SUR LES FONCTIONS APPROXIMATIVEMENT CONTINUES

PAR

Z. GRANDE (GDAŃSK)

Le théorème suivant a été démontré par Lipiński dans sa communication [3]:

Pour que la fonction réelle d'une variable réelle (pas nécessairement finie) soit approximativement continue, il faut et il suffit que toutes les fonctions $f_a^b(x) = \max\{a, \min[b, f(x)]\}$ soient des dérivées.

Ce théorème sera généralisé, dans la communication présente, aux dérivées des fonctions d'ensemble.

Soit (X, M, μ) un espace où μ est une mesure σ -finie et complète. On appelle base de différentiation dans l'espace (X, M, μ) tout couple $(\mathcal{F}, \Rightarrow)$ où \mathcal{F} est une famille préordonnée d'ensembles de mesure μ positive finie et \Rightarrow désigne une relation de convergence des suites (de Moore-Smith) d'ensembles de la famille \mathcal{F} vers les points $x \in X$, définie de manière que deux conditions suivantes soient satisfaites:

- (1) Il existe pour tout point $x \in X$ une suite (de Moore-Smith) d'ensembles $\{I_t\} \subset \mathcal{F}$ telle que $I_t \Rightarrow x$.
- (2) Toute sous-suite infinie d'une suite $\{I_t\}$ convergente vers un point $x \in X$ converge également vers ce point.

Une fonction réelle f (finie ou infinie) qui est intégrable relativement à la mesure μ sur tout ensemble de la famille \mathscr{F} est dite fonction dérivée relative à la base de différentiation (\mathscr{F} , \Rightarrow) [2] lorsqu'on a l'égalité

(3)
$$\lim_{t} \frac{1}{\mu(I_t)} \int_{I_t} f(y) d\mu = f(x)$$

pour tout point $x \in X$ et toutes les suites $\{I_t\} \Rightarrow x$.

Étant donné un ensemble μ -mesurable $A \subset X$ et le point x étant fixé, les bornes supérieure et inférieure respectivement de l'ensemble des nombres

$$\left\{ \lim\sup_t \frac{\mu(A\cap I_t)}{\mu(I_t)} \right\}$$

et de celui des nombres

$$\left\{ \lim_{t}\inf rac{\mu(A\cap I_{t})}{\mu(I_{t})}
ight\}$$

pour toutes les suites de la forme $\{I_t\}$ où $I_t \Rightarrow x$, s'appellent épaisseurs, supérieure ou inférieure respectivement, de l'ensemble A au point x relativement à la base de différentiation $(\mathcal{F}, \Rightarrow)$. Si ces deux épaisseurs, supérieure et inférieure, sont égales, leur valeur commune s'appelle l'épaisseur (tout court) de cet ensemble en ce point, relativement à la même base de différentiation. Dans le cas où l'épaisseur en question est égale à 1, le point x est dit point d'épaisseur de l'ensemble A relativement à la base de différentiation $(\mathcal{F}, \Rightarrow)$ et, dans le cas opposé où l'épaisseur en ce point est nulle, il est dit point d'éclaircie de l'ensemble A relativement à la même base de différentiation.

Exemples (voir [4], p. 106-130). Soit X l'espace euclidien à m dimensions R^m . Étant donné un ensemble $E \subset R^m$, soit r(E) la borne supérieure des quotients $\mu(E)/\mu(I)$ où I est un cube quelconque contenant E. Appelons une suite d'ensembles $\{E_n\}_{n=1,2,\ldots}$ de R^m suite régulière lorsqu'il existe un nombre a>0 tel que $r(E_n)>a$ pour $n=1,2,\ldots$

Si \mathscr{F} est la famille de tous les ensembles fermés de mesure μ positive finie, préordonnée par leurs diamètres, définissons la convergence \Rightarrow par la condition

(1a) $E_n \Rightarrow x$ lorsque la suite $\{E_n\}_{n=1,2,...}$ est régulière, $x \in E_n \in \mathscr{F}$ pour n=1,2,... et $\lim_{n\to\infty} \delta(E_n)=0$ (δ désignant le diamètre).

La base de différentiation (\mathcal{F} , \Rightarrow) s'appelle alors générale.

Si, en particulier, la famille \mathscr{F} ne se compose que de tous les intervalles fermés et la convergence \Rightarrow est définie par la condition (1a), la base de différentiation s'appelle ordinaire.

Deux espaces (X_1, S_1, μ_1) et (X_2, S_2, μ_2) avec des mesures μ_1 et μ_2 σ -finies et complètes étant donnés, soit

$$(X_3, S_3, \mu_3) = (X_1 \times X_2, S_1 \times S_2, \mu_1 \times \mu_2)$$

leur produit cartésien (dit leur espace-produit). L'ensemble $A = A_1 \times A_2$ où $0 < \mu_1(A_1) = \mu_2(A_2) < \infty$ s'appellera un carré dans X_3 ; il s'y appellera un intervalle lorsque $0 < \mu_1(A_1) < \infty$ et $0 < \mu_2(A_2) < \infty$.

