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1. Introduction. By R™ we denote the n-dimensional euclidean space
and for z and y in R™ we set (z-y) = Y0, z;9; and |z] = (z-2)/2. f E
is a Lebesgue measurable set contained in R®, |E| stands for its Lebesgue
measure. We shall say that an ordered pair of non-negative measurable
functions (v(z), u(z)) defined on R™ belongs to the class A(p,¢),1 <p < o0
and 1 < g < oo, if there exists a finite constant C such that for every ball
(or every cube) B C R

1) (1B fue) de) " (1B [ueyas)” <c.
B B

Here and in the sequel, p' denotes the conjugate exponent of p, i.e. p' =
p/(p—1).

Let w(z) be a non-negative measurable function. We denote by LP(w),
1 < p < 00, the class of measurable functions f such that

il = ( J 1f@)Pu()ds) " < oo

If w = 1, we simply write LP. The element of surface area of the unit sphere
Y = {z :]z| = 1, ¢ € R} will be denoted by do(z). The space LP(X),
1 £ p £ o0, is the class of all measurable functions f defined on X such
that

”f”Lr(z) = ( flf(a:)lpda’(:r))llp < 00.
X

Let k(z) = £2(z)/|z|™ be a function defined on R™ \ {0}. We shall say that
k is an L"-Dini singular integral kernel (see [2] and [4]) if £2(z) satisfies the
following assumptions:

(i) £2(z) is a positively homogeneous function of degree zero,
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(i) 2 € L™(X),1 < r L 00, and if

w,(6) = sup ( f|9(p:c) - .Q(z)l"do(z))l/r ,
lol<6 * 5

where p denotes a rotation and |p| = sup,¢z |pz — 2|, then

1
f w,(6)671d6 < o0,
0

(iii) [y 2(z)do(z)= 0.
Let k be an L"-Dini singular integral kernel and 7 > 0. The function
ky(z) defined as
kn(z) = k(z) if |z| 2,
kn(z)=0 otherwise,

will be called the truncated singular integral kernel of k. The truncated
singular integral of a function f is defined as

Ky(f)x)= [ky(z-9)f(v)dy= [ k(z-9)f(y)dy,
R® lz—yI>n
and the singular integral of f is defined as the limit .
K(f)(z)=lim Ky(f)(z)=lim [ k(= - 9)f(y)dy
lz-yI>n
whenever this limit exists.
The main result of this paper is the following theorem:

(1.2) THEOREM A. Let k(z) be an LT-Dini singular integral kernel and
(v,u) € A(p,p(r/P)), 1 < p<r<oo. If f and K(f) belong to LP(uP), then

(i) IKe(HllLrwry < CLUISNlLoqury + 1K (F)lLogury}
for every € > 0 with a constant C not depending on ¢ and f. Moreover,
(ii) lim || Ke(f) = K(f)l|Logwry = 0.

For the case v = u, 1 = p < r, Theorem A is known (see [3]), for
1 < p < 7, the continuity of the maximal singular integral K* holds and
implies Theorem A (see [1] and [3]). In the case of different weights, v # u,
we do not even have in general the continuity of K'(f). Thus, the proof of
Theorem A does not distinguish whether p is equal to one or not. We shall
use in the proof a generalization of a remarkable result of B. Muckenhoupt
(see [5]) which we believe has an independent interest; we state it in the
following theorem:
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(1.3) THEOREM B. Let F(z) be a function defined on R™. Fork € Z, set
1/r
Ck = ( f |F(a:)|"da:) .

2k <Ix|s2k+l
Assume that

A= Zcﬂ""/" < o0o.
kez
Then, if Fe(z) = e "F(z/e), 1< p<r<oorl<p=r< oo, (v,u)€
A(p,p(r/p)') and f € LP(u”), we have

(i) "Fc * f"Lr(uv) < CA”f”Lr(up)

with a constant ¢ depending on n,r,p and the constant C of (1.1) only.
Moreover, for a = [4. F(z)dz,

(ii) }1_% |Fe * f — af||Lo(er) = 0.

