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THE SHAPE GENUS OF A SHAPE MAP
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1. Introduction. In [14] Svarc introduced the notion of the genus of a
fibre map. Later Berstein and Ganea [1] extended that concept to arbitrary
maps. The present paper generalizes their definition further by defining the
shape genus of a shape map f: X — Y of topological spaces. Our method is
modelled after the paper [3] where we made a similar extension of the
notion of the category of a map from [1].

We first generalize the definition of the genus of a map f: X — Y from
[1] by introducing the notion of the & -genus, gen(f, g), of a pair (f, g) of
maps f: X —-Y and g: Z—> Y, where § is a class of homotopy invariant
functors on the category of topological spaces. Then we investigate in what
sense genz(f, g) depends on ¥ and f, g. Next, we define the F-genus
gen.(f, 9) of a pair of maps of inverse systems f: X —»Yand g: Z— Y and
prove two lemmas (see Lemmas 3.2 and 3.3) which show that we can
introduce the shape -genus gen;(f,g)of apair f: X—>Yandg: Z—Y of
shape maps of topological spaces [10] by taking it to be the §-genus of any
pair (f, g9) of maps of inverse ANR-systems f: X —Y and ¢g: Z—- Y as-
sociated (in the sense of Morita [13]) with f and g, respectively. In the case
where f: X —>Y and g: Z—Y are maps of CW-complexes, gen.(f, ¢)
= gen(f, g), but for locally more complicated spaces these two integers are
not equal in general (see Example 3.6).

The final Section 4 presents a number of estimates for the shape genus
of a pair of shape maps that represent generalizations of some results in [1]
and [14].

The concept of the genus of a map is little known -in the homotopy
theory. It is a numerical homotopy invariant closely related to the category
of a map [1] (see Corollaries 2.7 and 2.8). The genus can be used to obtain
lower (see Proposition 2.4 (a)) as well as upper (see Proposition 4.1) bounds
for the category of a map. For the applications of the notion of the genus we
refer the reader to Chapter VII of [14]. The most interesting of those
applications are concerned with the problem of embedding n-dimensional
polyhedra into the Euclidean space E*".
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In a paper that is now in preparation we shall obtain necessary and
sufficient conditions, involving the shape genus of certain maps, for an n-
dimensional compactum to be embeddable up to shape into E*" generalizing
recent results of Ivansi¢ [7] and Duvall and Husch [6].

We assume that the reader is familiar with shape theory and, in
particular, with Morita’s description [13] of the shape category and with
inverse ANR -systems and their maps [11].

The author would like to acknowledge the support received from
Novella Calligaris during the preparation of this paper and to thank the
referee for a number of valuable remarks.

2. %-genus of a map. Throughout this section and the next one, & will
stand for a class of functors .7 : # — .#; from the homotopy category ¥ of
topological spaces into any category .¥;. The homotopy class of a map
f: X —>Y is denoted by [f]. We say that maps f, y: X - Y are &-equal
provided # ([f]) = .# ([¢]) for every functor # in .

2.1. Definition. Let f: X - Y and g: Z — Y be maps into Y. The §F-
genus of the pair (f, g), gen+(f, ¢), is the least integer k > 1 for which there
are open sets V,, and maps h,,: V,,—» X, 1 < m <k, such that Z =)V, and
foh, and ¢oj, are ¥-equal, where j,:V,, —»Z is the inclusion map
(1 < m < K): if no such integer exists, we put gen;(f, g) = x. The &-genus
of the pair (f, idy) will be called the ¥-genus of a map f and denoted by
gen; f.

We shall first prove that the §-genus of a pair of maps into Y does not
increase if the class & is replaced by a class » which is dominated by .
Recall [3] that the class & of functors on .# dominates another such class (%
if for each functor %: # — .f4, in ® there are a functor .#: # — f4 in §
and natural transformations x: # — % and f: % — .# such that xof =id,.

