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1. Introduction. Let f be an integer-valued function of the integer n and
la] > |b] > 0 with (a, b) = 1. The congruence

©) a’™ = b/™ (mod n)

has been shown to have infinitely many solutions n for a very small set of
functions f, and, in each case, for restricted values of a and b (see [14],
Chapter 4, Section 10). The best known of these functions is, of course,
f(n) = n—1. Most efforts to solve (0) have, in fact, involved f(n) equal to the
general linear function cn—k for selected values of a, b, ¢ and k; we summarize
those results in a paragraph below. In this paper, we prove that if f is
a polynomial having a rational zero r = k/c, and f(n) is positive for n sufficien-
tly large, then (0) has infinitely many solutions except for certain cases where
[c—kl =1 or 2.

It should be observed that a proof of the existence of an infinitude of
solutions of (0) for any polynomial f establishes the existence of infinitely
many composite solutions. Indeed, since there exists a polynomial g such that
f(n)’= (n—1)g(n)+£(1), any prime solution of (0) divides a/’ — 5’1, 50 (0) has
a finite number of prime solutions unless f has r=1 as a zero; since
@ '=b""! (modn) has been shown to have infinitely many composite
solutions (Rotkiewicz [12]), the observation holds in all cases.

Let (A) be the statement

(A) a™ % = b™~* (modn) has infinitely many solutions n.

Interest in solving (0) began with the discovery that the congruence
2""1 =1 (modn) has not only all odd prime integers as solutions, but also
certain composite integers (which came to be known as pseudoprimes). Cipolla
[3] proved, in 1904, that infinitely many pseudoprimes exist, and, in 1948,
Steuerwald [18] established the existence of infinitely many pseudoprimes
with respect to a by proving (A) for a>0 and b=c=k=1. For k # 1,

(1) a™ % = bk (modn)

has been investigated by Morrow [8], who established (A)forb=c=1,k =3
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and (q, 3) =1, Makowski [7], who proved (A) for b=c=1, k>1 and
(a, k) = 1, and Rotkiewicz, who proved (A)forb=c=1and k = 3foralla > 1
(see [14], Theorem 32) and established several necessary conditions for (A) to
be true. More recently, Rotkiewicz proved (A) for (a, b,c,k)=(2,1,1,2)
(see [15]). While this paper was being refereed, we learned that Kiss and Phong
[6] have proven (A) for a > 1, b =c =1 and k > 1, and that Phong [10] has
independently proven (A) for a, b and k positive integers and ¢ = 1, with the
exception of (a, b, k) listed in our Corollary 1.

For ¢ # 1, (A) has been proven for a and b positive, c =2 and k =1 by
Rotkiewicz ([14], p. 29); this result is implicit in his theorem that there exist
infinitely many even pseudoprimes with respect to a and b.

Although we have restricted a and b in the first sentence of the
Introduction, these restrictions are, of course, quite unnecessary, except that
neither a nor b can be 0 if the other is not 0, and are included in the interest of
simplifying the statements and proofs of the theorems. We will assume, also,
that ¢ > 0, and (¢, k) = 1 or kK = 0, with the observation that the existence of
infinitely many solutions with these restrictions implies the existence of
infinitely many solutions when they are removed, provided that (for ¢ < 0)
negative solutions n are allowed.

In addition to our principal result, we shall prove, in Section 6, an
analogue of Corollary 1, below, for the congruence a" * = —b""* (modn).

ConbrTiION C. For k # 0,
(£a, +b, |c—kl)#@+1,t,1) fort=1and c>1,
and
2*+1,2"-1,3,5 or 2"+1,2*—1,1,3)  for u>1,
(£a, £b,c, k) #<(2°-5+1,2°-5—-1, 1, 3) for v>0,
(t+2,t2,3), ¢+1,¢t,1,2) or t+3,t,1,2) for t>1.
MAIN THEOREM. Let f be a polynomial with integer coefficients which has
a rational zero r = k/c (c > 0).
(1) If f(n) > O for n sufficiently large, (+a, +b, k) #(t,t—1,0) for t > 1,
and Condition C is satisfied, then (0) has infinitely many positive solutions n.

(i) Iff(£n) > O for n sufficiently large, (0) has infinitely many solutions n if
and only if (+a, +b, k) #(t,t—1,0) for t > 1.

THEOREM 1. If Condition C is satisfied, (1) has infinitely many solutions. If
k =0, (1) has infinitely many solutions if and only if (+a, +b) #(t, t—1) for
t>1.

