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1. This paper is motivated by the fact that in connection with partial
algebras we know at least two so-called “homomorphism theorems” in the
category B4 consisting of all partial algebras of any given similarity type 4
and all homomorphisms ¢: 4 — B (A. Be ‘). where ¢ is a mapping from
the carrier set A of A4 into the carrier set B of B carrying the structure of A
into that of B (for the fundamental definitions concerning universal and
partial algebras cf. [1]-[3], [6], [7] or [10]; for category theoretical notions
see [9] and [10]). Namely, the first “homomorphism theorem” characterizes,
up to unique isomorphism, all full and surjective homomorphisms starting
from a given partial algebra 4 by their congruence relations induced on A
(cf. [12], Section 3). The second one, presented by Schmidt in [13] charac-
terizes, up to unique isomorphism, all almost surjective homomorphisms ¢
starting from a given partial algebra 4 by the closed congruence relations
which are induced by the closed homomorphic extensions ¢ of ¢ on the
initial segments of a fixed free completion 4 of A.

Now a question arises whether there is a common category theoretical
background for these two results. This problem is partly stimulated by (and
vice versa — it stimulates) a project to get a survey of the concrete meanings
of category theoretical notions in categories of partial algebras (cf. [6] and
[11].

We think that the presented translation of the J. Schmidt kernel into
category theoretical concepts yields some interesting new insights into partial
algebras and leads to some purely category theoretical problems.

2. We recall [13] the following three “basic statements” in connection
with the homomorphism theorem in the category I4 of all total algebras of
type 4:

I. Each homomorphism ¢: A — B induces a congruence relation R, in A.
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II. Each congruence relation R in A is induced by a surjective homomor-
phism ¢: A =B for some B.

III (diagram completion). For a surjective homomorphism ¢: A — B and
an arbitrary homomorphism Y: A — C there is a — necessarily unique —
homomorphism w: B — C such that ¢y =woe iff R, = R,.

If we replace here “total algebras” by “partial algebras” and “surjective
homomorphism” everywhere by “full and surjective homomorphism” (full
means that the structure on ¢[B] is totally induced through ¢ by the
structure of A), we get a corresponding triplet of statements for partial
algebras (cf. [12]). In both cases, Statements II and III just say that the
surjective homomorphisms in I (respectively, the full and surjective homo-
morphisms in P4)are exactly the regular epimorphisms of the corresponding
category.

For the results of [13] the situation is somewhat different: namely, a
given (almost surjective) homomorphism ¢: A —= B is first factorized into an
embedding of A into an A-generated relative subalgebra A’ of the free
completion A:= F(A. T4 of A followed by a closed homomorphism @: A’
— B. and then the induced congruence relation of @ on A’ is defined as the
kernel of ¢ (we shall call it the J. Schmidt-kernel or S-kernel of ¢, briefly:
S-ker ¢):

Diagram 1

(Note that the graph of ¢ is given by ¢ = C; g9, whence it is uniquely
determined by A4, B and ¢.) Then the statements corresponding to I, II and
IIT are the following (cf. [13]) for A4, B, CeB“:

2.1. THEOREM. The S-kernel of an arbitrary homomorphism ¢: A =B is a
closed congruence on dom @ (dom @ is an intermediate initial segment of A).

2.2. THEOREM. Each closed congruence relation in an intermediate initial
segment of A is the S-kernel of some almost surjective homomorphism ¢: A = B
for some B.

2.3. THEOREM. Let ¢: A =B be an almost surjective and y: A - C an
arbitrary homomorphism. Then there is a — necessarily unique — homomor-
phism w: B = C such that Yy =woe iff

R; =R;, ie, S-kerp <S-kery.
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3. In order to translate these results to arbitrary categories we have to
find suitable category theoretical concepts behind the notions and construc-
tions used above (possibly in such a way that also I-III for full and surjective
homomorphisms in B fit into the pattern). Our main clue is the observation
from [4] that in connection with Theorems 2.1-2.3 we deal with a factoriza-
tion system (see Definition 3.2 below).