2.2. THEORFM. Let f: X =Y and g: Z — Y be maps into Y and ler the
class & of funciors on # dominate the class &. Then geng(f, g) = geng(f, ).

Proof. Let U be an open set in Z and assume that there is a map h: U
— X such that for every functor .7 € &, morphisms .7 ([foh]) and # ([yoj]
agree, where j: U — Z is the inclusion. It suffices to prove, clearly, that foh
and goj are ®-equal.

Given a functor %: .# — .# in , select a functor .7 : .# — % in § and
natural transformations x2: .¥ — % and f: % — .7 such that x0f = id,. Then

Y([foh] =ayofyo%([foh]) = 2yoF ([foh]ofy

= 2y0.F ([yojlioBy = 2yoByo%([goj] = 4([go/]
since %yOfly = idygy,.
It is clear from the definition that gen(f, g) and gen(f", ¢') are equal if
f~f"and g =~ ¢’ (“~" means “is homotopic to”). Our next theorem provides
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a generalization of this statement. Recall [3] that a map f: Y’ — Y is an §-
monomorphism if for maps h, k: W — Y’ the fact that foh and Bok are -
equal implies that h and k are already ¢ -equal.

23. THEOREM. Let & be a class of functors on ¥ and ler (f, y) and
(f',g) bhetwo pairsof mapsf: X =Y, g: Z—-Y,and f": X' - Y, g Z' - Y".
Suppose one of the following conditions holds:

(a) there are maps x: X-— X', y:Z'->Z, and an §-monomorphism
B:Y' =Y such that f and yo< are &-equal to Bof’ox and oy’ respectively;

(b) there are maps x: X = X', y: Z' = Z, and B: Y — Y’ such that f'ox
and Bogcy are &-equal to Bof and g', respectively. '

Then geng(f, g) = geng(f', o).

Proof. If (a) holds, let U be an open subset of Z and assume that there
is a map h: U — X such that foh and ¢oj are ¥-equal, where j: U — 7 is
the inclusion. Let U’ =7~ '(U), let h*: U — X' be the composition x0h,
let F=7|U:U" - U, and let j: U — Z’ be the inclusion. Put /" = h*o 7. We
show that /"ol and ¢'oj' are F-equal

Indeed, for every functor .# in & we have

F([Bof'oh']) = F ([Bof oxoho¥]) = # ([fohoi]
= F([gojo7]) = F([g070j]) = # ([Boy'oj'D:

since f is an & - monomorphism, we get .# ([f'oh’])) = .7 ([¢'0j')), F € &, as
claimed. ‘
If (b) holds, the proof is similar.

The simple proof of the following proposition is left to the reader. Its
parts (a) and (b) are obvious while parts (c) and (d) follow from Theorem 2.3.
Recall from [3] that the §&-caregory of a map f: X — Y, cat f, is the least
integer k > 1 with the property that X can be covered with A open sels
‘U,\k_, such that foj, and c,0j, are &-equal, where c,,: X =Y is a
constant map and j,: U, — X is the inclusion (m=1, ..., k): if no such
integer exists, we put cat; f = x.

24. ProPosiTiON. Let f: X =Y, g: Z—>Y, h: Y=Y, f": X' = X, and
g':Z' — 7 he cominuous maps. Then

(@) genz(f, ) <catzog if Y is arcwise-connected.

(b) genz(f, ¢' =1 if and only if there is a map y: Z — X such thar foy
and g are &-equal. In particular, if f is a homotopy domination, ‘hen
gen; (f, 9) = 1.

(c) genz(fof', ) = genz(f, g) = geng(f, gog'), and if both f* and ¢ are
homotopy equivalences, then these three numbers are equal.

