COLLOQUIUM MATHEMATICUM

VOL. LIl 1987 FASC. 2

THE GEOMETRY OF A SEMI-DIRECT EXTENSION
OF A HEISENBERG TYPE NILPOTENT GROUP

BY

EWA DAMEK (WROCLAW)

The notion of nilpotent group of type H introduced by Kaplan [5] has
attracted considerable attention ([6], [7], [9], [10], [14], [15]). These groups
include the nilpotent subgroups N of semisimple rank one Lie groups G
which appear in the Iwasawa decomposition G = NAK.

Following ideas of Cygan and Kaplan and Putz [8] we go a step further
and we look at the groups S = NA, where N is a type H group and 4 a
group of dilations of N, equipped with a suitable left-invariant metric. We
thus obtain a generalization of rank one symmetric spaces

The aim of this paper is to describe the group 1(S) of isometries of S. As-
expected it turns out that only in the classical case, i.e., where S = G/K, I(S)
is large. In all the remaining cases I(S) appears to be as small as possible,
i.e., the semi-direct product of the group A(S) of automorphisms of S which
preserve the inner product (cf. definitions below) and the group S itself
(Theorem 4.4).

The main idea of the proof is to describe the set {dn,: nel(S), n(e) =e).
Our reasoning is based on the fact that dn, is orthogonal and it preserves the
connection ¥V, the curvature tensor R, and its covariant derivative VR. For
the non-classical group S these conditions ‘imply that dn, must be an
automorphism of s in the following way (s, n, and a denote Lie algebras of
S, N and A, respectively).

The main point is Theorem 4.2 which states that for non-classical cases
VR(x) =0 iff xea. To prove this we consider two cases:

(i) n= 0"x0, O being the octonions, n > 1;

(i) dimZ # 0, 1, 3, 7, Z being the center of n
(cf. Propositions 4.2 and 4.3). Now, from Theorem 4.2 we conclude that
dn.(a) < o dn, (V) <V, dn,(Z) c Z and, finally, that dn, is an automorphism
(Theorem 4.3).
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Our choice of invariants F, R, and FR is somewhat arbitrary and it is
quite likely that by selecting other invariants one could obtain a simpler
proof.

The author is grateful to Jacek Cygan, Witold Roter, and Andrze)
Hulanicki for helpful suggestions and remarks concerning this paper.

1. Introduction. Let n be a nilpotent 2-step algebra with an inner
product. Denote by V the orthogonal complement to its center Z. Then, for
every ve V, ad, maps Vinto Z and we have the orthogonal decomposition of
V given by

V= Kerad, @ D(v).
n is said to be of Heisenberg type (shortly, of type H) if for every unit vector
ve V the mapping ad,: D(v) — Z is a surjective isometry.

Every Lie algebra of type H arises as follows [5]. Let U and V be vector

spaces with positive definite quadratic forms |-|2. By definition, a composition
of these quadratic forms is a bilinear map u: U x V— V which satisfies

lu(u, v)| = lullv], uelU,vel,
-and for a u,
u(ug, v) =v, veV.

Let Z be the orthogonal complement to Ru, and let n: U — Z be the
orthogonal projection. Define a bilinear map &: VxV— U by

(1.1) (u, @(v, v')) = {u(u, v), v'>.
Then nd is skew-symmetric [5] and n = VxZ with the bracket

[(v, 2), (¢, 2)] = (0, n®P (v, V),

and the inner product

v, 2), (v, 2)) = v, ')+ (2, 2°)

is an algebra of type H.
Let ¢ be a function defined on nonnegative integers by the condition: if
n = (odd)2*"*1, 0 < q <3, then

o(n) = 8p+24.
An algebra of type H with dim V= n and dimZ = m—1 exists if and only if
m < o(n) (see [2]). In particular, the equality m =n yields n=1, 2, 4, 8.
Let N be a connected and simple connected Lie group whose Lie

algebra is n. If we identify N with n by the exponential map, the multiplica-
tion in N is given by

0, 2)(v, 2') = (v+V, z+2' + 5P (v, V).



