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0. Introduction. Our purpose in this paper is to extend both the concepts
of internal movability and internal shape to arbitrary metrizable spaces and to
study the relations between them.

Internal movability for compact metric spaces was introduced by Bogatyi
in [2] and studied, among others, by Dydak [4], Laguna and Sanjurjo [13]. In
[13] the authors outlined an internal shape theory for compact metrizable
spaces. In this paper we extend such an internal shape theory to arbitrary
metrizable spaces and we prove that if we limit ourselves to the class of
internally movable metrizable spaces, then this internal shape is the same as the
shape in the sense of Fox [6]. On the other hand, we introduce the concept of
internal MANR-space and we prove that in the compact case this concept is
the same as that of internal FANR-space introduced by Laguna and Sanjurjo
in [13]. Some properties of internal MANR-spaces are established; in par-
ticular, we prove that every homotopy class of mutations between a metrizable
space and an internal MANR-space is generated by a continuous function.
This fact allows us to prove a result which is an extension of a theorem due to
Borsuk and Oledzki in [3].

In this paper ANR-spaces are those for metrizable spaces and we denote
by ~ the homotopy relation. The relation f: U—V, fef, means that the
triple f: U — V belongs to the mutation f. We denote by U(X, P), V(Y, Q),...
the families of all open neighborhoods of X in P, of Y in Q,..., where
XcP, YcQ,... as closed subsets. Finally, we denote by u, the identity
mutation on U(X, P) if there is no confusion, otherwise we denote it by uy p.

1. On internal movability in metric spaces.

1.1. DErFINITION (compare with Definition 1 in [2], p. 94). Let P be an
ANR-space and X < P a closed subset. We say that X is internally movable
in P if for every UeU(X, P) there exist U,eU(X, P) and a homotopy
H: UyxI—-U such that

H(x,0)=x, H(x,1)eX for every xeU,.
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Let us prove now a characterization of internal movability of closed
subsets of ANR-spaces, involving mutations.

1.2. PROPOSITION. Let P be an ANR-space and X — P a closed subset. Then
the following statements are equivalent:

(I) X is internally movable in P.

(IT) There exists a mutation f: U(X, P)- U(X, P) homotopic to the
identity mutation on X and such that for every f: U—V, fe f, the relation
f(U) € X holds.

Proof. (I)=(II). Let UeU(X, P); then there exist U,e U(X, P) and
a homotopy F: Uy, xI— U such that F(x, 0) = x and F(x, 1)e X for every
xeU,. Let now

fo=1{g: Up—V with UpeU(X, P), Upc Uy, Uc V
and g(x) = F(x, 1) for xe Up}
and

f= U fu-

UeU(X,P)

In order to prove that f is a mutation it is enough to see that if f,, f,: U->V,
fi» f€f, then there exists U'e U(X, P) such that f,|U’ =~ f,|U’ in V. Let us
suppose that

Ji, L U=V, f, f,€f.
Then, by the definition of f, there exist U,, U,, Uyy, Ug2€ U(X, P) with

Upsc U;(i=1,2)and F;: Uy; x I - U, such that F,(x, 0) = x, F;(x, 1)e X for
every xe Uy; and i =1, 2. Moreover,

UIUUZCV, UCUOIHUOZ
and

fi() =Fy(x, 1), fo(x) = F,(x, 1).
Then we have

Si=F,(, DU =iy y = F,(, U = f,

where iy y: U—>V is the inclusion map. Consequently, we have proved that
f is a mutation homotopic to the identity mutation on X. It is obvious that
f satisfies all the conditions in (II).

(I)=(). Let f: U(X, P)-»U(X, P) be a mutation satisfying all the
conditions in (II). Let UeU(X, P); then there exists f: U'—- U, fe f. Since
f ~uy, there exist U,eU(X,P), with U,cU’, and a homotopy
F: Uy xI-U such that F(x, 0) = x and F(x, 1) = f(x) for every xe U,. On
the other hand, f (x)e X for every xe U,, and then X is internally movable in P.
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This characterization allows us to prove, in a short way, the following fact:

' 1.3. PROPOSITION. Let P and Q be ANR-spaces and X < P, Y < Q as closed
subsets. Let us suppose that Y is weakly homotopy dominated by X. Then if X is
internally movable in P, Y is also internally movable in Q.

Proof. Let f: X—>Y and g: Y— X be continuous maps such that f-g is
weakly homotopic to the identity map on Y. Let

h: UX, P)-U(X, P)

be a mutation satisfying all the conditions in (II) of Proposition 1.2. Let us
suppose that

f:UX,P)-V(Y,Q), §: V(,Q-UX,P)

are mutations generated by the maps f and g, respectively. Then f-§ ~ u,. It is-
obvious that the mutation k = f-h-§ satisfies all the conditions of (II) in
Proposition 1.2, and then Y is internally movable in Q.