3.1. THEOREM. In the factorization system
; . = (I4extendable epimorphisms, I3-perfect homomorphisms
(£(TY. 2P(TY) = (T4 dabl hi T4-perfect h hisms)

in B4 (which exists according to results in [8] or [9]). the class of all T4-
perfect homomorphisms is exactly the class of all closed homomorphisms.

3.2. DeFiniTioN (cf. [10] or [11], slightly narrower in [8], [9].
A factorization system (¥, .¥) in a category € consists of two classes .# and
9 of C-morphisms such that

(i) Lo =Mor@ where Y0¥ = |sohl he#,seY);

@) Iso € < ¥ ~ v,

(ili) HFONH S H and Yo S ¥;

(iv) every (4, ¥)-factorization, according to (i), is unique up to unique
isomorphism, ie., if f=soh=s0h" are two (X, ¥)factorizations of
feMor € (h, W e ¥, s, s’ €.¥) then there exists a unique isomorphism i such
that s =s'oi and h =i~!oh’ (this means that Diagram 2 is commutative).

/
=
f
°

I

Diagram 2

!

-

{ ]
|
|
|
|
|
1
|
|
|
!

3.3. OBservATIONS. (1) A congruence relation corresponds to the kernel
pair of a morphism f; i.e, to the pullback (K; k,, k,) = ker f of Diagram 3.

[
‘f
.—f—b.

Diagram 3
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(i) Every closed epimorphism in P4 is a full and surjective, and hence
a regular epimorphism (i.e., the coequalizer (or pushout) of a pair of
morphisms).

(iii) Every regular epimorphism in B4 is the coequalizer of its kernel pair
(if this exists) (cf. [9]. Proposition 21.16).

(iv) S-ker ¢ is just the congruence relation of @ in the (£(I9), £(T9)-
factorization (g,, @) of ¢.

(v) If (r, r'; L) is the pushout of the kernel pair (K; ky, k,) of f, then r

=r' (Diagram 4).
\ //

Diagram 4

Since fol = fol, there is an [ such that k;, ol =k, o0l = 1. Hence rok,
=r' ok, implies

r=rok;ol=r'ok,ol=r.

Thus we are led to the following conditions on a category to become
amenable to our generalizations.

3.4. CrLaiM. In what follows we want the category € to have a factoriza-
tion system (', #) satisfying the following conditions:

(1) for every s€.% there exists a congruence relation kers in @ ie, a
kernel pair (K; k,, k,);

(2) the kernel pair of an .¥-morphism is also the kernel pair of a regular
epimorphism.

It is obvious that (1) corresponds to Statement I and Theorem 2.1, while
(2) corresponds to Statement II and Theorem 2.2. An analogue to Statement
III and Theorem 2.3 is given by Thegorem 4.3 below.

4. Before we formulate the General Diagram Combletion Theorem we
would like to extend the notion of J. Schmidt-kernel to categories.

4.1. DeriniTiON. Let € be a category which satisfies Claim 3.4 ‘with
respect to a factorization system (., ) and let f e Mor(A, B) for any two
objects A, B eOb §; moreover, let (h, s) be an (#, F)-factorization of f, i.e.,
f =soh, se¥, he¥. A category theoretical J. Schmidt-kernel of f (with
respect to the factorization system (.#, .¥)) is any kernel pair (K; k,, k,) of
the morphism s, i.e, we have the commutative Diagram 5. °
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K
/l\

c c

Diagram $

We write (K; k,, k;) = (#, ¥)-ker f, where x indicates equality up to
unique isomorphism (see [9]).

4.2. Remarks. This definition is a common generalization of the notion
of the J. Schmidt-kernel for partial algebras and of the notion of a usual
kernel for partial algebras or total algebras. In fact:

(a) In the case of partial algebras we have

S-ker ¢ = (£(T9), 2(TY)ker ¢.
(bj In the case of the usual kernel we take in P4
(#. L) = (Iso B4, Hom R4).
and in I%
(o, &) :=(Iso T4 Hom T9),
the trivial factorization systems. Thus in both cases we have
kero = (H#, S)ker o

for any ¢ eHomP* (p eHomT). N
We should observe that in all these cases .# consists of bimorphisms,
which is not required in general.