GEOMETRY OF HEISENBERG TYPE GROUP 257

We denote by A the multiplicative group of R*. Let
(1.2 S=NA

be a semi-direct product of N and A, 4 acting on N as dilations J,(v, 2)
= (av, a®z). Thus we identify S with ¥VxZ x A and

(v, z, @)(v, 2, @) = (v+av, z+a*2' +Fand(v, V), ad).
S has a Lie algebra s = n® a with the bracket
(1.3) [v+z+rhg, V+2Z'+1r hg]l =rv'—r'v+2rz’ = 2r' z+n® (v, V),

where a is the Lie algebra of A and hyea is such that [hy, v] = 0.
In the Lie algebra s we select an inner product

o+z+rhy, V+2'+1" hoys = v, V' )+ <z, 2’ )+ 4rr,

and the left-invariant metric it defines on S we denote also by (-, - )s.

In the next part we shall prove that the above construction includes the
noncompact rank one symmetric spaces (that is, hyperbolic spaces) as
particular cases.

2. Spaces (S, {;, - )s) as a generalization of hyperbolic spaces. Let G denote
a connected semisimple Lie group, g its Lie algebra, B the Killing form of g,
0 the Cartan involution, and g = I@® p the Cartan decomposition. Let K be
the connected subgroup of G with the Lie algebra t and let ¢: G — G/K be
given by ¢(g9) = gK. The space G/K with G-invariant Riemannian structure
is a symmetric space and it does not depend on the choice of the Cartan
decomposition and G-invariant metric Q. If G is one of the groups SO (n, 1),
SU (n, 1), Sp(n, 1), F4(- 20, (see [1], [3], [16]), and Qx = Bo(de,|,)" !, we get
all, up to isometry, noncompact rank one symmetric spaces [3].

Let a be a maximal Abelian subalgebra of p. For the hyperbolic spaces
the subalgebra a is one-dimensional; hence for a root a the positive part of
the set of restricted roots is either {a} or {a, 2a}. The root spaces g~* and
g~ 2* corresponding to —a and —2u« are orthogonal relatively to the inner
product (-, -> = —B(-, 8-). Then

n= g—a (‘B g— 2a
is a nilpotent algebra with the center g~ 2* and we have the Iwasawa
decomposition

g=n®a®t.

n and a are (-, - )y-orthogonal ([17], p. 163-168).

Let now N and A4 be the connected subgroups of G with Lie algebras n
and q, respectively. The map (n, a, k) — nak is a diffecomorphism of N x 4 xK
on G, and S = NA is a closed subgroup of G [17]. Obviously, S with the
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metric /* Q induced from G/K by the difftomorphism f = ¢| is a symmetric
space.

ProrposiTiON 2.1. f*Q is a left-invariant metric given by

(2.1) (f*Q)e(x1+ Y1, X2+ Y1) =3 <Xy, X209+ W1, V2 oo

where x;en and y;e a (see [8]).
Proof. Let L(s): S— S and t(s): G/K — G/K be defined by

L(s)(s;) =ss; and 1(s)(gK) = s¢gK.
Then 1(s)of = foL(s), whence
dt(s)odf =df odL(s).
Let X and X’ be left-invariant vector fields on S. Then
de (s)(df (X)) = df (dL(s)(X)) = df (X)

and

(f*Qs(X, X) = Qu(dfy (X)), df, (X))
= Qu (dr(s) 0df,(X,), dz(s) odf, (X))
= Ok (d.(X.), df. (X))
= B(3(X.—0X,), 3(X.—6X)))
= —3(X., X, D +5 <X, X0

Now, putting in the above formula left-invariant vector fields belonging to n
or aq, we obtain immediately (2.1).

If n and N and, consequently, s and S are of the forms just described,
we call them classical and we shall often write ne 4, Ne ¥, Se ¥, se¥%.

ProposITION 2.2. If S€ %, then (S, f* Q) is a particular case of construc-
tion (1.2).
Proof. n with the inner product

1
<.’ '>n = <" .>0

m, + 4m2a

is an algebra of type H (see [10]), where m = dimg™® and m,, = dimg~ %"
Let hea be such that a(h) =1 and let veqg % zeg 2% Then

[v+z+1lh, v+ +1'h] = =W +T'v=21z"+2I'z+[v, V']
and (cf. [8])

<hy hYg = B(h, h) = 2(m,+4m,,).
Hence

o4z4+1h, V+2' + 10 Yy = (my+4my,) ({v+2z, v+ 2D, + 2II').
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According to Proposition 2.1, S with the left-invariant metric given by
o+z+1Th v+ +1h g = 3(m,+4my,) (v+z, v +2'), +4l')

is a symmetric space. Since a connected and simply connected Lie group is
uniquely determined by its algebra, construction (1.2) includes (S, f*Q),
Se%.