14. Remark. (I) Proposition 1.3 was proved by Bogatyi (see [2],
Theorem 3) in the compact case.

(IT) As a consequence of Proposition 1.3 we infer that a retract of an
internally movable subset of an ANR-space is internally movable.

By the Kuratowski—Wojdystawski Theorem (see [10], p. 81) and Proposi-
tion 1.3 we can define the following topological invariant:

1.5. DEFINITION. Let X be a metrizable space. We say that X is internally
movable if X is homeomorphic to a closed internally movable subset of an
ANR-space. '

1.6. ExampLE. (I) Every ANR-space is internally movable.

(I) From Theorem 2-4 in [14] it follows that every MAR-space is
internally movable.

(ITI) There exists a compact MANR-space which is not internally mov-
able; e.g., the Warsaw circle.

Since the Warsaw circle has the shape of the 1-dimensional sphere S*, we
can assure that the internal movability is not a shape (in the sense of Borsuk)
invariant.

(IV) Every retract of an internally movable space is internally mov-
able while, using the Warsaw circle, not every fundamental retract of an .
internally movable space is internally movable.

Using the same arguments as in Theorem 3.1 in [1] we have

1.7. THEOREM. Let X be a metrizable space and D a partition of X into
closed subsets such that the following two conditions are satisfied:

(I) p: X—>X/D is closed, where p is the natural projection onto the
decomposition space X/D.

(IT) (covering) dim(X/D) = 0.



238 M. ALONSO MORON

If, in addition, every member of D is internally movable, then X is internally
movable. .
As in [1] we can derive the following facts from Theorem 1.7:

1.8. COROLLARY. Let X €S, (see Definition 2.1 in [1]) be a metrizable
space. If every component of X is internally movable, then X is internally
movable.

19. Remark. (I) Let us note that Corollary 1.8 is a generalization of
Theorem 5 due to Bogatyi in [2].

(IT) As a consequence of Corollary 1.8 we infer that every metrizable space
with (covering) dimension = 0 is internally movable.

Using Proposition 1.3 we see that if an internally movable space X is
a product of a family of spaces, then every factor of such a product is internally
movable. We do not know if, in the absence of compactness, a metrizable
product of a family of internally movable spaces is internally movable. In this
sense, as a consequence of Theorem 1.7, we have the following

1.10. CorOLLARY (compare with Theorem 3.4 in [1]) Let X be a locally
compact, metrizable space with compact components, and Y a metrizable space
with (covering) dim(Y) = 0. Then X x Y is internally movable if and only if X is
internally movable.

1.11. Remark. As we have pointed out before, there exist movable spaces
which are not internally movable. On the other hand, if a metrizable space is
internally movable, then it is movable in the sense of [14].

2. On internal mutations and internal shape.

2.1. DErFINITION. Let X and Y be metrizable spaces and P, Q be
ANR-spaces such that X < P, Y = Q as closed subsets. A mutation

f: UX,P)-»V(Y, Q)
is said to be internal provided f(X)< Y for every f: U-V, fef.

2.2. ExaMpPLE. (I) The identity mutation u, is internal.

(I) If f: X>Y is a continuous map and f: U(X, P)-»V (Y, Q) is
a mutation generated by f, then f is internal.

Im If f: U(X, P)-»V(Y,Q) and g: V(Y, Q)>W(Z, R) are internal
mutations, then g-f is an internal mutation.

2.3. ProOPOSITION (compare with Proposition 1.1 in [13]). If a metrizable
space Y is internally movable, then every mutation f: U(X, P)-V (Y, Q) is
homotopic to an internal mutation.

Proof. Let

[ UX, P)-V(Y, Q)
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be an arbitrary mutation and

g: V(Y,Q-V(Y, Q)
a mutation satisfying all the conditions of (II) in Proposition 1.2. It is easy to
see that g-f is an internal mutation homotopic to f.

Let us define now an internal shape theory for arbitrary metrizable spaces:

2.4. DEFINITION. Let X and Y be metrizable spaces. We say that X and
Y have the same internal shape (and write Ish(X) = Ish(Y)) if there exist
ANR-spaces P and Q, with X < P, Y < Q as closed subsets, and two internal
mutations

[ UX,P)»V(Y,Q0) and g: V(Y,Q-U(X,P)
such that
gf~u, and fg>~u,.

If we assume only that the relation g- f ~ u, holds, then we say that X is
internally shape dominated by Y (and write Ish(Y) > Ish(X)).

