorem 4) which
ates that a weak basis in a Fréchet space is a basis. Let (E,Z) be

» linear topological space over the real or complex scalar field. A topolo-
gical basis, or more briefly a .7 -basis, is a sequence {x;} in the vector space
I/ such that to each xeF there corresponds a unique sequence of scalars

{fi(x)} for which the series ' f;(x)x; converges to # in the topology 7
i=1

of E. For each positive integer ¢, the correspondence from z to the i’th
coefficient f;(x) in the basis expansion for x defines a linear functional f;
on I. If a basis has the property that each of its coefficient functionals
fi is continuous, i.e., f;e B*, the space of continuous linear functionals
on K, then the basis is called a Schauder basis. Banach [3], p. 238, first
noted that a sequence is a norm basis for a Banach space if it is a basis
for the space with its weak topology. Karlin [7], Theorem 1, sketched
a proof of this fact. Edwards [6], p. 453-457, gives a detailed proof of
the theorem of Bessaga and Pelezynski that a w(FE, E*)-basis for a Fréchet
space (K,.7) is a .7 -Schauder basis. In this paper we prove a more ge-
neral version of the theorem, namely, a weak basis of closed subspaces
in a Fréchet space is a Schauder basis of subspaces. Ruckle [9], Theo-
rem 1.20, has given an elegant proof of this result for Banach spaces.

If (E,7) is a linear topological space, then a sequence of non-tri-
vial subspaces {M;} of (K, 7) is a basis of subspaces for (E, 5’) if and only
if to each wel corresponds a unique sequence {E;(»)}, E;(z)e M;, such

that the series }' H;(x) converges to z in the topology 7. Note that for
=1

a basis of subspaces the correspondence from x to the ¢’th term in its
series expansion defines a linear transformation F; from F to itself which
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satisfies H;(B) = M;, B} = E;, and E;E; = 0 if i # j. A basis of sub-
spaces with the property that each F; is continuous is called a Schauder
basis of subspaces. 1t is evident that a topological basis may be thought
of as the special case of a basis of subspaces {M;} in which each M; has
dimension one. In this paper the notation and terminology of [8] will
be followed.

2. A weak Schauder basis is a basis. For completeness a proof of
the following main lemma is included. Proofs of it for the topological
basis case have been given by Dieudonné [5], Proposition 5, and Arsove
and Edwards [2], Theorem 11.

LEMMA 1. A w(E, E*)-Schauder basis of subspaces for a barrelled
(tonnelé) space (H,T) is a T -Schauder basis of subspaces.

Proof. Let {M;} be a weak basis of subspaces for (E,7) and {E;}
its associated sequence of w(E, E*)-continuous projections. In a barrel
space (E,7) a linear transformation is w (¥, E*)-continuous if and only
if it is Z-continuous ([8], 18.9 (iii), 21.4 (i)). Let

¥) = ) Ei(w), ok,
i=1
Since each F; is linear and . -continuous, it follows that S, is linear
and 7 -continuous, new. It is clear also that 8,(8z) = Smingmm- 10
a locally convex space (F,.7) the w(E, E*)-closure and -closure of
a subspace coincide. From this and the fact that {M;} is a w(E, E*)-

-basis for F it follows that the linear span of U M; is dense in (K,.7).

t=1
For each xeE the sequence {S,()}n. i weakly convergent to z, so it

is weakly bounded, hence bounded. By a generalization of the Banach-
-Steinhaus theorem valid for barrelled spaces ([8], 12.3) {8,} is equicon-
tinuous. Suppose now that xe® and V is a neighborhood of 0. There
exists a neighborhood U of 0 such that U4 U < V and by equiconti-
nuity of {S,} there exists a neighborhood W of 0 such that S,(y)eU for

all » 1f ye W. Since the linear span of U M; is dense in E, there exists
Y = Zwt, w;e M;, such that x—yeU W Note that S,(y) =y if n >
Thus 1f n =

w—Sn(fv) = (@—y)+Su(y—2)eU+U <= V,
s0 x is the J-limit of 8§, (x).

3. A weak basis is a basis.

LEMMA 2. Let {M;} be a w(E, E*)-basis of subspaces for a locally
convexw Hausdorff space (E,T) and let {E;} be its associated sequence of
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projections. Then there exists a topology 7' for E such that:
(1) (E,7") is a locally convex Hausdorff space with I < 7.
) Each E; is T '-continuous.
) If (E,7) is metrizable, so is (E, 7).
)

4) If (E,7) is complete and each M; is closed, then (E,7"') is com;

(2
(3
(
plete.
Proof. Let ¥" = {V} denote a local base for 7 consisting of closed,

convex, circled neighborhoods of zero. Let
¥ ={V':Ve¥}, where V' ={weE:ZEi(m)eV,a,ll n}.
: fed

Note the following properties of 7:
(i) f U" and V' belong to ¥, then U~ Ve and (U ~ V)
cU AV,
(ii) If U'e¥”, then there exists Ve  such that V-V < U and
then V'+V' < U".
(iii) If || <1 and V'e¥”, then aV' < V.
(iv) If V'e7"" and z e, then the sequence { Y Bi(2)}ne is bounded,
n =1
so there is a scalar a such that ZEi(m)eaV for all n. Thus, xeaV’.
i=1
It follows ([8], .1) that ¥ is a local base for a vector topology 7~

for B. Bach V'e¥” is locally convex since V is and each E; is linear;
hence (E,.7") is a locally convex space. We assert that V' < V for each

Vev". This is so because if zeV’, then ZEi(w)eV for all n. Now wx is
i=1

the weak limit of this sequence in ¥V, so 2 belongs to the weak closure
of V. Since V is convex and closed, V is equal to its weak closure, i.e.,
xeV, so V' < V. This establishes the fact that 7 < 7. For (E,7)
to be a Hausdorff space it is necessary and sufficient that () {V': V' e¥”'}
= {0}. This is satisfied since

N{V:V'ev'y e N{V: Verv} = {0}.