3. Some properties of the composition of quadratic forms. From now on
we assume that u,uw'eU, z,z’eZ, v, v, v"eV. In the sequel we need the
following properties of the composition of quadratic forms:

3.1 ulu, v), uu, v)y = Jul? v, ',
(3.2 Culu, vy, p, v))y = [v]? u, u'.

Let A,: V—V and B,: U — U be the mappings defined by

A,(v) = pu(u,v) and B,(u) = u(u, v).

(3.3) A, is an isomorphism. If |u| = 1, then A4, is an orthogonal mapping.
(34) B, is a monomorphism. If |v] = 1, then B, is an orthogonal mapping.
(35) uz, piz, v) = —lzv.

For the proof of (3.1)+3.5) see [5] and [12].
(3.6) ulz, p(@, v) = —p(z, uz, v))—2<z, z'yv.

We easily obtain (3.6) applying (3.5) to z+2Zz and v.
3.7 D(v) = {u(z, v): ze Z}.

Indeed, it is sufficient to notice that u(z, v)e D(v) and dim {u(z, v):
zeZ} =dimZ.
(B8)  Culu, o), B, V), v), B, 0)> = 20, ) Cuy W,

Applying (3.2) to u and v+v" we get (3.8).

n® (v, u(z, V') = —nd (v, pu(z, v)+2<, v')z,

(3.9)
P (u(z, v'), v)= —nd(u(z, v), v')—2 v, v')z.

To see (3.9) we use (1.1) and (3.8).
(3.10) n® (v, u(z, v) = |v|%z.
(3.11) P (u(z, v), ulz, V) = —lzI> 7P (v, v')+2 <z, 7P (v, V') ) z.
We change the places of u(z, v) and v' according to (3.9) and use (3.5).
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Then we obtain (3.10) and (3.11).
(3.12) n®(u(z, v), u(z, v))=0 iff =ad(v,v’)=0.
This follows immediately from (3.11) and (3.5).

4. The group of isometries of (S, (-, - >5). The left-invariant Riemannian
connection on a Lie group with a left-invariant metric satisfies (see [13])

(4.1) ey, ud =5(x, y1, ud— Ly, ul, x>+ {[u, x1, y)),

where x, y, and u belong to the Lie algebra. Let e, = 3 h, (see (1.3)). Using

(4.1) we obtain

VieoXx =0, FV,reo=—3ro,

@2) V.rep=—rz, Vv=V,z=—3u(z,v),
‘ V.2 =<(z,2 ey, Vv =%4;vYeq+3nd(v, ).

Now we calculate R and VR in the required cases:

4.3) R(eg, v, V) = —4(<v, V') eo+ 1P (v, 1)),
(4.4) R(eo, v, €9) = v,

4.5) R (e, z, €) =z,

(4.6) R(v, eo, 2) = —% u(z, v),

47 R(z,v,v) = =5, v'>z+3 u(z, v), V') eg+57P (v, u(z, v)),
(48) R(v,v,v")= =3, v"Dv+5 0, VIV = u(rnd (v, v"), v)+
+iu(@P (v, v"), V)+5u(nd (v, v'), v"),

(4.9) R(z, v, 2) = —}u(z, p(z, v),
(4.10) R(z, €9, v) = =3 pu(z, v),

(4.11) R(z, Z,v) = =% u(Z, p(z, v))—% {z,Z'Dv,
(4.12) R(z, v, eo) = —% u(z, v),

4.13) VR (eo, X, y, 1) = 0,

4.14) VR(z, Z', v, v)=0.

By (4.3) and (4.7) we get
VR(z, 2!, v, V) = (—% v, V') <z, 2’ Y+§ <ulz, v), p(z', v)D+
+3 <u(@, v), p(z, V)))eo—1 u(@, v), ')z +
+3<2, 2)nd (v, V)+§nd(u(z, v), u(z, v)+
+3nd(v, p(z, uz, v)).
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Applying (3.6) and (3.9) to nd (v, u(z', u(z, v’))), and (3.8) to the expression by
e, we get (4.14).