(d) geng(hof, hog) < genz(f, g), and if h is a homotopy equivalence, 'hen
genz (hof, hoy) = geng(f, y).
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Let % be a class of topological spaces. The & -genus of a map f [of a
pair (/. ¢)] for a class of functors § = {[X, —]: X e will be denoted by
gen, f [gen, (f, g)] and, simply, by gen f (gen, f) [gen (/. g) (gen,(f, 9))] in
the case where % =%¥%" (4 =%W,), ie, the class*of all spaces having
homotopy type of CW -complexes (of dimension less than or equal to n).
Here, [X, —]: # — Sets is a functor that associates with a space Y the set
[X. Y] of homotopy classes of maps X — Y and the function

fo =31 [X, Y]~ [X, 2],

given by f, ([g]) = [fog], [g)e[X, Y], with a homotopy class [f]: Y — Z.
Recall from [9] (see also [2]) that the class of spaces ¢ shape dominates

another such class 7 provided the class of functors ([X, —]: %7
— Sets| X €4} dominates the class of functors {[X, —]: 6# — Sets| X e 7].
Hence, Theorem 2.2 implies the following

2.5. CorOLLARY. Let f: X - Yand g: Z — Y be maps of ANR’s. If a class
of topological spaces ¢ shape dominates another such class 7, then gen,(f, g)
= gen, (f, g). In particular, geng (f, g) depends only on the shape properties of
spaces in 6. '

The computation of the category cat f of a map f (i.e., the category of f
with respect to the class of functors {[X, —]: X€%¥# }) can always be
reduced to the computation of the genus of a related (fibre) map as the first
corollary to the next proposition shows.

2.6. ProPosITION. Let f: X - Y and h: Y - W be continuous maps.

(@) If ker h4 = Im f{ for every space A, then gen f < cat h.

(b) If Im f# = ker h% for every space A, then cat h < gen f.

Proof. We prove only (a) because the proof of (b) is similar.

Let U be an open subset of Y and assume that the composition hoj of
the inclusion j: U — Y with h is homotopic to some constant map ¢: U — W.
In other words, assume

[Neker-h% = {[g]: U—Y | hog is homotopic to a constant map U — W .
By assumption, there is a map k: U —» X such that [j] = f{ ([k]) = [fok].
This clearly implies that gen f < cat h.

2.7. CoroLLARY. For any map f: X = Y, there is a map f': Z - X such
thatr gen f’ = cat f.

Proof. Let LY denote the path space of Y (see [12], Chapter VI) and
let Z be the subspace of X x LY of pairs (x, A) such that f(x) = 4(0). Let
f': Z - X be the map defined by f'(x, 4) = x. By [12], Proposition 6.4.10,
for any space A and any choice of base points in X and 'Y, the sequence

(4. 272 14, X723 (A, Y]
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is an exact sequence of based sets. Hence, conditions (a) and (b) in
Proposition 2.6 hold for maps f and f’' and the claim follows.

In the same way, from [12], Corollary 6.5.8, we get the proof of the
following result stated in [1] as Proposition 2.6:

2.8. CoROLLARY. If p: E — B is a (Hurewicz) fibration with the fibre F and
a path-connected base B, then cat p = gen i, where i: F — E is the inclusion
map.

3. Shape F-genus. In this section we shall define the notion of the shape
& -genus of a pair (f, g) of shape maps f: X =Y and g: Z = Y of arbitrary
topological spaces. The idea, like that in Section 3 of [3], is to extend
Definition 2.1 to morphisms in the pro -category pro-.# of the homotopy
category S of topological spaces and then use the isamorphism of the shape
category and the category pro-74#~ [13].

3.1. Definition. Let X=(X;, pisr 4), Y=(Y,qu, M), and Z
=(Z,, r.,.N) be objects in pro-#. Let f=(f,f):X—>Y and ¢
=(g, g,): Z— Y be maps of inverse systems [11] and let ¥ be a class of
functors on . We define gen(f, g) to be the least integer k > 1 such that
for each pue M there is v > g(u) satisfying

genz (f,0Pruna> 9uOTpuy) < k  for each 12> f(u).

If no such integer exists, we put gen;(f, g) = x.