COROLLARY 1. The congruence a"~* = b"~* (modn) has infinitely many
solutions n if neither (a, b, k) nor (—a, —b, k) is one of the following triples:

2“+1,2—=1,3) for u=>2,
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2°-5+1,2°-5-1,3) for v>0,
t+1,t2), (t+3,t,2),0r (t,t—1,00 for t>1.
Setting b = 1, we have

COROLLARY 2. The congruence a" %=1 (modn) has infinitely many
solutions n for each pair of integers a and k if and only if (a, k) # (2, 0).

2. Preliminary results. Our approach involves exploiting the divisibility
properties of the cyclotomic polynomial F, defined by

2 F,(a, b) = [] (a®— biym

dim

or, alternatively, by

&) Fola. ) =[la=th)  (1<j<m (im =1,

where { is a primitive m-th root of unity.

The divisors of a™—b™ which are prime to a?—b? for d = 1 2,...,m—1
are called primitive divisors of a™—b™. Our definition is essentlally that of
Birkhoff and Vandiver [2] (it should be noted that some authors have
restricted the term primitive divisor to mean a prime primitive divisor). It is
well known that F,(a, b) = p§ [ [p#, where p,, is the largest prime factor of m,
c¢=0 or 1 and the p; are the prime primitive divisors of a™—b™. Sylvester
showed that the primitive divisors of F,(a, b) are of the form jm+ 1 ([4], Vol. I,
p- 384).

The following basic result on primitive divisors was first proved, for b = 1,
by Bang [1] in 1886 for positive a and b, (a, b) = 1, by Zsigmondy [19] in 1892
and by Birkhoff and Vandiver [2] in 1904, and, more recently, by Kanold [5],
and Rotkiewicz [13].

Let E={(r,r—1,1) for r > 1, (r,2*—r, 2) for r >2*—r >0, (2, —1, 3),
2, 1, 6)}.

THEOREM Z. F, (a, b) has at least one primitive divisor if (+a, +b, m)¢E.
We shall use the notation P(m) for the greatest prime factor of m.

The proof of Theorem 1 requires first showing that for almost all triples
(@, b, k), k=2, a*"'—b*~! has a primitive divisor > 2k—1. Schinzel [16]
proved that P(a™—b™) = 2m+1 if the square-free kernel of ab divides m, or
equals +2, and m # 4, 6 or 12 when |ab| = 2. We begin our discussion of the
magnitude of the primitive divisors of a™ —b™ by obtaining a lower bound on
P(@™—-b™) when (ab, m+1) > 1.

THEOREM 2. Let (a,b,m)# (2, —1,3) or (—2,1,3). If m>2 and
(ab, m+1) > 1, then
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@) P(@™—b™ > 2m+1, and
(i) if m=2 (mod4), P(a"—b™ > 3m+1.

Proof. The hypothesis is not satisfied if F,,(a, b) = F4(+2, +1); hence, by
Theorem Z, F,(a, b) has a prime primitive divisor p = im+ 1. Since pla™ —b™
and (a, b) = 1, pfab, so, by hypothesis, p # m+ 1. This proves (i). Assume now
that m =2 (mod4). We see that F,.,(a, b) has a prime primitive divisor
q = j(m/2)+ 1, that j is even since m/2 is odd, and that j # 2 since gla™—b™ and
(a, b) = 1 imply that g # m+ 1. The primitive divisors of F,,(a, b) do not divide
Fp2(a, b), so either p or q is > 3m+1.

COROLLARY. If m > 2, m = 2 (mod 4) and (ab, m+1) > 1, then a™ —b™ has
a prime divisor greater than 2m+1 of the form jm+1.

LEMMA 1. Let m > 2.

(i) Fo(a, b) > (la|—|b))*™.

(i) F,(a, b) > |a|®™m~ 42 where d(m) is the number of positive divisors
of m.
(iii) If m = pM, p prime and M > 1, then F,(a, b) > |a|P~ 2o,
(iv) If m = pM, p prime and p|M, then F,(a, b) > |a|P®™ M ~4M)2,

Proof. Let A = |a| and B = |b|. F,(a, b) is irreducible and of even degree,
¢(m), and is therefore positive for all triples (a, b, m).

(i) follows immediately from (3).