The map u — A, (cf. (3.3)) defines a structure of a Clifford module over
the Clifford algebra C(Z, —|‘|?). From the classification of these objects (see
[4], [7], and [12]) one can see that for dimZ =0, 1, 3, 7 the type H algebra
can be regarded as

4.15) n=F"xF,
with the bracket |
[(g. p), (¢, P)] = (0, 2Im gq)
and the inner product
(9. p), (4, P)), = 4Re(qq'+ pp)),

where F denotes the algebra of real (R), complex (C), quaternionic (H) or
Cayley numbers (0), and

F0={pEF: I—)= _P},
q=(Ql""’ qn)’ q=(ql""’qn)’

99 = ) 4:q;.
i=1

The suitable composition of quadratic forms u: F x F" — F" is u(p, q) = 2qp.
For dimZ =0, 1, 3 and dimZ =7, n =1, in such a manner we obtain the
classical algebras. They have the following property:

ProrosiTION 4.1. Let

(4.16) O(v) = {u(u, v): ueU}.

If ne ¥, then for every v we have

(4.17)  If V' is orthogonal to O(v), then O(v') is orthogonal to O (v).

Proof. Let F=R,C, H We put v =(¢,0), v=(q,0), p =ﬂ and we
assume v’ L O(v). Then

0 = <q’, u(p, 9> = 8Re(q (gp)) = 8Re((7 9)(7 9))-
Hence gq =0 and

u(p, 4), 1(p, 9> = 16Re(q'p'-qp) = 16Re (7' (7 q) p) = 0.

If F=0 and n=1, then O(q) = F, and (4.17) holds trivially.

Remark. If F=0 and n>1, then we can only say that (4.17) is
satisfied by some v; for example, v =(q,, 0, ..., 0). At the same time we have
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THeoreM 4.1. If (4.17) holds for some v, then dimZ =0, 1, 3, 7.

Proof. Let veV be such that, for every v’ orthogonal to O(v), O(v))
is orthogonal to O(v). First we show that u(U xO(v)) < O(v), that is
A,(0O(v) = O(v) for |u = 1.

Consider the orthogonal decomposition V= 0(v) ® V;. Let we V. Then
A,(w)eO(w) and O(w) LO(v). Hence A,(w)eV;. This implies that V; and
O(v) are invariant subspaces of A,.

Let = pulyxow- Then j: UxO(v)— O(v) has all the properties
of the composition of quadratic forms and dimU =dimV. Hence
dmZ =60,1,3,7.

Proposition 4.1 and Theorem 4.1 imply that if n¢ €, then either n is of
the form (4.15) for F=0 and n>1 or dimZ #0, 1, 3,7, and then n
satisfies the condition

(4.18) For every v # 0 there is v orthogonal to O(v) such that O(v') and
O (v) are not orthogonal to each other.

We will show that in both cases VR(x) =0 if and only if xe a, where
VR (x) denotes the tensor field arising from FR by fixing x at the first place.
The proof is based on a common property contained in Proposition 4.2 for
the first and in Proposition 4.3 for the second case.

The case dimZ = 7. In this case we have the orthogonal decomposi-
tionof V=V, ® ... ®V,, n> 1, such that uy(U xV) < V, and ndP(w;, w;) =0
for w,e V;, w;eV,, i #j. We denote by v; the i-th component of v according
to the above decomposition.

First we show the following lemmas:

Lemma 4.1. (a) If w,eV,, wje V], i #j, then
VR(v, z, w;, w)) = 2 u(n® (u(z, v), w)), w))+1 o, W plz, wy)+
Fapu(r® (v, w), plz, w))+3z <z, nP (v, w)dw;+
+5 ulz, v), widw, +8u(n¢ u(z w;), w;)+
+5u(nP(v;, wy), u(z, w))+s Wj>ﬂ(2, w;).
(b) If w;, wieV,, w;eV,, i #j, then
VR(z, w;, wi, w)) = 3 u(n®(w;, w)), u(z, wy))+
+iu(n®(u(z, w), wj), w))+
+3 wy, Wiy u(z, w)+73 <z, n@(w;, w))dw;.
Proof. (a) By (4.7). R(z, w;, w;) = 0. In view of (4.2) and (4.8) we obtain
—R(F,z, w;, wj) = $R(u(z, v), wi, w))+ 3 R(u(z, v)), w;, w))
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= %#(ﬂ(b(ﬂ(l, vi)s W,-), w_;)+% <,U(Z, vj), wj>wi+
+iu(nd (u(z, v), w;), w,).
Moreover, by (4.10) and (4.11) we have

—R(z, V,w;, w;) = —R(z, V,,'.W,-, w;) =4 v, wiHulz, w;)+
+iu(m® (v, w), p(z, w))+3 &z, n@(v;, W) D w;

and by (4.9) and (4.12) we get
_R(Z’ Wi, vaj) = _R(Za Wi, ijwj)
= %#(n¢(vja w;), u(z, w;))+3 j, Wi u(z, wy).