The deﬁnitions Of gen;ﬁ.f’ gen‘é‘(f’ y), gcn (f9 g)9 genn(f’ g)’ gen‘é’.fo gen .’.s
and gen,f are obvious modifications of the corresponding definitions from
Section 2.

32.LemMA. If f, f: X—>Yand g, ¢: Z—> Y are equivalent (homotopic)
pairs of maps of inverse systems [11], then gen(f, g) = gen;(f, ¢).

Proof. Suppose gen;(f, g) = k < co. For a ue M pick v = g(p) as in the
above definition. Now, use homotopies f~ f and g ~ ¢’ and choose indices
vV=v,g(win Nand A2>f(u), f'(#) in A such that

9uOTg(uyv = g,’,or g'(uv’ and fuopf(uM :ntOPI'(u)A'
Consider an arbitrary index 4' > f'(u) in A. Let A" > 4, 4'. Since
geng (fuOPrwas 9uOTyuv) S BENF(f 0P OPaars GuOTgr(uyv)
= genz (fu0PrwaOPass JuOTguvOrw) S 8Nz (fu0Pruars 9uOTguy) < K,

we have genz(f, ¢') < gengi(f, 9). In a similar way one proves the inverse
inequality and the case where either geng(f, g) or gen,(f, ¢) is infinite.
Since morphisms in pro-J# are equivalence classes of maps of inverse
systems, Lemma 3.2 allows us to define the §-genus of a pair ([f], [¢]) of
morphisms in pro - by taking it to be gen.(f, g) of any representatives f of
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[f] and g of [g]. In order to make the transition from morphisms in pro - #
to shape maps we need the following lemma which resembles Theorem 2.3.

33. LeMMA. Let
X L .y — 7

I

xl ’-' — Y' :;" Zl

be a homotopy commutative diagram of maps of inverse systems. Assume that
i has a right homotopy inverse and j has a left homotopy inverse. Then
genz(f, 9) < gen(f, 9).

Proof. Let ¢’ be an arbitrary element of the index set M’ of Y'. Let j*
= (j*, j¥): Y - Y’ be a left homotopy inverse of j and let i* = (i*, i*): X - X’
be a right homotopy inverse of i = (i, i;). Let x =f'(u), B =j*(u), y =f(B),
o=i(y), e=i*¥), { =g W), n=y(P), and @ =k(n). Pick ' =>(,0 in N’
such that '

gy Oriy = jloqgok,0ry,..

Next, select a A’ > x, 6 in A’ such that

Ju:OPs;» = ji0fy0i,0ps;..

Suppose gen;(f, 9 = m - 20 (in the case where gen,(f, g) = x there is
nothing to prove). Pick v > n in N such that for every 4 > ;' the §&-genus of
the pair (f;op,,, gyor,,) is less than or equal to m. Let ¢ = k(v) and let
v' > #' (¢ has the property that r, ok, or,. =~k,or,.).

We claim that for every A”">x the &-genus of the pair
(fyoPys gpr0rty) is at most m, ie.. geni(f, g) < m.

Indeed, let t = i*(4”) and let ¢ > y. Then r has the property that

, 2% . *3k . N i
Pa,Oli¥Cpg ~igop,: and p.=>i,CifCp,..

Applying Proposition 24, the fact that the ¥-genus of the pair (f, g)
depends only on the homotopy classes of f and ¢, and the homotopies
mentioned in the selection of the indices, we get

geng (£ OPsss guwroOr:y)
< geng(f, 0Py 0Py OifnO Peay Gy OF2y OFyerys)
= geng (ji Cf;0i,0P}; O P ;O i OPye, jiis Oy OKyOF s OT s )
= ge'}&(i:‘ Of30i,0i5OPpye, j:'Ogao".,VOk\-o":n')
< gen (- OfpOp,s, i 0gyOry,) < geng(fzop,s, ggor,) < m.