La fonction r(E) pour $E \subset X_3$ et les suites régulières d'ensembles étant définies comme dans l'exemple précédent, soient \mathscr{F} la famille de tous

les ensembles de mesure μ_3 positive finie, préordonnée par leurs mesures, et \Rightarrow la convergence définie par la condition

$$\begin{array}{lll} \text{(1b)} & E_n \Rightarrow x & \text{lorsque} & \text{la suite} & \{E_n\}_{n=1,2,\dots} & \text{est} & \text{régulière}, & x \in E_n \in \mathscr{F} \\ & \text{pour} & n=1,2,\dots & \text{et} & \lim_{n\to\infty} \, \mu_3(E_n) \, = \, 0. \end{array}$$

Alors $(\mathcal{F}, \Rightarrow)$ s'appelle la base de différentiation générale dans l'espace (X_3, S_3, μ_3) . Dans le cas où la famille \mathcal{F} ne se compose que de tous les intervalles de X_3 (la définition de la convergence restant la même), la base de différentiation $(\mathcal{F}, \Rightarrow)$ est dite ordinaire.

Pour généraliser à son tour le théorème de Lipiński, cité au début, appelons une fonction f définie dans l'espace (X, M, μ) , réelle et μ -mesurable (pas nécessairement finie) approximativement continue au point x_0 relativement à la base de différentiation $(\mathscr{F}, \Rightarrow)$ lorsque, quel que soit le nombre a, le point x_0 est, relativement à cette base, un point d'épaisseur de celui des ensembles $\{x: f(x) > a\}$ et $\{x: f(x) < a\}$ qui contient ce point.

THÉORÈME 1. Pour qu'une fonction f définie dans l'espace (X, M, μ) et réelle (finie ou non) soit approximativement continue dans cet espace, il faut et il suffit que toutes les fonctions $f_a^b(x) = \max\{a, \min[b, f(x)]\}$ soient des dérivées relatives à la base $(\mathcal{F}, \Rightarrow)$.

Démonstration. La condition est nécessaire. En effet, le minimum et le maximum de deux fonctions approximativement continues relativement à une base $(\mathcal{F}, \Rightarrow)$ le sont également, et toute fonction approximativement continue relativement à une base $(\mathcal{F}, \Rightarrow)$ et bornée est une dérivée relative à cette base (voir [1], p. 37 et 26).

La condition est suffisante. Supposons, en effet, que la fonction f ne soit pas approximativement continue relativement à la base de différentiation $(\mathcal{F}, \Rightarrow)$. Deux cas sont à considérer.

Cas I. Il existe un point x_0 de discontinuité approximative de la fonction f relativement à la base $(\mathscr{F}, \Rightarrow)$ tel que $|f(x_0)| < \infty$.

Il existe donc un point x_0 et un nombre $\varepsilon > 0$ tels que l'ensemble

(4)
$$\{x: |f(x)-f(x_0)| < \varepsilon\} = \{x: f(x) > f(x_0) - \varepsilon\} \cap \{x: f(x) < f(x_0) + \varepsilon\}$$

est au point x_0 d'épaisseur inférieure plus petite que 1 relativement à la base $(\mathscr{F}, \Rightarrow)$. Par conséquent, l'un au moins des deux sommandes du membre droit de (4) est au point x_0 d'épaisseur inférieure plus petite que 1 relativement à la base $(\mathscr{F}, \Rightarrow)$. Par raison de symétrie, on peut se borner à l'admettre pour le sommande $\{x: f(x) < f(x_0) + \varepsilon\}$.

Ainsi, il existe une suite (de Moore-Smith) $\{I_t\}$ tels que $I_t \in \mathcal{F}$, $I \Rightarrow x_0$ et

(5)
$$\lim_{t} \inf \frac{\mu(\lbrace x \colon f(x) < f(x_0) + \varepsilon \rbrace \cap I_t)}{\mu(I_t)} < 1.$$

Posons $a = f(x_0) - 1$ et $b_1 = f(x_0) + \varepsilon$.

Si la fonction $f_a^{b_1}(x)$ n'est pas une dérivée relative à $(\mathcal{F}, \Rightarrow)$, la démonstration est finie.

Si, par contre, la fonction $f_a^{b_1}(x)$ est une dérivée relative à $(\mathcal{F}, \Rightarrow)$, on a

$$\lim_{t} \frac{1}{\mu(I_{t})} \int_{I_{t}} f_{a}^{b_{1}}(x) d\mu = f_{a}^{b_{1}}(x_{0}).$$

Alors, en posant $b = \frac{1}{2}[f(x_0) + b_1]$, d'où $b = f(x_0) + \varepsilon/2$, nous allons voir que la fonction $f_a^b(x)$ n'est pas une dérivée relative à $(\mathcal{F}, \Rightarrow)$.