(i) Since, for all positive divisors d of m,

_A-(B/AY"'B_ A'-B' _A"'d

x = < =4a,
I A—B A1 (A—-B) ~ A? d
we have
A4— B¢
< <
0 lnA"“‘(A—B) Ind

with equality holding only if d = 1. It follows from (2) that

InF,(a, b)> Y u(g)(dlnA)+ Zp(g)ln(A;B)—z Ind.

dim d|m dim

This proves (ii), since

Yulm/d)=0, Y um/dd=¢pm) and []d=m""2

dim
(iii) It is well known that if m = pM, then

Fy(a®, b")/Fy(a, b) if p¥M,

Fula, b) = {FM(a", b) if pIM.
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(See [9], p. 158, for a derivation for b = 1.) By (i), F),(a?, b?) > (47 — B?)*™),
and since la—b{’| < A+ B, (3) implies F,/(a, b) < (A+ B)*™; hence

AP — BP\*M)
F,,,(a,b)><A+B) .
Since (A”—BP)/(A+ B) > AP~2, (iii) follows.

(iv) follows from (ii), since F,(a, b) = F,(a®, b").

Estimates for ¢(m) are readily obtained by observing that if m = [[p{* and
¢ <1, then

pi ' (pi— . oPi—
_H n(il)(l) c/n p,?'

pi Di

If ¢ < .86, then (p,— 1)/p° > 1 for p; = 5, and the minimum value of 1/2¢, 2/3¢,
and (1/2°)-(2/3°) is > 428. If ¢<.5, then (p;—1)/p°>1 for p,>3, and
(1/2°)-(2/3°) > .81. Thus we have the following lower bounds for ¢(m):

LEMMA 2. (1) If m > 2, then @(m) > 428 m8°
(i) If m > 2, then @(m)> 81 m?

It is clear that, apart from the exceptions given by Theorem Z, F, (a, b) has
a large primitive divisor (not necessarily prime) when m is large and ja—b| > 1,
since F, (a, b) exceeds |[a—b|*™ and has no prime divisor greater than m which
is not primitive. Lemma 3 below reduces the set of triples (a, b, m) for which
F,(a, b) does not clearly have a primitive divisor greater than 2m+1 to
a manageable size.

Let r>|t| >0 and (r,t) = 1. Let

$,={2,1,3), 4,1,3), (3, —1,3), (3, —-2,3), (5 —1,3), (5, —4,3),
2, -1,5), (3, —2,5), (2, +1,4), 3, £ 1,4, (2, £1,8), (2, —1,9),
2,1, 10), 3, 2, 10), (2, 1,20), (2, £1,12), (2,1, 18), (3, 1, 18)},
={(rt, 6): r<T7},
S, ={(r, t, 2): |r+t| 5 or =2°-3 or 2°-5 for v > 0},
Sy={1t1): [r—t| =2 or 3},
S=85,uS,uS,uUSs,.

Let
U={(r,2"-3—r,2)for r>1and v>0, (t+c, —¢,2) for c=1,2,3
or4and t>0, (t+2,¢ 1) for t >0, (2,1,2), 3,1, 2), (2, +1, 4),
(3, £1,4), 2, £1,6), (3,1,6), (3,2,6), 4, —1, 6), (5, 1, 6), (5, 4, 6),
(2, 1,10), (3,2, 10), (2, +1, 12), (2, 1, 18)}.
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LEMMA 3. Let m> 1, and F,(a, b) be such that (+a, +b, m)¢ E. Then
F,(a, b) has a primitive divisor greater than 2m+1 if (+a, +b, m)¢S, and
a primitive divisor greater than m+1 iff (+a, +b, m)¢ U.

Proof If m = 1, n = |a—b| divides F,(a, b) = a—b and n > 2m+ 1 unless
la—bl=2 or 3. If m=2, F,(a, b)=a+b clearly has a primitive divisor
>2m+1 =235 unless (a, b, m)eS;. Assume m > 2.

Let p be the largest prime factor of m. If the theorem is not true, then

F,(a, b) = p°(m+1) or p°2m+1), where c=0 or 1.

It suffices to show that F,(a, b) > p(2m+1).

If m is prime, F, (a, b) = (@™ —b™)/(a—b) > |a|™ 2 is greater than m(2m+ 1)
for all a such that |a| > 2 if m > 11. Upon computing F,,(a, b) for m = 3, 5 and
7 directly, we find that F, (a, b) has a primitive divisor > 2m+1 for m prime
unless (a, b, m) or (—a, —b, m) is one of the first eight triples in S.

If m is a power of 2 (m > 4), F, (a, b) = a™?*+b™? is readily seen to have
a primitive divisor greater than 2m+1 except when (a, b, m) =(2, +1, 4),
(3, +1,4) or (2, +1,8). If m is a power of 3 (m=>9), then

a"—b" =[ [] Faila, b)]-F,(a, b) = (@™>—b™>)F,(a, b)
dim/3
implies that
a*m3 if a>0,

(@*™3)/2  if a<O0;

hence F,(a, b) > 3(2m+1) unless (a, b, m) or (—a, —b, m) = (2, —1, 9).
Assume now that m =pM, M > 1, m not a power of 2 or 3. Let

4) f(a, p, M) = |a|?= 28 IMI—p(2pM +1),
) g(a, p, M) = |a|P~2428M") — p(2pM +1).