Now we can define the notion of the ¥ -genus in the shape category as
follows.
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Let X, Y, and Z be topological spaces and let f: X - Y and g: Z—>Y
be shape maps. By [13], there are morphisms [f]: X —-Yand [¢g]: Z—- Y in
pro - ¢ % naturally associated with f and g, respectively. We define the shape
&-genus of the pair (f, g), gen;(f, g), to be equal to gen,(f, g). One easily
checks (using the above lemmas) that this definition does not depend on the
choice of X, Y, Z, f, and g. The shape §-genus of a shape map f: X - Y,
gen. f, is simply the shape F-genus of the pair (f, idy). The special
selections for the class & (see Section 2) will give us (possibly infinite)
integers gen, (f, g), gen(/, g), gen,(f, g), gen. f, genf, and gen, f.

The results of Section 2 imply the following corollaries:

34. CorOLLARY. Let f: X - Y and g: Z — Y be shape maps and let the
class & of functors on A dominate the class ®. Then gen;(f, g) > gen,(f, g).
In particular, if a class of topological spaces % shape dominates a class "/, then
gen, (f, g) > gen, (f. ).

3.5. CorOLLARY. Let f:X-Y g:Z-Y, : Y=Y, f2 X=X, and
g : Z' - Z be shape maps and let & be a class of functors on H (or on 61 ).
Then

(a) genz(f, g) <catzg (i.e, the shape &-category of g [31) if Y is
connected.

(b) If f is a shape domination, then gen. f=1.

(c) geng(fof’, g) = genz (/. 1) = geng(f, gog'). If hoth f' and ¢ are
shape equivalences, then these i1hrce numbers are equal.

(d) gen;(hof, hog) < geny(f,g). If h is a shape equivalence, 1hen
gen . (hof, hog) = gen;(f. g).

3.6. Example. It is clear that, for a map f: X — Y of CW-complexes,
gen; f and gen; f coincide. When X and Y have a more complicated local
structure, the &-genus and the shape §-genus of the map f are different in
general. For example. if f: W —S! is a natural surjection of the Warsaw
circle W onto the circle S', then gen:S,:f = 2 and gengs,:f =1 by Corol-
lary 3.5 (b) since f is a shape equivalence.

4. Estimates for the shape genus. The purpose of the present section is to
prove several estimates for the shape genus of (a pair of) shape maps. They
represent generalizations of some results from [1] and [14].

4.1. ProposiTiON. Let f: X =Y, g: Z =Y, and h: Y — W be shape maps
and assume thar hof is a trivial shape map. Then gen.(f, g) = cat;hoy for
each class § of functors on A (or on ¥ ).

Proof. Let f, g, and h be represented by maps of inverse systems
fX-Y ¢g:Z-Y, and h:Y-W,
respectively, where
X = (Xj.’ p/'.}.’p A), Y = (),“, qﬂl‘" A’,’,
Z=Z,r,.N), and W=W,s,,, P).
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For an index m in P, choose ¢ > foh(n) such that h,OfyrOPronme 1S
homotopic to a constant map. Such an index exists because hof is a trivial
shape map. If gen;(f, g) = k, take v > goh(n) such that

genz‘?(fh(n)opfoh(u)i’ gh(morgc'h(mv) <k

whenever 1> foh(n). We claim that caty h,0gpm OFyonmy < K.
Indeed, assume U is an open set in Z, for which there is a map
d: U - X, which satisfies

ﬁum opfoh(nmo‘l = gh(morgoh(n)\- O]

(/ denotes the inclusion U — Z,). Composing both sides with h, we see that
M OGin)OF yonmv©J 18 &-equal to a constant map.

In the special case where h is the identity map on Y, combining
Proposition 4.1 and Corollary 3.5 (a) we get

4.2. CorROLLARY. Let f: X —> Y be a trivial shape map of X into a
connected space Y and let ¢: Z —Y bhe an arbitrary shape map. Then
gen.(f, g) =catyg for each class & of functors on ¥ (or on C¥").