To see that E; is Z -continuous let V'e ¥ be glven Then there
exists U'e ¥ such that U'4+U' < V'. Thus if xzelU', then
i i1
Biw) = N Ey(@)— M B(2)eU' +U < V',

i=1 i=1

If (£, 7) is metrizable, we may choose a countable local base ¥
which genera,tes ([8], 6.7) and thus the dependent local base ¥~ which
generates 7 is also countable, so (E,J ) is metrizable ([8], 6.7).
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It remains to show that if (F,.7) is complete and each M; is closed,
then (E,7) is complete. Suppose {x,} is a Cauchy net in (E,7") and
Ve ¥". There exists a(V) such that a, f > (V) implies z,—azeV < V;
80 {x,} is a Cauchy net in (F, 7). Let # be the 7 -limit of {x,}. We wish
to show that limx, = x relative to J'. Now if a,p = a(V), then

a

n

ZEi (Xg—25) = (2 Ez(“'a) -

i=1 1

7

[

E,-(mﬂ)) eV

for all n. Thus, for each fixed =, lZEi(:ca)},, is a Cauchy net in (E,.7).

Therefore, {E,(x,)}. 1s a Cauchy net 1n (E,.7) being the difference of the

two Cauchy nets {Z E;(x,)} and {Z’F ). Since M, is a closed sub-
i=1

space of the complete Hausdorff space (F,7), it too is complete, so

there exists x,e¢ M, such that «, = hmE nl®s) relatively to 7. We next

show that z is the weak limit of the series Z x,. To this end let feE*
=1

and ¢ > 0 be given. Then there exists Ue ¥~ such that |[f(y)| < ¢/3 if

yeU. Also there exists a(U) such that a, p = a(U) implies @, —aze U', i

(ZN:E"(%) - jEi(%)) eU for all n.
t=1 i=1

Thus, passing to the limit with g we obtain

(i’Ei(wa)— ﬁwi) <V

for all n if a = a(U). Since limz, = « relatively to 7 and f i8 J-con-

a

tinuous, there exists «, With ay = a(U) such that |f(z)—f(z,)| < ef3.

Since , is the weak limit of Z Li(x,,), there exists n(ay) such that n = n(q)

i=1

ff(wao)—f(i'El-(x,,o)){ < &[3.

implies

Thus if n = n(q),

bﬂg

.

< €.

< 1f (@) —F ey + | £ (2) £ Z Bi(,))| + ]f(f,‘m(wao)— |

1=

—
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We have shown that x is the weak limit of the series Zm,;, x;e M,

1=1
$0 @x; = E;(x) because the weak basis of subspaces expansion for z is
unique. Furthermore, for the V and a(V) at the beginning of this comple-

teness proof we have
n n
(D Bi(@a)— Y Bilwy)) eV
1=1 t=1

for all » if «, f = a(V). Passing to the limit with g and using the fact
that x; = Ez(.CU) yields
1)

forall nif a = a(V}, ie.,x,—xeV if a>a(V),so0lime, ==z relatively to 7"

a

n
=1

By(a,)— 3 Bi(a)) <V

TueoreM 1. A w(H, E*)-basis of closed subspaces for a Fréchet space
(E,7) is a T-Schauder basis of subspaces.

Proof. Let {M;} be a weak basis of closed subspaces and {E;} its
associated projections. It is immediate from (1), (3), and (4) of Lemma 2
that since (E,7) is a Fréchet space, so is (E,7') and 7 < J'. It is
clear from .7 < .7 that the identity mapping I from (E,7”) into (E,J)
is continuous. By the open mapping theorem ([8], 11.4) I is bicontinuous,
s0 7 = .7 . From this and (2) of Lemma 2 each FE; is 7 -continuous. Now
a Fréchet space is barrelled ([8], p. 104); so {M;} is a weak Schauder
basis of subspaces and therefore, by Lemma 1, a Z -Schauder basis of
subspaces. ‘

4. The continuity theorem. By omitting the terms “w(K, E*)”
and “locally convex”, from Lemma 2 a valid Lemma 3 is obtained. The
topology 7 in Lemma 3 is defined in the same manner as in Lemma 2.
The proof of Lemma 3 is much the same as Lemma 2 except simpler.
From Lemma 3 and the open mapping theorem the following continuity
theorem is immediate. Banach [3], p. 110, proved the theorem for bases
of vectors in a Banach space. It was generalized to the following form
by S. Mazur in a seminar on functional analysis in 1955 in Warsaw (Ar-
sove [1], Theorem 2, has given a proof of the theorem for bases of vectors):

THEOREM 2. A basis of closed subspaces for a complete metric linear
space is a Schauder basis of subspaces.
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