2. Proof of the Muckenhoupt-type theorem on the approxi-
mation of the identity. The main property of the L™-Dini singular inte-

gral kernels that will be used in the sequel is the following lemma due to
D. S. Kurtz and R. L. Wheeden, see [4]:

(2.1) LEMMA. Let k(z) be an L"-Dini singular integral kernel and |y| <
R/2. Then

1/r
[ k= -9) - k@) ds)
R<|z|<2R
<cR M (|y| /R+ [ w(e)s? d6) ,
lvl/2R<5<Iy|/R

where ¢ does not depend on R > 0.

Proof of Theorem B, (1.3). (i) Let xx be the characteristic func-
tion of the annulus 2% < |z| < 2%+, k € Z. Let {Q;} be a partition of R"
into cubes with sides of length 25¥+1¢. Then we have

(2°2) "(FXk)t * f"ir(up)

e S (JImxe=aelifelds) s dz.
J i

By Minkowski’s integral inequality, (2.2) is bounded by
-n 1/p qp
e[ S @I [ IF0)G - 2)e)roerdz)  da]”
] Q;

j  3Q;
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For each j, by Holder’s inequality, we have

( fI(FXk)((Z—x)/s)lpv(z)pdz)llp
Qj

< E"/r( f |F(2)|" dz)llr( f v(Z)P(r/P)' dz)
2k <|z|<2k+? Q;
_ e"/"ck( f v(z)"('/”)' dz)llp(r/p): |
Qj
Thus, (2.2) is bounded by

| fv(z)P(r/P)'dz)I/(r/p)'( J fe)laz)’.
Jj

Qj 3Q;
Since, by Holder’s inequality,

( fir@la) <( fis@ruerda)( [ u a)”,
3Q;

3Q;

and taking into account that (v,u) € A(p,p(r/p)'), it follows that (2.2) is
bounded by a constant times

k25" || FIl sy -

1/p(r/p)’

i

Then, by Minkowski’s inequality, we obtain
1Ee % fllzoory < SO x0)e * Flliouny < e 30 267 )| llzoqur) -
keZ k€Z

(ii) Assume first that f is a bounded function with bounded support and
N is a number large enough so that |z| < N contains the support of f, and

[ v(z)ydz>o0, [ u(@)"dz>0.
lz|<N lzISN

We observe that it is always possible to find N unless v = 0 a.e. or © = oo
a.e., the cases that are trivial. We have

| Fe *‘f = af”i?(ur)
<( [+ f )Esi-aflPrde=T(e)+ I3Ge).
|zI<3N |z|>3N
Given n > 0, let M satisfy

[ |F(2)ldz < 9.
lzZI>M
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Such an M exists since our assumption on {c} implies that F is integrable
on R™. From the fact that v” is locally integrable and that f is a bounded
function with bounded support it follows easily that

( flf(z —€2) — f(3)|pv(x)pdz)1/p <n

if € is small enough. Then

ro<( [ ([ F@Ife-e) - f@)ds) ooy dz)

IzZ|<3N  |zI>M

+( f ( f IF(Z)”f(z-ez)—f(zN dz)pv(z)i’dz)llp.

II<3N  |z|<M

Since f is bounded, applying Minkowski’s integral inequality we get
1/p
L)< 2fle [ IFG)dz( [ o(z)dz)

|z|>M I2|<3N
t f IF(Z)|( flf(z —€2)— f(z)|pv(z)pdz)1/pdz
|zISM
<{2fle( [ v(z)sz)1/P+ 1l o,
|z|<3N

showing that I;(¢) tends to zero with ¢. Let us estimate I5(¢). By Minkow-
ski’s integral inequality, we have

23 ([ IFx)ex f|vvpdx)1/”

|z|>3N
<e [l IEX(e- ey de)” de.
|z|>3N

If z belongs to the support of f and |z| > 3N it follows that |z|] < N
and |z — z| > 2N. Then, the right hand side of (2.3) is equal to zero for
g2k+1 < 2N, that is to say, for k < logy(N/e). For k > log,(N/e), by
Holder’s inequality, we get

e ([ IFx)e-erards)”

|z|>3N
. 1/r o \ 1RGP
<er ( f |F(z)|"dz) ( f v(z)P(r/P) dz) .
2k <|z]<2% ! jz—z|<2tH e