The shape theoretic version of Corollary 2.8 that we can now prove is
the following

43. THEOREM. Let p: E — B be an approximate fibration in the sense of
Coram and Duvall [5] of locally compact metric ANR’s with B connected. Let
beB and let i: F — E be the inclusion of the fiber F = p~'(b) into E. Then
cat p=geni.

Proof. We know from Proposition 4.1 that cat p=cat p <geni.
Hence, it remains to prove that gen i < cat p. It follows from (2.6) in [3] and
Corollary 3.5 (after crossing everything with the Hilbert cube and using R. D.
Edwards’ theorem [4]) that both E and B can be assumed to be compact Q -
manifolds. This implies that F can be represented as the intersection of a
decreasing sequence F, o F, o ... of compact Q-manifold neighborhoods
in E.

Let V be an open set in E such that the restriction p|V is null-
homotopic. We claim that for each index k > O there is a map ¢,: V — F,
such that i,of!o¢, ~j, where j: V—~E, i,:F,—»E, and f": F,, > F, are
inclusions for all m>n>0.

Indeed, choose ¢, > 0 such that the pre-image under p of the ¢ -
neighborhood of b is contained in F, and let the homotopy H: V xI -+ B
join poj with the constant map of V into the point b. Let H: V xI —» E be
the ¢-lifting of H (see [5]). Then poH,(V) is contained in the &,-
neighborhood of h. Hence H,(V)c F,. Clearly, ¢, = H, has the required
property.

We shall close with an extension of the first half of Theorem 2.9 in [1].
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The shape theoretic form of that result reads: Let f: X — Y be a shape map
of connected topological spaces. Let n>1 and suppose X is shape n-
connected and the map

pro-f,: pro-m,(X) — pro-mn,(Y)

is an isomorphism for ¢ > n. Then genf =cat, Y.
However, this statement is not true as the following example shows:

44. Example. Let f: Q —» Y be a CE map of the Hilbert cube onto a
non - movable connected space Y (see [8]). If the above statement were true,
by Corollary 4.2 we would have cat Y =cat, Y for every n > 0. But cat Y
=1 and cat Y > 2 (since Y has a non-trivial shape).

In order to get a valid theorem generalizing Theorem 2.9 in [1] we make
an additional assumption about the shape map f. More precisely, f will be
assumed to be an n-conditioned shape map as defined below. Of course, we
begin with maps of inverse systems.

45. Definition. A map of inverse systems f: X = Y is n-conditioned
provided that for each u in the index set M of Y and each 4 > f(u) in the
index set A of X there is u’ > u such that there are p” > y' and A’ > 4, f (i)
such that if maps ¢: L— Y,.. and @: L' — X, of an arbitrary CW-complex L
and its n-skeleton L', respectively, satisfy

Gy 0| L > f;t'opf(u’);.'o‘l_’a
then there is a map
&:L-X,; with g,,.00 = f,0p,,09.

4.6. LEMMA. Let f, g: X > Y be two equivalent (homotopic) maps of
inverse systems. If f is n-conditioned, then so is g.

Proof. Let u and v>=g(u) be given. Choose 4 >v, f(p) such that
JuOPriwa = 9uOPauna- NOow pick u’ = u (with respect to u and A) using the fact
that f is an n-conditioned map of inverse systems. Next, take u” > 4’ and
A2 A, f(&) (again with respect to f). Let v > 1, g(¢) be such that

fu'opf(u’)v = Gu O Pyuyv-

Consider maps ¢: L— Y,.. (L is an arbitrary CW-complex) and o: "> X,
satisfying

qu'u"O(pan = gp'opg(n’)v'o¢'
The choice of v' gives
q“:"uO(pan zj;‘:opf(“v)le(ﬁ.
The property of f implies that there is a map ¢*: L - X, such that

QuuOP = f,OPyua O P*.
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The way A was chosen gives us g,,-0¢ >~ g,0p,,,,0®*. Hence, for a map &
= p,,0P*, we have

Quu'CP =g, O Py(uv© Q.