We are now able to formulate the General Diagram Completion The-
orem.

4.3. GENeraL Diagram CompLETiON THEOREM. Let € be a category
which satisfies Claim 3.4 with respect to a factorization system ( ¢, .¥). Let

A,B,Be€Obl ecMors(4, B)nEpi€, feMor,(A4, B),
and let (h, s) and (K, s') be (#, ¥)-factorizations of e and f, respectively:
e=soh, f=so0N.
Moreover, let

Doms:=C, Doms :=C
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and
(K; ky, k) :x kers (= (S, ¥)kere),
(K'; ki, k) : = kers’' (= (#, S)ker f);
further, let I: C =K and I': C' = K’ be sections which belong to (K; ky, k,)
and (K'; ki, k), respectively (cf. Observation 3.3 (v)):
kijol=1¢, kjol'=1c for jeil,2}.

Let us consider the following statements:

(i) There exists a unique g: B =B’ in Mor & such that goe = f.

(i) There exists a unique m: K = K’ in Mor € such that the following
equations hold for jel, 2):
(*) kiomoloh=FH,
(%%) kiomolok;=kj;om.

THEOREM. With the above assumptions we have (i) = (ii). If, in addition, s
is a regular epimorphism, then also (ii) = (i).

The commutative Diagram 6 illustrates this situation.

The proof of Theorem 4.3 will follow from the results in the next
sections. Moreover, we shall see that our notion of (#, .¥)-kernel is natural
in so far as different (¢, ¥)-factorizations of the same morphism yield
isomorphic (#, ¥)-kernels. In connection with additional assumptions on
our category or on the factorization system we shall get some additional
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statements which one usually considers in connection with such diagram
completion theorems (for instance, when g is an epimorphism, monomor-
phism or isomorphism, respectively). Throughout the rest of this paper we
keep to the assumptions and to the notation introduced in connection with
Theorem 4.3.

5. Existence and properties of m.
5.1. “4.3 (i) =4.3(ii)”. Consider Diagram 7 which extends Diagram 6 in

__——_—__———————x

3

R e

[,

Diagram 7

the way described below. Note that s€Epi @, since ecEpi €. We assume
(v, V) €HF x ¥ to be an (K#, ¥)-factorization pair for the morphism g os, ie.,

(1) gos=vou, u:C—-D, v:D-B,

Then f =goe=gosoh =vo(uoh), where ve.¥ and uohe »#. Since also f
=5 oH, s'€.¥ and h' € #, there exists — according to 3.2 (iv) — a unique
isomorphism i: D — C’ such that

2) h=io(uoh), v=so0i.
We now define two morphisms p,, p,: K = C’ as follows:
3) py:=iouok,, p,:=iouok,.
Since, by (2) and (1),

s’op, =s'oiouok,; =vouok, =gosok,

=gosok, =...=5"0p,,

2 — Colloquium Mathematicum 57,1
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and since (K'; k), k3) is a pullback of (s, s’; B), there exists a unique
morphism m: K — K’ such that
4) kiom=p;, jelil,?2}.
Now, by k;ol = 1, formulas (4); (3) and (2), we have
kiomoloh=iouokjoloh=iouoh=h for jel, 2},
i.e. () of condition (i) holds. Further, because of (4) and (3), we obtain
kiomolok; =iouokjolok; =iouok;=kjom,
whence (*#) of condition (ii) is satisfied. Thus one implication of Theorem 4.3
has been proved.

5.2. LEMMA. Given g, for every m: K — K’ satisfying (x) and (xx) we get
meMono € if # < Mono C.

Proof. Let a, b: L =K be morphisms such that moa = mob. Then for
j€ll, 2} we have kjomoa =kjomob and, by (3) and (4),

kiomoa=iouok;oa=iouok;ob.

Since i is an isomorphism and u €.# < Mono € by assumption, for je |1, 2!
we get kjoa = k;ob. Since sok, = sok,, we infer that

sok,0a=s0ok,0a=s50k,ob =s0k,0b;

and since (K ; k,, k,) is the kernel pair of s, there exists a unique morphism p
such that k;op =k;0a =k;ob, whence p=a =b, ie, meMono C.