F,,,(a, b) = azm/3 +aM/3bm/3 +b2m/3 > {

When p > 11 and |a] > 2, (4) is a positive increasing function of M. By
Lemma 1 (iii) and Lemma 2 (ii), then, F,(a, b) has a primitive divisor > 2m+ 1
if the largest prime factor p of m is > 11.

When p = 7, we find similarly that (4) is positive if M > 5. Now, when
M=5 (and p=7), 81 M° <182 and p2pM+1)=497. So, if M <5 and
o(M) > 1.82 (ie., 2 < M < 5), then

F,(a, b)—7(14M +1) > 23°™M _7(14M + 1) > 2°°™M 497 > f(2, 7, 5) > 0.

Hence, when p = 7, F,(a, b) has a primitive divisor > 2m+ 1 unless (|al, |b|, m)
= (2, 1, 14). However, F,4(2, 1) and F,4(2, —1) are divisible by 43 and 127,
respectively, primitive divisors > 2m+1.

When p = 5, (5) holds for |a| = 2 if M > 10. Hence, by reasoning as above,
the inequality F,(a, b)—5(10M + 1) > O fails only if (M) < 3.10, i.e., if M = 2,
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4 or 6. We find, for these values of M, that a3*™ —5(10M +1) > 0O unless
(lal, |b), m) = (2, 1, 10), (2, 1, 20), (2,1, 30), (3,1, 10), (3,2,10), 4, 1,10) or
(4, 3, 10). Corresponding to these triples, F,(a, b) has a divisor > 2m+ 1 except
when (+a, +b, m) = (2, 1, 10), (3, 2, 10) or (2, 1, 20).

When p = 3, (5) is positive for all a if M > 37, which implies, as above, that
F,(a, b)—3(6M + 1) is positive only if (M) > 9.6. We find, since p is the largest
prime factor of m = pM, and M is not a power of 3, that F (a, b) has
a primitive divisor > 2m+1 except when m = 6, 12, 18, 24, 36, 48, 54 or 72.
Now, for these values of m,

m/2 m/2 m/2
a””"+b > &S gm2-m2p-1)
am/2p+bm/2p 2am/2p =

F,(a, b) =

which exceeds 3(2m+1) for m = 36, 48, 54 and 72.

By direct computation, Fy(a, b) = a?—ab+b? > 3(2-6+1) if |a| > 8. We
now examine F,(a, b) for p = 3, m # 6, using Lemma 1 (iv). Since p|M implies
that F,(a, b) = F,,(a?, b?), Lemma 1 (iv) implies that F,(a, b) > 3(2m+1) if

(6) |a[Pe™M) > MAMI2.3(6M + 1),

If, for example, m = 18, we have p=3, M =6, (M) =2, d(M) =4, so (6)
implies that |a| > 3.99. If (6) is evaluated similarly, but taking p = 2 for m = 12
and 24, we find that F,(a, b)) has a primitive divisor >2m+1 for
(lal, m) = (la| > 7, 6), (la| > 6, 12), (Ja| > 3, 18), and (ja| > 4, 24). Applying Lem-
ma 1 (i), with m =12, 18 and 24, we obtain |a|—|b| < 2.94, 2.19 and 1.86,
respectively. Upon computing F,(a, b) for m =6, 12, 18 and 24, for a and
b satisfying these conditions, we find that if 3 is the largest prime factor of m,
F,(a, b) has a primitive divisor greater than 2m+1 unless (a, b, m) or
(—a, —b,m) is (2, £1,12) or (2, 1, 18), or is in S,.

An examination of F,(a, b) for (+a, +b, m) in S reveals that F, (a, b) has
a primitive divisor > m+1 unless (+a, +b, m) is in the set U. This completes
the proof.