Remark. It is obvious that Ish(X) = Ish(Y) (resp. Ish(X) = Ish(Y))
implies that
Sh(X) = Sh(Y) (resp. Sh(X) = Sh(Y))
but the converse is not true, e.g., S! and the Warsaw circle.
Using the same arguments as in Proposition 1.3 we have

2.5. PROPOSITION. Let X and Y be metrizable spaces such that X is
internally movable. Let us suppose that

[ UX,Pp-V(Y,0Q, g VY, Q0-UX,P

are mutations with f-g ~ u,. If, in addition, f is an internal mutation, then Y is
internally movable.

Proposition 2.5 is in fact a generalization of Proposition 1.3. As a con-
sequence of Proposition 2.5 we have

2.6. COROLLARY. Let X and Y be metrizable spaces such that Ish(X)
> Ish(Y). If X is internally movable, then Y is also internally movable.

"2.7. THEOREM. Let X and Y be internally movable spaces. Then the fol-
lowing two statements are equivalent: '
(I) Ish(X) = Ish(Y) (resp. Ish(X) = Ish(Y));
(I) Sh(X) = Sh(Y) (resp. Sh(X) = Sh(Y)).

Proof. (I)=(II) is always true.
(I)=>(I). Let us suppose that

i UX,P)-V(Y,0) and g: V(Y,Q0)-U(X,P)
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are mutations such that g-f~u, and f-g ~ u,. From Proposition 2.5 it
follows that there exist two mtemal mutations f’ and g’ such that f’' ~ fand
8 ~g. Then

gf ~u, and f''g ~u,
and, consequently, Ish(X) = Ish(Y).

From Theorem 2.7 it follows that the internal shape theory introduced
here is the same as shape theory in the sense of Fox if we restrict ourselves to
the class of all internally movable spaces.

As we have pointed out in the Introduction, an internal shape theory for
compact metric spaces has been outlined in [13]. In order to end this section,
we are going to prove that the internal shape theory introduced here is just an
extension to the arbitrary metrizable case of such an internal shape theory for
compact metric spaces.

Let us suppose that X and Y are compact metric spaces embedded in the
Hilbert cube Q and that F = {f;, X, Y}, o is an internal fundamental sequence
in the sense of [13]. Let us denote by U(X, Q) and V (Y, Q) the families of all
open neighborhoods of X in Q and of Y in Q, respectively. Let f be the
collection of all triples f: U— V,#where UeU(X, P), VeV (Y, Q) and fis
a continuous map satisfying the following two conditions:

0 s/X)ecy;

() f ~ £,JU in V for almost all k. .

It is easy to see that f is an internal mutation. Let us define the following:

2.8. DeFINITION. Let X and Y be compact metric spaces embedded in the
Hilbert cube Q, and F = {f;, X, Y}, an internal fundamental sequencé. We
say that an internal mutation h: U(X, P)-> V (Y, Q) is associated with the
internal fundamental sequence F if for every h: U—V, heh, the relation
h=~ f,|U in V holds for almost all k.

As we have shown before, with every internal fundamental sequence there
is associated an internal mutation.

2.9. PrROPOSITION. (I) Let us suppose that f and g are internal mutations
associated with the internal fundamental sequences F and G. Then g-f is
associated with G-F (when the compositions make sense).

(IT) The identity mutation u, is associated with the identity fundamental
sequence I .

(IIT) Let f and g be internal mutations associated with the internal
fundamental sequences F and G, respectively. Then f ~ g if and only if F ~ G.

(IV) Given any internal mutation f: U(X, Q)- U(X, Q) (where Q%is the
Hilbert cube), there is an internal fundamental sequence F* from X to Y such that
f* =~ f, where f* is any internal mutation associated with F*. '

(I) and (II) are obvious, (III) and (IV) can be proved following step by step
the proof of (4.6) and (4.7) in [6].
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As a consequence of Proposition 2.9 we have

2.10. COROLLARY. Let X and Y be compact metric spaces. Then the
following two statements are equivalent:

(I) Ish(X) = Ish(Y) (resp. Ish(X) = Ish(Y));

(IT) X is internally shape equivalent to Y in the sense of [13] (resp. Y is
internally shape dominated by X in the sense of [13]).

3. On internal MANR-spaces. In this section we introduce and study the
notion of internal MANR-spaces.

3.1. DeFINITION. A metrizable space is said to be an internal M AN R-space
(denoted by IMANR-space) provided that for every metrizable space X'
containing X as a closed subset and every ANR-space P containing X' as
a closed subset there exists an internal mutation f: U(4, P)- U(X, P) such
that f - j ~ u,, where 4 is a closed neighborhood of X in X’ and j: U(X, P)
—-U(A, P) is a mutation generated by the inclusion map j: X - A.