Note that so far neither s has been required to be regular nor e to be an
epimorphism.

8§3. Remark and example. In order to motivate in 5.2 the assumption
“# = Mono € consider the class & of all mono-unary universal algebras
(A; @* (with one unary operation) satisfying, say, the identity ¢(x) = @ ().
Let T = (T; ¢7) be the absolutely free mono-unary algebra with basis |x, y!.
Moreover, let F =(F; ¢f) be the K-free R-algebra with K-basis |x, y!, ie,

F = :i’ 9921’ (pf(i)=¢l’(y)=¢i(z)=f.
In Diagram 6 we choose
A=B:=T=C, e:=idr=h=s, B =C:=F,

let f stand for the homomorphic extension of (x =X, y =) =g = h’, and
s’ =idy. Then K and K’ have as carrier sets in each case the diagonal of
TxT and of F xF, respectively, and k,, k,, ki, k> are isomorphisms. (h, s)
and (K, s') are (R-extendable, K-perfect)-factorizations of e and f, respectively
(cf. [8]). Note that m is isomorphic to f which is not a monomorphism.
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A consequence of the results obtained so far is a proof of the
categoricity of our notion of (¢, .¥)-kernel:

54. LEeMMA. Let (h,s) and (K, s’) be two (X, S)-factorizations of the
same &-morphism e: A =B and let Q satisfy Claim 3.4. Then the kernels
(K; ky, ky) of s and (K'; ki, k3) of s’ are isomorphic by m: K — K’ such that
both m and m™! satisfy (*) and () of statement (ii) in 4.3.

Proof. As we noted at the end of 5.2 we have not needed in 5.1 the
morphism e to be an epimorphism. Since 1, plays the role of g in 5.1, we get
the existence of unique m: K =K' and m’: K’ =K both satisfying () and
(#*). Since m'om and 1; (respectively, mom’ and 1) satisfy (*) and (xx) for
the identical factorizations (h, s), (h, s) and (K, '), (K, §) of e, respectively, we
conclude that m"om = 1, and mom’ = 15., whence m’' =m™!, and both m
and m’ are isomorphisms satisfying (x) and (**).

6. Existence and properties of g.

6.1. “4.3 (i1) = 4.3 (i)”. Using the notation of Theorem 4.3 and Diagram
6, assume that for given e, f, etc, there exists a unique m: K — K’ satisfying

K
K - C
kzi ls
c s —= B
Diagram 8

(%) and (**). Let s be a regular epimorphism. Hence Diagram 8 is a pushout
diagram (s = Coeq(k,, k,); cf. [9], Proposition 21.16).
We consider p':=s'okiomol(=sokyomol, since s ok) =s 0k}).
Hence
"p'okl =s'okjomolok; =s'okijom=s"0kyom

=s'okomolok, = p’ ok,

by (*x). Thus there exists a unique g: B — B’ such that
gos=p =sokjomol,
whence
goe=gosoh=s'okjomoloh=s'oh'=f

by (%). (The uniqueness of g also follows, since e is an epimorphism.)
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That the assumption on s to be regular is not too strong is shown by
the following

6.2. LEMMA. With the notation of Theorem 4.3 for a given e assume that
N < Epi € and that (ii) = (1) holds for every f: A = C'. Then s is a reqular
epimorphism.

Proof. Let the assumptions of Lemma 6.2 be satisfied. Then from
Claim 34 (2) we infer that there exists a regular epimorphism, say s’: C
—B”, such that (K; k,, k,) xkers”. Thus there exists a unique (epi)-
morphism w: B” - B such that wos” =s (note that ecEpi € implies
se€Epi € whence weEpi ¢). From [11], Satz 1.7 (9), and .# < Epi € we may
infer that s” €./ (cf. Diagram 9). Thus f: s"oh (ie, B := B") yields the

k2

Diagram 9
situation of Theorem 4.3, where (K’; k, k3) = (K; ky, k;), whence m = 1,
satisfies (*) and (*»). Consequently, there exists a unique g: B — B” such that
goe = f,1.e, gosoh =s"oh. Since f is also an epimorphism, by considering
the pairs (e, €) and (f, f) (instead of (e, f) in Theorem 4.3) we get gow = 1.
and wog = 1z, whence s and s” are isomorphic, i.e, s is regular.