3. The congruence a*"* = b*~* (mod n). We showed in the last section
that, with certain exceptions, F,(a, b) has a primitive divisor > 2m+ 1. In this
section, we prove a generalization (Theorem 3) of a theorem due to Makowski
[7] which will enable us to prove Theorem 1 for “most” of the quadruples
(@, b, c, k) for which ¢ =1 and F,_,(a, b) does not have a primitive divisor
> 2k—1. We next observe that each primitive divisor n of Fi._y(a, b) is
a solution of (1); the existence of infinitely many solutions of (1) when

n>Q2k—1)/(2c—1) and n#(k-—-1)/(c—1)

then follows from Theorem 6. We prove also that (1) holds for k < 0 if and only
if ('_Hl, -I_-b’ k) # (t’ - 11 0)

THEOREM 3. If k > 2 and (ab, k) = 1, then there exist infinitely many integers
n satisfying the congruence a" * = b""* (modn).
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Proof. Let k= []p%, p; distinct primes, let m = []p;, and let
t > max {|a|, |bl, k, 6}.

By Theorem Z, there exists a prime divisor p of F,,,(a, b) of the form
p =jte(m)+1. Now

kp—k = k(p—1) = kjtp(m) = ¢ (k) mjt.

Hence a*?~*—b*»~* is divisible by both p and k; since (p, k) = 1, n = pk is
a solution of a" % = b""* (mod n).

THEOREM 4. If nj(a“ * —bl~¥), and n = jlc—k|+ 1 for some integer j > 1,
then n satisfies (1).

Proof. We have

—k
cn—k = c(jlc—k|+1)—k = |c—k] (Cj+|:::—k|) = 0.
Since the primitive divisors of F|._;(a, b) are of the form jlc—k|+1, we
have immediately the following

COROLLARY. Every primitive divisor of F|._y(a, b) is a solution of (1).

THEOREM 5. If k <0, (1) has infinitely many solutions iff (+a, +b, k)
#(@,t—1,0) for t > 1.

Proof. Assume k < —1. F,_;(a, b) has a primitive divisor except when
(%a, £b, c—k)is one of the last three of the four triples in the set E preceding
Theorem Z. Corresponding to these triples, (1) has the solution n = |2a—2"), 3,
and 7, respectively. Assume now that F._,(a, b) has a primitive divisor N. By
the Corollary to Theorem 4, N is a solution of (1). Rotkiewicz’s Theorem 34
([14], p. 130) proves that, for a > b > 1, a/™ = b/™ (modn) has infinitely
many solutions for certain functions f(n) (including all polynomials with
integer coefficients) provided there exists a solution n, such that 2 < f(n,) = n,
and f(n) > n/2 for all n > n,. The theorem is readily extended to all a, b such
that |a| > |b| > 0, and when f(n) = cn—k and n, is any positive integer, the
hypothesis of the extended theorem is satisfied. That is, (1) has infinitely many
solutions if kK < —1.

Assume k = 0. Since every solution of a" = b" (modn) is a solution
of a” =b" (modn), we may assume ¢ = 1. Rotkiewicz has observed
([14], p. 131) that it follows from his Theorem 34 that if a—b > 1, then
a" = b" (mod n) has infinitely many solutions, and it is clear from the theorem
extended to |a| > |b| > 0 that infinitely many solutions exist if |a—b| > 1.
Suppose that [a—b| = 1, that n = N is a solution of @" = b" (mod n), and that
p is the least prime factor of N. Let N = pm and s be the least exponent such
that a®* = b° (mod p). Since a?™ = b*™ (mod p), we have a™ = b™ (mod p), im-
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plying that s|m. But s|p—1, which implies that s < p—1 < p. This is possible
only if s =1, since m has no prime divisors less than p; hence pla—b, an
impossibility. This completes the proof.

Rotkiewicz has shown, for a > b > 1, that if f(n) satisfies a certain set of
conditions, the congruence a/™ = b/™ (mod n) has infinitely many solutions
provided there exists a single composite solution n, such that 2 < f(n,) = ny/2
and f(n) > n/4 for n > n, ([14], Theorem 31). We show, in the following
theorem, that the conclusion holds, for |a| > |b| > 0, whether n, is composite or
prime if f(n) = cn—k, subject to the condition that

l<n>@k—1)2c—1) and n#(k—-1)(c—1).

THEOREM 6. If there exists a solution n > (2k—1)/(2c—1) of (1), such that
n>1 and n # (k—1)/(c—1), then the congruence has infinitely many composite
solutions.

Proof. Since there exist infinitely many pseudoprimes with respect to
a and b, the theorem is true when ¢ =k =1 and is true when k <0 by
Theorem 5 (independent of the hypothesis).

Assume that ck # 1 and k > 0. Suppose (1) has at least one solution
satisfying the hypothesis of the theorem, but only finitely many solutions (as
noted in the Introduction, (1) has only a finite number of prime solutions), and
let N denote the largest solution. We show that Theorem Z (with m = ¢N —k)
assures the existence of a prime g such that gN is also a solution.