En effet, si elle l'était, on aurait

$$\lim_{t} \frac{1}{\mu(I_{t})} \int_{I_{t}}^{b} f_{a}^{b}(x) d\mu = f_{a}^{b}(x_{0}) = f_{a}^{b_{1}}(x_{0})$$

et la fonction $f(x) = f_a^{b_1}(x) - f_a^b(x)$, en tant que la différence de deux dérivées relatives à la base $(\mathcal{F}, \Rightarrow)$, serait aussi une dérivée relativement à cette base. On aurait donc d'une part

(6)
$$\lim_{t} \frac{1}{\mu(I_{t})} \int_{I_{t}} f(x) d\mu = f(x_{0}) = 0.$$

D'autre part, la fonction f admet des valeurs non-négatives et prend la valeur positive $b_1 - b = \varepsilon/2$ dans l'ensemble

$$E = \{x \colon f(x) \geqslant f(x_0) + \varepsilon\},\,$$

qui est le complémentaire de l'ensemble $\{x: f(x) < f(x_0) + \varepsilon\}$ dont l'épaisseur inférieure au point x_0 relativement à $(\mathcal{F}, \Rightarrow)$ est plus petite que 1 en vertu de (5). En désignant donc par η la limite inférieure dans (5), on aurait

$$\lim_t \sup \frac{\mu(E \cap I_t)}{\mu(I_t)} = 1 - \eta > 0,$$

ce qui entraîne d'après (6) la contradiction:

$$\begin{split} 0 &= \lim_{t} \frac{\int\limits_{I_t} f(x) \, d\mu}{\mu(I_t)} \geqslant \lim_{t} \sup \frac{\int\limits_{E \cap I_t} f(x) \, d\mu}{\mu(I_t)} = \lim_{t} \sup \frac{\varepsilon \cdot \mu(E \cap I_t)}{2\mu(I_t)} \\ &= \frac{\varepsilon}{2} (1 - \eta) > 0 \,. \end{split}$$

Cas II. On a $|f(x_0)| = \infty$ en tout point x_0 de discontinuité approximative relativement à la base $(\mathcal{F}, \Rightarrow)$.

La discontinuité approximative de la fonction f(x) relativement à la base $(\mathcal{F}, \Rightarrow)$ entraîne par définition l'existence d'un nombre α tel que l'un au moins de deux ensembles

$${x: f(x) < a}$$
 et ${x: f(x) > a}$

contient un point dans lequel cet ensemble n'est pas d'épaisseur 1 relativement à cette base.

Considérons la fonction $f_{a-1}^{a+1}(x)$. Si elle n'est pas une dérivée relative à $(\mathcal{F}, \Rightarrow)$, la démonstration est achevée. Reste donc à examiner le cas où la fonction $f_{a-1}^{a+1}(x)$ est une dérivée relative à $(\mathcal{F}, \Rightarrow)$. Or elle n'est pas approximativement continue relativement à $(\mathcal{F}, \Rightarrow)$ car l'un au moins des ensembles

$$\{x: f_{a-1}^{a+1}(x) > a\} = \{x: f(x) > a\}$$
 et $\{x: f_{a-1}^{a+1}(x) < a\} = \{x: f(x) < a\}$

ne satisfait pas à la condition de la définition de la continuité approximative relativement à $(\mathcal{F}, \Rightarrow)$.

Mais étant partout finie, la fonction $f_{a-1}^{a+1}(x)$ a les mêmes propriétés que la fonction f envisagée dans le cas I. Il existe donc deux nombres u et v > u tels que la fonction

$$u[f_{a-1}^{a+1}(x)] = \max\{u, \min[v, f_{a-1}^{a+1}(x)]\}$$

n'est pas une dérivée relative à (F, ⇒). Il en résulte, en posant

$$a = \max(\alpha-1, u)$$
 et $b = \min(\alpha+1, v)$,

que la fonction $_a^b[f_{a-1}^{a+1}(x)]$, égale à $_u^v[f_{a-1}^{a+1}(x)]$, ne l'est non plus. On a en même temps $a-1 \le a < b \le a+1$, donc $_a^b[f_{a-1}^{a+1}(x)] = f_a^b(x)$, d'où l'on conclut que la fonction $f_a^b(x)$ n'est pas une dérivée relative à $(\mathcal{F}, \Rightarrow)$. La condition du théorème est donc suffisante également dans le cas II, ce qui termine la démonstration du théorème 1.

TRAVAUX CITÉS

- [1] A. M. Bruckner, Differentiation of integrals, American Mathematical Monthly 78 (9) (1971), p. 1-51.
- [2] and M. Rosenfeld, On topolozing measure spaces via differentiation bases, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 23 (1969), p. 243-258.
- [3] J. S. Lipiński, Sur les fonctions approximativement continues, Colloquium Mathematicum 5 (1958), p. 172-175.
- [4] S. Saks, Theory of the integral, Monografie Matematyczne 3, New York 1937.

Reçu par la Rédaction le 25. 7. 1972