6.3. ProrosITION. Under all the assumptions of Theorem 4.3 the following
statements hold:

(i) geEpi € iff f €Epi €.

(ii) g elso € iff

(@) melso € (m satisfies () and (x*)),

(b) 5" is a regular epimorphism,

(c) m~?! satislies the identities corresponding to (x) and (x#).

(i) If # < Mono G, then (a) and (b) of (ii) imply (c).

Proof. (i) is obvious. In order to prove (ii) assume first that g elso €.
Then g €.¥, whence there exists an isomorphism i: C — C’ such that ioh
=h, and s’0i =go0s, ie, s =gosoi~! is isomorphic to s, and therefore is
a regular epimorphism like 5. Thus (b) holds. Since now also s’ is a regular
epimorphism, we infer easily (by applying Theorem 4.3 in the opposite
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direction and observing the uniqueness statements) that m~' exists and
satisfies (*) and (*%).

Now let (a), (b) and (c) be satisfied. Then, by Theorem 4.3, there exists a
g': B — B such that g'o f = e, and by the uniqueness statement in Theorem
4.3 and further applications of this theorem we see that g’ is an inverse of g,
i.e, that g is an isomorphism. Finally, assume in (ii) that (a) and (b) are
satisfied and that o < Mono €. Then, for je{l, 2! we get

(kjomolo(kjom™'ol) =kjomom™'ol = kjol' =1,

whence k;om™! ol is a section and kjomol is the corresponding retraction.
We use g, u,v,i as in 5.1, whence by (3) and (4) in 5.1 we have

iouok;=kjom=kjomolok;.

Now, k;€Epi € (since k;ol = 1¢), whence iou =kjomol. But ielso€ and
ue¥ < Mono ¢, and so

iou =kjomoleMono €.

Since it is also a retraction, it is an isomorphism (cf. [9], Proposition 67).
This shows that

kjom™'ol =(kjomol)™!, ie. 1c=kjom 'olokjomol,
whence
h=k;om™'ol'okjomoloh=k;om "ol ok’
by (*), and so () also holds for m~!. From the above equations we also get
iouok;om™! =kj,
whence
kjom='ol okj=(kjom™'ol)o(iouyok;om™!
= (kjomol)~'o(kjomolokjom ' =k;om™ .

Thus we also have (x+) for m™!.

7. Characterization of monomorphisms by (.#, ./)-kernels.

7.1. While epimorphisms and isomorphisms could be described above in
general categories, we can describe monomorphisms only in special concrete
categories. Note that in the category ‘R“ of all partial algebras of some given
type 4, for the epimorphism ¢ and the homomorphism f determined as in
Theorem 4.3, g is a monomorphism iff

S-kere = C x C nS-ker f.

In order to get similar statements in a greater generality we extend
Diagram 7 to Diagram 10 below by adding the direct products C xC and
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C’ xC’' and the morphism m* between them induced by iouog; (j€{l, 2}).
The morphisms k and k' are induced by k,, k, and K}, k), respectively.
d1, 92 91, q> are the corresponding projections. For other commutativities
compare the previous sections, e.g., we assume that (*) and (=*) of 4.3 (ii)
hold. We abbreviate

(5) x:=soiou (=vou =gos).

Diagram 10

ProrosiTiION. Under the assumptions of Theorem 4.3 and with the nota-
tion of Diagram 10 and the statements

(i) g is a monomorphism in €: geMono ¢;

(i) (K:; ky, k,) is a kernel pair of x: (K k,, k,) < ker x;

(iii) (K; k, m) is a pullback for K' ¥,C’' xC' ™ C xC;
for finitely complete categories € we have

(@) (1) = (ii) = (iii).

(b) If, in addition, (€, %) is a concrete category, and if its forgetful functor
U preserves finite products, pullbacks and coequalizers, then (ii) implies (i); if,
moreover, ¥ < Mono G, then (iii) implies (i), so (i), (i) and (iii) are then
equivalent.