Suppose, first, that (+a, +b, |c—k]|) is in E. We observe that F y_,(a, b)
#Fi._y(a,b). If c=1, cN—k =|c—k| implies that N=1 or N =2k—1,
neither of which is possible. Assume that ¢ > 1. If cN—k = |c—k| = 2, 3 or 6,
then (since (¢, k) = 1 and ¢ > 0) we have ¢ =2 and k = 5 for |c—k| = 3; but
then N = 4, which is impossible since (+2)2" "> = (F1)>"~3 (modn) has no
even solutions. '

By Theorem Z, then, F.y_.(a, b) has a divisor g = j(cN—k)+1, j=> 1.
Since

N > k—1)/Q2c—1),

we have q > j(N/2)+ 1. Note now that (g, N) = 1. This is obviously true for
j=2, since then g > N; if j=1, ¢ > N/2, and since neither ck =1 nor
N = (k—1)/(c—1) holds, g # N; so, in this case, too, (q, N) = 1. It follows that
since a™ ~¥—b*N ~k is divisible by both g and N, a®® ~* = b "% (mod gN). Now,

c(@N)—k = c[j(cN—k)+1]N—k = (cN —k)(cjN + 1),
and therefore (1) holds with n = gN. This proves the theorem.

4. Proof of Theorem 1. It suffices to prove the theorem for (a, b, c, k) with
a positive, since each solution of a™ * = b""* (modn) is a solution of
(—a)f" * = (—=b)y"* (modn).
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We may assume that k > 0, since Theorem 5 proved Theorem 1 for k < 0.
If ¢ > 1, it is easy to show that if N = jlc—k|+ 1 and (j, ¢) # (1, 2), then

N> @2k—1)/2c—1) and N # (k—1)/c—1).

Since, by the Corollary to Theorem 4, each primitive divisor of F|._y(a, b) is
a solution of (1), it follows from Theorem 6 that the theorem is true for ¢ > 2
unless (+a, +b, |c—k]) is in E. Checking the elements of E, we find that N = 3,
N =7 and N = |2a—2"| are solutions of (1) for (+a, +b, |c—k|) = (2, —1, 3),
(2, 1, 6), and (a, 2“—a, 2), respectively, with

N > (k—1)(c—1) > (2k—1)/2c—1)

except when (+a, +b,c, k)=(2"+1, 2“—1, 3, 5); in this latter case, when
u=1, N=5-11is a solution. By Theorem 6, then, the theorem is proved for
¢ > 2. For ¢ = 2, we find, similarly, that the theorem is true for (a, b, c, k) if
F\._4(a, b) has a primitive divisor > |c—k|+ 1. However, examining the set
U preceding Lemma 3 and noting that ¢ = 2 and (c, k) = 1 imply that |c—k| is
odd, we see that if F|._,(a, b) has a primitive divisor, then it has a primitive
divisor > |[c—k|+1 unless (+a, +b, [c—k|) =(t+2, ¢ 1) for t > 0. It follows
that, since |c — k| is odd, the only possible (a, b, c, k) for which (1) does not have
solutions are those excluded in the statement of the theorem, and, corre-
sponding to jc—k| =3, (2, —1,2,5) and (-2, 1, 2, 5); however, we find that
n = 139-5419 is a solution of (1) for these latter two quadruples.

Let c=1. If k=1, the theorem is true; assume that k> 2 and let
m = k—1. We first examine (1) for (a, b, k) such that F, (a, b) has no primitive
divisors. We have previously noted [15] that 2""%2 =1 (modn) has infi-
nitely many solutions, proving the theorem when b =1 and |a—b| = 1. By
Lemma 3, the Corollary to Theorem 4, and Theorem 6, the theorem is
true for (+a, +b, k) #(a,2**'—a, 3) for u>0, (2, —1,4), and (2,1, 7), if
(+a, +b, m)¢S. Now, the theorem holds for (a, b, k) = (2, 1, 7) by Theorem 3,
and n = 3-43-251 is a solution of (1) for (a, b, k) = (2, — 1, 4). For (+a, +b, k)
=(a,2"*'—a, 3) with u >0, we note that, for a positive, n= |a—b| is
a solution of (1) with n > 2k—1 unless a = +(2“+1) and b = +(2"—1); we
observe that u # 0, since (a, b) = 1, and if u = 1, the theorem is true (b =1,
k = 3; [14], Theorem 32).