4.7. LEMMA. Let f: X - Y be an n-conditioned map of inverse systems
and let \h: Y - Z be an equivalence. Then the composition hof is also
n - conditioned.

Proof. The proof is notationally quite complicated because we muyst
take a careful control of many indices.

Let k: Z—-Y be a map of inverse systems such that koh ~idy and
hok ~ id,.

Let ue N (the index set of Z) and let 4 > foh(u) be given in A. Put ¢
= h(p) and m = koh(u). Choose a > u, n such that

(1) h,0k,0ry ~r1,,.

In the next step take @' > ¢ with respect to 4 using the fact that fis n-
conditioned. Put B =k(¢), y=hok(¢), and t=f(¢). Let y =>a,p.
Observe that y' > u since o > u. Put 6 = h(y') and ¢ = foh(u'). Let { =6, y
be such that

2) hg0q,. ~rp, Oh,.0qy.

Let v > ¢ and n = 4, T be chosen by using again the fact that fis n-
conditioned. Let ¢” > v, { satisfy

(3) §‘_ kOIthOan >~ qolall,
Combining (2) and (3) we have
4) ko OTg,Oh, 0qsy =~ Ky Org, . Oh, 045 Oqyy
>~ ko'ohpoq.ycoqcou 2’ qelo"c

Put ¢ = f(0"”) and i = k(g"). Next, take A’ > £, n such that

(5) JerOPur = g Oy OPex

and

(6) J5OPerr = Qg Ofe 0Py -
Finally, take u” > i such that

7 Qg Okg Oy = kyoOrg, .

and

(8) Qoo OKg OF iy = kOF .
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Let L be an arbitrary CW-complex and assume that maps ¢: L— Z,..
and ¢: L' — X,. satisfy

(9) ru'u”o‘pan = hp’of;)opel'o@'
Consider maps ¥ = q,,.-0k,-or;,~0¢ and § = p,,,0p. We claim that
(10) 4oyl = f.op,00.

Indeed, we have
qq'vo'pIL" = qo'\'oqvo"Oka"orc'u"o(plLn

= GygOky Oy 0| L' = kyorg,..00|L"  (by (7))
x~ kg Orp,-Oh,.Of;0p,;:06  (by (9)

>~ k,0rp,0h,0qsOfe0Ops-0@  (by (6))

~ Gye-Ofy-0Pw0@  (by (4)

~f,0Px0®  (by (5)

=4 OPeyOY.
By the choice of ¢’ and n we conclude that there is a map ¢: L— X,
with f,0p;);09P = q,,0f. Composing with h, we have
h,0f,0Pri 0P = h,,oq,‘.Oq'w,.oko-:or,-".,mp
~ h,ok,or,,-0¢ (by (8))
~ h"bkoor,,,or,“ump > T,00,,»0¢@ (by (1)

= r“”nO(p.
Hence hof is n-conditioned and our lemma is proved.

48. Lemma. Let f: X > Y and h: Z — X be maps of inverse systems. If h
is an equivalence and f is n-conditioned, then the composition foh is also n-
conditioned.

Proof. Let k: X—>Z be a mape'of inverse systems such that koh ~id,
and hok ~ id,.

Let ue M (the index set of Y). Put o = f(u)e A (the index set of X), B
= hof (u) e N (the index set of Z), and y = kohof(u)eAd. Let a A= B in N
be also given. Put é = k(4).

First pick v > a, é such that

(l) haOkﬂopyv = Davs

(i) kyop,, = rp;0k,0ps,.

Next, using the fact that f is n-conditioned, pick (with respect to indices
pand v) g > p, " =, and V' 2 v, f(). Put & = f (i), n = hof (1), and {
= h(v'). Finally, let A’ > A, { satisfy

("l) pev'Ohv'or;A' = htorn}.'