Praof. (a) Let us first prove that (i) = (ii). Assume that g is a mono-
morphism and let
F3C

2
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so that xor, = xor,. Since, by (5), x = g 0s, and since g eMono ¢, we have
sor, =sor,. Now the rest of the proof of (K; k,, k;) x kerx is a conse-
quence of (K k,, k,) x kers and the fact that

x0k, =gosok, =gosok, = x0k,.
K—m—..KI

[k

cxC c'xc’

Diagram 11
Let us now assume that (K; k,, k,) > ker x. In order to prove that Diagram
11 is a pullback square, consider G K’ and G 2% € xC in Mor € such that
(6) k"oa=m*ob.
Hence for je|l, 2] we have
s'oqjok’oca =s'okjoa =s'oq;om* ob =5 0ciouogq;ob.
Since s’ ok} = s'ok’, we even get
s'oqyok’oa=s"0q5,0k'ca=s"oiouoq,ob
=s'oiouoq,0b=x0q,0b=x0q,0b.
Since (K; k,, k;) > ker x, there exists a unique t: G — K such that
(7 kjot =gqjob for je'l,2}.
But k; = g;0k (je:1, 2}), whence
q,0kot =q,0b and g,0kot=gq,0b.
Consequently, by the properties of the projections of a product,
®) - kot =b.
We now consider for jé i1, 2! (cf. (3) and (4) in 5.1 and (6) and (7) above)
9 kiomot =iouok;ot =iouogq;ob=qjom*ob
=q;ok’oa =kjoa.
Since (K; ki, k3) is a kernel pair, we conclude from (9) that
(10) mot = a.

From (8) and (10) we infer that Diagram 11 is really a pullback-diagram (the
uniqueness of + was noted before (7)).
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(b) Let the assumptions of (b) be true and let Diagram 11 be a pullback-
diagram. Moreover, let

be @-morphisms such that .
(11) got, = got,.

We have to show that ¢, = t, or (since the forgetful functor # is faithful)
that #(t,) = #(t,). Because of the properties required for #, Diagram 10 is
transferred by # into a diagram with the same properties in the category Set
of all sets where the usual mappings are the morphisms; only epimorphisms
may not be transferred into surjective mappings, but finite products, pull-
backs (e.g., kernel pairs and monomorphisms), regular epimorphisms and all
commutativities are preserved. Thus, assuming (ii), we have

(12)  ker %(s) ~ (%(K); U(ky), U(k;)) =ker U(g 0s) =~ ker(#(g) 0 U(s)).

But among sets this means that #(g) is injective, i.e, a monomorphism in
Set. Since # reflects monomorphisms (cf. [9], Proposition 128), g is a
monomorphism.

Let us finally assume that (iij) holds and .# = Mono ¢ Then
meMono € by Lemma 5.2, and m* e Mono € (since m* is induced by iouog;
(je'1,2)), where ielso €, ue # < Mono €, and (q,, ¢,) is a “mono-pair”,
m* itself is a monomorphism). We want to show that also k’eMono G,
whence (cf. [9], Proposition 21.13) keMono ¢ and our assumption that
Diagram 11 is a pullback square means that #(K) is (isomorphic to) the
intersection of #(C xC) = #(C) x #(C) and #(K'), whence #(g) is injective
(applying the usual set theoretical arguments and observing that #(s) is a
regular, therefore surjective epimorphism); this would prove that g e Mono €.
Thus assume that

kKod =kob for Q 3K
Then
qjok'oa' =kjoa = qjok’ob’ = kjob’.

Since (K'; ki, k%) is a pullback (of (s’, s’; B)), this yields a’ = b’, whence k' is a
monomorphism.

As a consequence of Proposition 7.1 and the last part of the proof above -
we get the following

7.2. THEOREM. Under the assumptions of Theorem 4.3 and with the
notation of Diagram 10 let € be in addition a concrete category with finite
products and with forgetful functor % preserving finite products, pullbacks and
coequalizers. Let # < Mono €. Then the following statements are equivalent:












