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wyCATEGORICITY OF GENERALIZED PRODUCTS
BY

JAN WASZKIEWICZ (WROCLAW)

The main results of this paper are the following theorems:

Every finite generalized product (in the sense of [1]) of w,-categorical
relational structures is wq-categorical. The limit reduced power of w-categor-
scal structure i8 wqy-categorical if the corresponding limit reduced power - of
two-element Boolean algebra has finitely many atoms.

These results are a little bit stronger than theorems proved by Grze-
gorezyk in [3] and by Weglorz and the author in [5]. Moreover, the proofs
given in this paper are more elementary and comprehensive. We use only
the characterisation of w,-categoricity given by Ryll-Nardzewski [4]
and the technique of the main theorecm of Feferman and Vaught [1]

1. Preliminaries. By T we denote a theory in a countable first order
language L. A relational structure of the similarity type L and with the
universe A is denoted by U. The theory of A we denote by Th (%), and
the set of all models of a given T — by Mod (T'). For any formula ¢ of L
T |- ¢ means that the universal closure of ¢ is a theorem of 7. S

By #,(L) we denote the set of all formulas of L with free variablee
among vy, vy, ...y Vp_y. Fo(L) is the set of all sentences of L. In the whol
paper we shall identify two formulas ¢, and ¢, provided |- ¢, <> ¢,. With
this identification &,(L) can be considered to be a Boolean algebra with
logical connectives as operations. If T is a theory in L, then the equivalence
relation on a set of formulas defined as ¢, ~qp ¢, if and only if T' |- ¢, © ¢,
is a congruence on #,(L). The quotient Boolean algebra %, (L)/ ~y
will be denoted by &,(T), but if T = Th(¥A), we write £, (A). Elements
of #,(T) will be denoted by ¢/T. We identify formula with its equivalence
class if it does not lead to missunderstanding.

Let us recall that a theory is called w,-categorical if all of its at most
countable models are isomorphic. A relational structure will be called
w,-categorical if its theory is w,-categorical. The w,-categoricity can be
characterized in terms of #,-algebras as follows:

TEEOREM (cf. Ryll-Nardzewski [4]). A theory T is w,-categorical
if and only if 1t is complete, and every algebra F,(T) is finite.
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In this paper we use the notions and results of the paper [1] the
notation being slightly modified. Let 2 denotes the two-element Boolean
algebra. Algebra 27 will be identified with the algebra of all subsets of
I with the usual set theoretical operations. Any expansion of this algebra
will be called a subset algebra over I. For any such algebra S, a sequence
£ =D,y B9y ..., ¥,_y> i8 called acceptable if P is a formula of the language
of S with k free variables, and #; are formulas of L. Let <¥;: ¢ I) be
a family of relational structures of the similarity type L, and let U be the
direct product of this family. If @ is a formula of L and f = (f,: 7 < o)
is a sequence of elements of %A, then we define

K[9,% f] ={ieI: W= S[f()]}

(where f(i) = (f,(): 7 < ®)).

If & is a set of acceptable sequences and S is a subset algebra over I,
then the (S, Z')-product of the family (%;: ¢e I) is the structure (4, @;>;.=,
where

(i) A is the direct product of the family {(4;: 7€ I),
(i) if ¢ = (D, B¢y ..., B_1), then Q, is fulfilled by f if and only if

S l= B[K [0, %, f1, ..y K[y, U, F1].

We assume that @, has finite arity equal to min{n: 9;¢ #,(L) for
every ¢ < k}.

Any relational structure defined in this way will be called a genera-
lized product. If Z is the set of all acceptable sequences, then a generalized
product is called full. If all factors are equal, then it is called a generalized
power. A substructure of a generalized product with the universe defi-
nable in this product is called a relativised generalized product.

We use the following version of the theorem of Feferman and Vaught
(cf. [1], Theorem 3.1), that is, a bit weaker than the original one:

THEOREM (S. Feferman and R. L. Vaught). Let the type of subset
algebra be given. Then for every formula & of the language of full generalized
product there exists an acceptable sequence  such that 9 is equivalent to Q,
in any full generalized S-product (for every S of the given similarity type).

Such an acceptable sequence will be called an F. V.-reduction of .
It is obvious that if ¥ has n free variables, then every member of the
F. V.-reduction of 4, which is a formula of L, belongs to &, (L).

The power of a set A will be denoted by |4].

2. w,-categoricity of generalized powers and finite generalized
products.

THEOREM 1. If S and A are w,-categorical, then any generalized S-power
of A (relativised or nmot) is wy-categorical.
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Proof. We give a proof for the full S-power of U, denoted by A®.
Proofs for other cases can be -easily obtained from it.