Examining the elements of S, first, we see that if ja—b| =2, (a, b) =1
implies ab is odd, so infinitely many solutions exist by Theorem 3. If ja—b| = 3
and b=1, ie, (+a, +b,k)=(2,—1,2) or (4, 1,2), n=3-59-4051 satisfies
2"73 =(—1)""3 (modn) and each solution of 2"~ 2 = 1 (mod n) (see the preced-
ing paragraph) satisfies 4"~ 2 =1 (mod n).

Examining the elements of S, now, we observe that if |a+b| = 2°-5 (ie,
(+a, +b,k)=(a,2°*1-5—a, 3)), n = |la—b| = [2a—2"*'-5] is a solution of (1)
with n > 2k—1 unless (a, b, k) = (2":5+1, 2°-5—1, 3) (since (a, b)) =1, v > 1)
or (7, 3, 3), and (1) holds for (7, 3, 3) if n = 11:73. If |a+b| < 5, it is clear that
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n=|a—b| is again a solution unless |[a—b| < S, ie, unless (a, b, k) or
(—a, =b,k)=(2, +1,3),4, +1, 3),(3, +1, 3) or (3, +2, 3). Now the theorem
is true for the first two of these four triples, and, also for (a, 2°-3—a,3) (v > 1)
by Theorem 3. The theorem is true for the latter two triples by Rotkiewicz’s
Theorem 32 (b = 1, k = 3; [14]) which is readily seen to hold also for b = —1
when a < 9.

The theorem is true as well for those triples (a, b, k) such that |a| = 7 and
m = 6, by the Corollary to Theorem 2, Theorems 4 and 6. The congruence
a" * = b""* (modn) has the solution

n=127-13367
for (a, b, k) equal to both (2, 1, 4) and (4, 1, 4), and
n =463-7039, 9, 513101-28909244 547481, 3-19-43691 and 3-43

are solutions for (a, b, k) =3, —2,4), (5, —4,4), 3, —2,6), (2, —1, 6) and
(2, —1, 10), respectively, eliminating (a, b, m) = (2, 1, 3), (4, 1, 3), (3, —2, 3),
5 —4,3), 3, —-2,5), (2, —1,5) and (2, —1,9) in S,. The remaining triples
(a,b,m)=(a, b, k—1) in S have the property that (ab, k) = 1; applying
Theorem 3 completes the proof of Theorem 1.

5. Proof of the Main Theorem. The existence of the rational zero r = k/c
implies that, for some polynomial g, f(n) = (cn—k)g(n), and, by Theorem 1,
that a*~* = b % (mod n) has infinitely many solutions if the hypothesis of (i)
of the Main Theorem is satisfied. Thus, if there exists an integer n, such that
f(n) > 0 for n > n,, all solutions N > n,, of a~* = b*"~* (mod n) are solutions
of (0), proving (i).

Assume now that there exists an integer n, such that f(+n)>0ifn>n,.
We let N > n, and observe that

Nl(acN—k_ch—k) iff _Nl(a—c(—N)-k_b—c(-—N)—k).
Since f(n) = (cn—k)g(n) = (—c(—n)—k)g(n), part (i) implies that (0) has
infinitely many solutions unless |[c—k| = 1 or 2, and | —c—k| = 1 or 2, proving
(i) for k # 0. But when k = 0, it is immediate from Theorem 1 that (0) has
infinitely many solutions iff (+a, +b) # (¢, t— 1), completing the proof.

6. Related results and comments. In [14], p. 132, Rotkiewicz proves the
following theorem:

THEOREM R. Let f be a function such that if pn and p = 1 (mod f(n)), then
S@)|f(np). If f(n) and f(np) are divisible by the same power of 2 and n, is
a solution of

(6) a’® 4+ b/'™ =0 (mod n),

with the properties that (a, b, f(no), ny) # (2, 1, 3, 3), 1< f(ny) = ny/2 and
f(n) > n/4 for n > n,, then (6) has infinitely many composite solutions.
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Although the theorem is proved for a > b > 1, it is readily seen to hold
for |aj > |b| =1, provided we require, additionally, that (a, b, f(n,), ny)
#(-2, —1,3,3)

A result similar to the Main Theorem can be proved for the congruence
a’™ = —b/™ (mod n); because the details are similar and because partial
results exist in the literature for f(n) equal to n—k, we prove only the following
theorem:

THEOREM 7. The congruence
(7 a" %= —b""* (modn)

has infinitely many solutions except, possibly, when (+a, +b, k) = (r, 2"—r, 2)
for r>2"—r>0, (r,2°3-r,2) for r>1 and v=0, (t+c, —t,2) for
c=1,2,30r4and t>0, or (r,t, 1) for rt even.