Multiplying and dividing by ( flrl <N u(z)~? dz)!/?" and taking into account
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that |z| < N implies |z — 2| < 2¥t1¢ whenever |z| < N, we find that (2.4)
is bounded by

' ’ -1/ !
ce™c 2Fn/T ( f u(z)P d:c) 7
|z|<N
Thus, for (2.3) we have the bound

il [ sy Taa) " et

|lzI<N

This shows that I(¢) is smaller than a constant times 3,5 1,¢ (n/e) cx 2k
which goes to zero with e. We have shown that (ii) holds for functions f
bounded and with bounded support.

It is easy to see that the functions g in LP(uP) bounded and with bounded
support are dense in LP(uP). On the other hand, we observe that by the
Lebesgue differentiation theorem, the condition (v,u) € A(p,p(r/p)’) im-
plies that v(z) < cu(z) a.e. Thus,

(2.5) |[Fe*f- af”LP(vr)
< \Fe * (f = 9llLswry + | Fe * g — agllLoor) + la] | f — gllLour) -
Then, by parts (i) and (ii) already proved for bounded functions with
bounded support, we see that (2.5) is bounded by
cllf = gllLe(ur) + 1
if € is close to zero. The density of the functions g in LP(uP) completes the
proof of (ii).

(2.6) COROLLARY. Let H(z) be a positively homogeneous function of
degree zero belonging to L™(X), 1 < r < 00, and ¢ a function with least
decreasing radial majorant function ¥ (|¢o(z)| < ¥(|z|)) integrable on R™.
If (v,u) belongs to A(p,p(r/p)') and f € LP(u?), 1 < p < r < o0 or
1<p=r<oo, then

o0
(i) I(H@)e * fllLr(we) < cllHllLrzy [ $(@)" dt - || fllLo(us)
0

and moreover if a = [, H(z)p(z)dz, then
(i) lim ||(Hp)e * f — afl|Lr(vr) = 0.

Proof. Let F = Hep. For this F we estimate the sequence ¢, of Theo-
rem B, (1.3). We have

1/r
Ck = ( f |(H‘P)(9~')|'d1‘) < Cn e V(25| H| L5y - 2677 .
2k <|z| <2k +
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Thus, .
> 2 < en Bl Y B2

kez ke
oo
< Bz [ o) dt.
0

(2.7) COROLLARY. Let k(z) be an LT-Dini singular integral kernel and
@(z) € C' a function supported in the unit ball with [ p(z)dz = 1. Define

§(z) = K(p)(2) — ki(),
where ky(z) = k(z) if |z] > 1 and ki(z) = 0 otherwise. Then the kernel
0c(z) = €7 ™8(z /) satisfies
(i) 16 * fllLe(wr) < ell fllLogus) »
(ii) ll—lftl) ||6e * f"LP(vP) =0,
whenever (v, u) belongs to A(p,p(r/p)'), 1<p<r<oorl<p=r<oo.

Proof. Let §(1)(z) = §(z) for |z| < 4 and 6(1)(z) = 0 if |z| > 4. Since
¢ € C! it follows that |6(1)(z)] < ¢(1 + |2(z)|) for |z| < 4. Then, by
Corollary (2.6), we find that §(1) satisfies (i). Let §(2)(z) = §(z) — 6(1)(2).
Then we have

16P@) < llello [ Ik(z —y) — k(z)] dy.
lyi<1

Let us estimate the sequence ¢, of Theorem B, (1.3), for F(z) = §(*)(z).
We observe that ¢, = 0 for k£ < 2. In the case k > 2, we have

ase( [ ([ IMe-v)-keld) ds) "

2k <|z|<2*+  |yI<1
1/r
<e [ ([ Ie-w- k(o)™ dz) ' dy.
vl<1 2k <|z|<2t
Thus, by Lemma (2.1), we get
ek < c- 27k 27k 4y (27F)).