Putting this together we obtain the assertion.
(b) We use (a) and the Bianchi identity

VR(z, w;, wi, wj) = VR (w;, z, w;, w))—= VR (W], z, w;, w;)).
LeMma 4.2. (a) For every q # 0 in O there are pe O, and q,, q,€ O such
that
(4.19) (41 P)(992)— 41 ((P9) q2) # 0.
(b) For every p #0 in O, there are q,, q,, 43€ O such that

(4.20) (41 P)(4293)— 41 ((P42) 43) # O.

Proof. We identify O with H+ H, with the multiplication defined by

(be)c =(bC)e, b(ce) =(cb)e, (be)(ce)= —cb for b,ceH.

For g =b+ce, g # 0 in O, the selection of gq,, p, and g, is shown in the

following table:

Case q, p q2
b#0 e i y,€ H is such that bg, =
b=0, c¢R e pe Hyissuchthatcp—pc # 0 1
b=0, ceR 1 i Jj

(b) For p =b+ce, be H,, the selection of q,, g,, and g5 is shown in

the following table:

Case q 2 4
b#0 g € H is such that q, b—bq, # 0 1 e
b=0, c¢R 1 g€ H is such that ¢cg,—q,c#0 | e
b=0, ceR i j 1
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A simple calculation shows that with these values of p, q,, q,, and g3,
(4.19) and (4.20) do not vanish.

ProrosiTiON 4.2. If n=0"x0, n> 1, then
(a) for every v # 0 there are z, v, v" such that

VR (v, z, v/, v"') # 0.
(b) for every z # 0 there are V', v", v""" such that
VR(z, v, v", v") # 0.
Proof. (a) If v=1(q,, ..., q,), ¢; # 0, we put z = pe O, and

v=(0,...,q,...,0, v'=(0,...,q,...,0), i#j.

Then Lemma 4.1 implies

(PR, z, V', v")); = 2((9; P) (@ 9D — 4;(3) ))-
By Lemma 4.2 the right-hand side does not vanish for suitable p, q;,
and g;.
(b) If we put z =pe O, and

v=0,...,45...,0, v'=(0,..4,...,0, v"=(0,...,q...,0),

then by Lemma 4.1 we have
VR(z, v, v", v") = 4((q; P) (@ 4D — 9; (T 4:))-

The assertion follows now from Lemma 4.2.
The case dimZ # 0, 1, 3, 7. Condition (4.18) is equivalent to

(4.21) For every v 0 there is v orthogonal to O(v) such that
D(v) = Kerad,. '

For the proof of this equivalence it is sufficient to notice that O(v) is an
orthogonal sum of lin {v] and D(v).

Before showing in this case the analogy of Proposition 4.2 we prove a
few lemmas.

LeEmma 4.3. The following conditions aré equivalent:

(1) P (v, v') =0 and v is orthogonal to v'.

(i) v" is orthogonal to O(v).

(1) v is orthogonal to O (V).

The simple proof is omitted.

Lemma 4.4. If o' is orthogonal to O(v) and n® (v, u(z, v)) # O, then

VR(v, z, v, u(z, 1)) # 0, VR(z, v, V', u(z, v)) # 0.
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Proof. First we prove

VR (v, z, v, pu(z, v)) =3 u(n® (u(z, v), V'), u(z, v),

VR(z, v,.V, pu(z, v)) = 3 u(n® (u(z, v) v'), u(z, v).

We can assume that |v| = |z| = |v'| = 1. By (4. 7) and Lemma 4.3 we get

(4.22)

VR(v, z, V', u(z, v)) = %(R(u(z, v), v, u(z, v))— (z, v, nd (v, p(z, v)))).
Now applying (3.10), (4.8), and (4.9) we obtain the first equality of (4.22).
Formulas (4.7)4.9) and (3.10) applied to VR(v, z, v, u(z, v)) imply

VR(V, z, v, u(z, v) = § u(n® (u(z, v), v), u(z, v))—
—gu(z, p(nd (v, p(z, v), ))

Now we transform the first summand according to (3.9), the second accord-
ing to (3.6) and we obtain

VR(V, z, v, u(z, v)) = —3 u(n® (n(z, v), v'), u(z, v)).
The last result combined with the Bianchi identity
VR(z, v, v, pu(z, v)) = VR(v, z, v, u(z, v))— VR(V, z, v, u(z, v))

gives the second equality of (4.22).
Now it is sufficient to notice that

u(nd (u(z, v), V), plz, v), v') = |n®(u(z, v), V)%
LEmMMA 4.5. If n satisfies (4.21), then for every zeZ we have

(4.23)  There are w, w eV such that w' is orthogonal to O(w) and
nd (v, u(z, v)) # 0.