Let the sequence {&,, ..., #,,_,> consists of exactly one representative
from every element of #,(%). It is easy to see that from every element
of #,(U°) we can choose a representative of the form @, such that ¢ =
= (D, gy .-y Fpp_,). Moreover, if S|= &, & &,, then A%|=Q, & Q,.
So @, depends only on the equivalence class of @,. From this it follows
that |#,(U°)| < |F,(S)| for m = |#, (%)

THEOREM 2. Ewery (relativised or not) finite generalized product of
wo-categorical structures i8 wy-categorical.

Proof. For the sake of the simplicity of notation, we prove this
theorem for a full product A of two structures A, and A,.

Let ~ be the intersection of equivalence relations ~uqy ;) and ~mpy,),
defined on &, (L). From this definition we have

|F (L))~ 1= l{p/Th(A) N p/Th(As): @, ye F,(L)}|
< lfn(%1)|'|fn(ﬂn)|-

So we proved that if U, and A, are w,-categorical, then F,(L)/~ is
finite. Let the sequence {#&,, ..., #;_,> contain exactly one representative
from every equivalence class of ~. As previously, one can choose from
every clement of #,(W) a representative of the form @, such that { =
= (D, B¢y ..., %_;»>. The proof can be completed in the same way as
the proof of the previous theorem.

From Theorems 1 and 2 one can immediately obtain results on w,-
categoricity for all particular cases of generalized products (numerous
examples of such operations are given in [1]). As one can see, Theorem 1
follows from Theorem 2.

PRrROPOSITION 1. The subset algebra is wy-categorical if and only if it
is finite. ’

Proof. The necessity is obvious. To prove sufficiency, we take the
set of formulas of the language of Boolean algebras {g,(X): » < w},
where ¢,(X) means: X ¢s a union of n atoms. Of course, neither of two
such formulas is equivalent to the other in any subset algebra over an
infinite set.

We finish this section with the example of an application of Theo-
rem 2. .

CorOLLARY 1 (Theorem 2 in [3]). The class of w,-categorical similar

structures is closed under the operations of finite direct union and finite
direct product.

The second part-of this corollary was also proved in [5].

3. Infinite reduced powers. In [1] the operation of reduced product
was considered as a special case of generalized products, but, by Propo-
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sition 1, the immediate application of Theorem 1 gives no information
about preserving of the w,-categoricity under this operation. Nevertheless,
the proof of Theorem 1 can be applied to every operation, for which an
analogue of the Feferman and Vaught theorem can be proved. As it was
observed by J. Weinstein (for details, see Theorem 4.10 in [2]), such
a theorem holds for a reduced power U5 if one takes the Boolean algebra
21 instead of a subset algebra (appropriate modifications of notation
and definitions are necessary). Analogous observation for limit powers
has been done in [7]. Putting these two results together, one can easily
prove the following theorem:

THEOREM 3. Let @ be a filter over I, and & a filter over I*. If N and
2L | F are w,-categorical, then N5 | F i3 w,-categorical.

This theorem for the case of reduced powers was proved in [5] but,
using results of [6], one can extend the proof to the general case.

Remark. The proof of Theorem 1 works also for infinite products
provided all factors are models of the same theory T such that

(i) #,(T) i8 finite for every m and if the corresponding Boolean algebra
18 wqy-calegorical.

The proof of this fact easily follows from the previous theorems,
because condition (i) is equivalent to the conjunction of the following
two statements:

(ii)) Every complete extension of T i8 w,-categorical.
(iii) There is only a finite number of complete extensions of T.

As an example of the theory of equality shows, (ii) does not imply
(iii). So condition (ii) seems to be an interesting generalization of the
notion of w,-categoricity.

4. Final remarks. Let us denote by dim(8B) the cardinality of the
smallest set of generators of-a finite Boolean algebra B (the dimension
of B).

PROPOSITION 2. a. dim(B) = — F(—log,log,(B)).

b. max (dim (B,), dim (B,)) < dim (B, X B,) < max (dim (B,), dim (B,)) +
+1.

Proof. a. If B ~2™, then dim(B) is a non-decreasing function of
m. The largest algebra of dimension % has 2% atoms. So, 24m(®)~1 < 4
< 24m®) which completes the proof of a. b follows immediately from a.

From the proofs of Theorems 1 and 2 the following proposition,
a bit stronger than these theorems, follows:

PROPOSITION 3. a. |#,(UA°)| < |#(S)| for k = dim(#F, (%))
b. |F (U X W)l < [F(R%)] for k = Aim (F,(U;) X F,(Ar))-
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