Therefore,
1
Y a2 <27k +wi(27F) = c(l + [ w,(t)dt/t) <.
ke k>2 0 ‘

Thus, we can apply Theorem B, (1.3), to F = §(*) and obtain part (i) of
Corollary (2.7) for §(2). This, together with the result already obtained for
6, proves (i) for § = 6(1) +6(2). As for part (ii), it is enough to prove that
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J6(z)dz = 0. Let N > 0. Then, since [, k(z)do(z) = 0 and recalling that
¢ € C1, we have

f i(z)dz = f K(p)(z)dz
lz|<N lz|<N

= [ d [ kle(z-1)-¢2)dy.

lzI<KN  |yl<N+1

Changing the order of integration, we get

[ $@d= [ ko) [ le@-v)-e@)dz)dy

lzi<N lyl<N+1 lzI<N
= f + f = Il + I2 .
N-1<|y|<N+1 ly|<N=-1

It is easy to check that I, = 0. For I; we have

11| < 2]l il [k(y)l dy < ellell |92l 2N .
N-1<|y|<N+1

Therefore,

f&(:c)dz:)}i_xgo [ bz)dz=0,
R" lz|<N

as we wanted to show.

3. Proof of the main result. First of all, we shall show in Proposition
(3.4) that K,(f)(z) and K(f)(z) are defined almost everywhere on R™. For
this purpose we shall need the next two lemmas.

(3.1) LEMMA. Let 1 < p < r < oo. Then for (v,u) belonging to
A(p, p(r/p)'),
Julz) '+ |2y /7P T dz < oo
The proof is simple and will not be given.
(3.2) LEMMA. If (v,u) € A(p,p(r/p)"), 1 < p<r < o0, then
(3.3) _ WA a1t jzpy-nie-10ry S el fllLoqur s
where the constant ¢ does not depend on f.

Proof. If 1 < p < 7, by Hélder’s inequality we get
JIf@I+ ey 1" da

< (J1G)Puay dw)l/p( Ju(@)™? (14 |af) =P /=2 dz)w .
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Then, by Lemma (3.1), it follows that (3.3) holds. In the case p = 1, we
observe that (v,u) € A(1,r') implies that (1 + |z|)~"/"~V/" < cu(z) a.e.
Thus (3.3) also holds in this case.

We observe that Lemma (3.2) implies, in particular, that a function
belonging to LP(uP) with (v,u) in A(p, (p(r/p)’) belongs locally to L!.

(3.4) PROPOSITION. Let k be an L™-Dini singular integral kernel. If f be-
longs to L*((1+|z|)~"/"'=1/7), then the truncated singular integral K, (f)(z)
and the singular integral K(f)(z) ezist for almost every z. In particu-
lar, by Lemma (3.2), this holds if f € LP(uP), (v,u) € A(p,p(r/p)’) and
1<p<r<oo.

Proof. Let T > 1> 7. For |z| < T, we set
Ix)= [ [k(z-9)lIf(v)ldy.
ly|>3T |

Then, integrating I(z), we get

[ 1@de<e [ ([ 10192 - 9)l1f(y)l dy) dz

|z|<T lz|<T  |y|>3T
=c [ ly™( [ 120-y)dz)dy.
ly|>3T |lz|<T

By Holder’s inequality and enlarging the domain of integration, we obtain

f |2(z — y)| dz < c( f I.Q(z)l"dz)l/r.

lzI<T lvl-T<|zI<|y|+T
Recalling that £2(z) is a homogeneous function of degree zero we have
(3.5) [ 12(z - y)ldz < || 2| Le(z)ly|*=V/7 .
lzl<T
Thus, by Lemma (3.2) it follows that

[ I@)ydz<c [ 1f()llyl="+ D/ dy
|lz|<T ly|>3T

< ¢ fIF@IA+ 9™V dy < oo,

which shows that I(z) is finite almost everywhere on |z| < T. On the other

hand, since f belongs locally to L! as we observed after the proof of Lemma
(3.2), we find that

[ Kz -y)f(y)dy

lz=y|>n
lyl<3T