Proof. By assumption, (4.23) holds for a z,. We can assume |z,| = 1.
Let v and v’ be such that v is orthogonal to O (v) and n® (v, u(z, v)) # 0. It is
sufficient to prove (4.23) when |z| = 1, z¢lin {z,} and n® (v, u(z, v)) = 0. We
put

w=pu(z—z9,v) and w = pu(z—z,, v').

By (3.1), w is orthogonal to w' and, by (3.12), nd(w, w) = 0. Hence w' is
orthogonal to O(w). Moreover, {z, z—z,> # 0 and

ptd)(y(z—zo, V'), u(z, p(z—zo, U)))
= —ntb(p(z—zo, v'), #(Z—Zo, ulz, v)))_
—2(z, z2— 2oy n® (u(z —zo, v), v)
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=24{z, z—zo )P (u(z —2zo, v), V)
=24z, z2—zoyn® (v, u(zo, v)) # 0.
From Lemmas 4.4 and 4.5 we conclude
ProrosiTiON 4.3. If dimZ # 0, 1, 3, 7, then
(a) for every v there are z, v, and v" such that
VR (v, z, v, V") # 0;

(b) for every z there are v, v”, and v such that
VR(z, v, v, v") # 0.

This settles the second case.

THEOREM 4.2. If s¢ %, then, for every x¢a, VR(x) # 0.

Proof. Let x =v+z+re,. If v # 0, then, by Propositions 4.2 (a) and
4.3 (a), VR(v, z, v, v") # O for suitable z, v/, v”. Hence, also FR(x, z, v/, v") # 0

in virtue of (4.13) and (4.14).
If v=0 and z # 0, then by Propositions 4.2 (b) and 4.3 (b) there are

v, v, v such that VR(z, v, v”, v’) # 0. Hence VR(x, v, v”, v""") # 0.
Now we shall describe I(S) for non-classical S.
THEOREM 4.3. If s¢% and L: s— s is an orthogonal mapping such that

(4.24) L(V(x,y) = V(L(x), L(y)), x,yes,

then L is an automorphism of s.
Proof. Obviously,

(4.25) L(R(x, y, 1)) = R(L(x), L(y), L(2)),
(4.26) L(VR(x, y, t, w)) = VR(L(x), L(y), L(t), L(w)),
and

VR(L(eo), x, y, t) = L(VR (e, L™ (x), L™ (y), L™ (1)) = 0.
Hence L(ey) = ey, ¢ = +1, and L(n) < n. Now we prove the following:
(@) L(V)cVand L(Z)cZ,
(b) L([x’ y]) = B[X, y]’ X, YES,
() L(V(x,y)=eV(L(x), L(y), x, yes.
(a) Let L(v) =0v'+z". Then by (44) and (4.5) we have
L(R(eo, v, €0)) = %(v'+2'), R(L(eo), L(v), L(eo)) = 4v'+2'.
Hence z’ =0, L(V) < V, and L(Z) < Z.
(b), (c). By (4.6) and the last result we have
L(R(v, eo, 2)) = —% L(u(z, v)),
R(L(v), L(eo), L(2)) = —%eu(L(2), L(v)).
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Hence

(4.27) L(p(z, v)) = eu(L(2), L(v)).
Combining (4.27) and (1.1) we get

(4.28) L(n® (v, v')) = en®d(L(v), L(v),

which implies immediately (b), while (b) with (4.1) gives (c). But in view of
(4.24) we have ¢ =1, and L is an automorphism.

Remark. It is worth to notice here that the orthogonal automorphisms
of s (without any assumptions on S) preserve V and Z and are identities on
a. This means that they are completely determined by the orthogonal
automorphisms of n, and these have been investigated in [14].

Denote by A(S) the group of automorphisms of S preserving the inner
product (-, - >s. We summarize the results above in the following

THEOREM 4.4. If s¢ ¥, then 1(S) is a semi-direct product A(S) xS (S acting
by left translations).

CoROLLARY 4.1. If s¢ %, then S is not a generalized symmetric space (for
definition see [11]).
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