Proof. As in the proof of Theorem 1, it is sufficient to prove the theorem
for positive values of a.

Let k < 0. Assume that (+a, +b, k) #(r, 2*—r, 0) for r >2“—r >0, or
(2, 1, —2). Then F,_,(a, b) has a primitive divisor N by Theorem Z; N divides
a?~2k_p2-2k and therefore divides a'~*+4b'~*. Since

N—k=jQ2-2k)+1—k=(1—k)@2j+1)

for some integer j, N divides a¥ %+ b""* Assuming now that (+a, +b, k)
=(r, 2*—r, 0) or (2, 1, —2), we see that N|a¥ "% +b""* for N = 2 in the former-
case and for N = 7 in the latter. Hence (7) holds for all triples (a, b, k), by
Theorem R with f(n) =n—k and n, = N.

Letk>1.If k= 1,and a+b is even, N = 2 satisfies (7). Assume now that
k = 2 and that (+a, +b, k) #(r,2"—r,2) forr >2'—r >0, or (2, 1, 4). Then
F,,—»(a, b) has a primitive divisor N, and, as in the case k < 0, the theorem is
true by Theorem R with f(n) =n—k and ny, = N provided N—k > N/4, ie,
N >2k—1. Let m=2k—2. Since N =j(2k—2)+1, this implies that the
theorem is true if F,,(a, b) has a primitive divisor > m+ 1, that is, F,(a, b)¢ U.
Eliminating the triples (a, b, m) = (r, 2°-3—r, 2) and (t+c, —t, 2) from U, we
see that the theorem is true if it is true for (a, b, k)=(2,1,2), (3, 1, 2),
(2, £1,3), (3, £1,3),(2, —1,4), (3, 1,4), (3, 2,4), 4, —1,4), (5, 1, 4), (5, 4, 4),
(2,1,6),(3,2,6), (2, +£1, 7),(2, 1, 10) and for the triple (2, 1, 4) excluded above.
Now if (a, b, k)=(2,1,2), (2, —1,4), 3,2,4), 4, —1,4), (5,4,4), (2,1, 6),
(3,2,6), (2,1, 10) or (2, 1,4), a" * = (—b)""* (modn) has been shown in the
proof of Theorem 1 to have infinitely many odd solutions N; since N —k is odd,
each solution satisfies (7). By direct computation, we find that, as (g, b, k)
ranges through the remaining six triples, (3, 1, 2), (2, +1, 3),(3, +1, 3),(3, 1, 4),
(5, 1, 4) and (2, +1, 7), the following integers are, respectively, solutions of (7):

N =61-3187,29-157, 1181-5301533, 19-31, 3-23-38923, 37-61.
Applying Theorem R with f(n)=n—k and n, = N completes the proof.
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Rotkiewicz observed that it follows immediately from Theorem R that
there exist infinitely many composite integers n such that nja"+ 1, a result
previously proved by Sierpinski [17], and that if 2fa+ b, there exist infinitely
many solutions of a"+b" =0 (modn). These result are extended in the
following corollary:

COROLLARY 1. There exist infinitely many integers n such that nja"+b".

COROLLARY 2. The congruence a" *+1 =0 (modn) has infinitely many
solutions n except, possibly, for (a, k) =(+2"—1,2) for u>1, (+2°-3—-1,2)
for v >0, or (a, 1) for a even.

Proof. By the theorem, Corollary 2 is true if (a, b, k) # (2, —1, 2),
3, —-1,2), 4 —1,2) or (5, —1, 2). The integers n = 89-233, 11-757, 89-233
and 31-59 satisfy (7) for these triples, respectively.

In order to prove Theorems 1 and 7, and the above corollary, it was
necessary to find a solution of (1) or (7) for fifteen triples (a, b, k). The calculation
was readily carried out on a hand-held Casio fx-4000P programmable
calculator with the aid of the following theorem, which is similar to a known
result for pseudoprimes. The assignment of successively larger odd integer
values < 25 to e, yielded a solution of (1) or (7) for each of the fifteen triples.

THEOREM 8. Let n=p,p,...p,. If e; is the least exponent such that
a® = b% (mod p;), then (1) holds iff elcn/p,—k for i=1,2,...,s.

Proof. (1) holds iff ejcn—k, but cn—k = (cn/p,)(p;— 1)+ (cn/p;— k).

Whether the Main Theorem (and Theorem 1) can be proved for the
exceptional cases is not clear. It is rather easy to show that the theorem does
hold for infinitely many quadruples (a, b, c, k) of each of the excluded forms,
but the proof for all quadruples of any one of the forms would appear to be
difficult.
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