In order to obtain some results, we are going to give the following
characterization of IMANR-spaces:

3.2. THEOREM (compare with Proposition 3.1 in [13]). Let X be a metriz-
able space. Then the following two statements are equivalent:

(I) X is an IMANR-space;

(II) X is an internally movable M AN R-space.

Proof. (I)=(II). Let X be an IMANR-space and P an ANR-space
containing X as a closed subset. Then there exist a closed neighborhood A4 of
X in P and an internal mutation f: U(X, P)—»U(A4, P) such that f-j ~ u,,
where j is a mutation generated by the inclusion map j: X — A. Let us denote
by A the interior of A in P. Then 4 is an ANR-space and X A as a closed
subset. Let

f'={flIA: A>V with fef and VeU(X, 4)}.

It is clear that f': U(j, ,:12)—» UuXx, Ag) is an internal mutation such that
a Py A
f"'J’ ~ uy, where j' is a mutation generated by the inclusion map j: X—> A4

and, consequently, Ish(j) = Ish(X), and hence X is internally movable. On the
other hand, let

VeUX,A) and [ A-V, fef;
it is obvious that f|X ~ 1, (the identity map) in V. From the homotopy

. . . . 2
extension theorem it follows that there exists a continuous map r,: A —V such
that r(x) = x for every xe X and r; ~ fin V. It is easy to see that the family

r={r.: j—»V, where f: j—>V, fef and VeU(X, }i)}

is a mutational retraction, and then (see Theorem (4.11) in [8]) X is an
MANR-space.

4 — Colloquium Mathematicum LVIIL. 2
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(I)=>(1). Let X be an internally movable MANR-space and X’ a metriz-
able space containing X as a closed subset. Let us suppose that P is an
ANR-space with X’ < P as a closed subset. Since X is an MANR-space, there
exist a closed neighborhood 4 of X in X' and a mutational retraction
r: U(A, P)- U(X, P). On the other hand, from the internal movability of X
it follows (from Proposition 2.3) that there exists an internal mutation
f: U4, P)» U(X, P) such that f ~ r. Since rj ~ u, (where j is a mutation
generated by the inclusion map j: X — A), it follows that f-j ~ u, and,
consequently, X is an IMANR-space.

As consequences of the last theorem we have

3.3. CoROLLARY. Every metrizable space internally shape dominated by an
IMANR-space is an IMANR-space.

The proof of Corollary 3.3 follows from Theorem 3.2, Corollary 2.6 in this
paper and from the fact, proved by Godlewski in [9], that a space shape
dominated by an MANR-space is an MANR-space.

3.4. COROLLARY. Let X be a compact metrizable spuace. Then the following
two statements are equivalent:

(I) X is an IMANR-space; ,

(I1) X is an internal FANR-space in the sense of [13].

Corollary 3.4 is a consequence of Theorem 3.2 in this paper, Proposition
3.1 in [13] and of the fact that the compact MANR-spaces are just the
FANR-spaces (see [8]).

As we know, every homotopy class of mutations from a metrizable space

to an ANR-space is generated by a continuous map. We are going to prove
now that the IMANR-spaces have also such a property.

3.5. ProposITION. Let f: U(X, P)- V(Y, Q) be a mutation. If Y is an
IMANR-space, then there exists a continuous map f: X »Y such that f ~ f,
where f is a mutation generated by the map f.

Proof. Since Y is an internally movable space, there exists an internal
mutation h: U(X, P)- V(Y, Q) such that f ~ h. On the other hand, there exist
WoeV (Y, Q) and a mutational retraction

r: V(W,, Wo)-=V (Y, W,).
Let now hy: Uy— W, hoeh and Ve V(Y,‘Q). There exist
WeV(Y, Wy) with W WynV and r: W,-W, rer.
Let |
g ={rhyiy,v: U—>V, where VeV(Y, Q), r: Wy,—W, rer,

with W WynV and iy, y: U - U, is the inclusion map}.
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It is clear that g is a mutation; moreover, for every g: U—V, geg, we have
g(x) = hy(x) for every xe X. Let us denote by A, a mutation generated by the
continuous map hy|X: X — Y. It is obvious that g ~ A,. In order to complete
the proof we are going to see that g ~ h.

.Let g: U—V, geg. Then, by the construction of g, we have U < U, and
there exist

WeV(Y, W,) with Wc WonV and r: Wo—-W, rer,

such that g =r-h,. Let now h: U, > W, h, eh. Then h: U, — V belongs to h. If
U,=U,nU, then

glU,: U,»Veg and AU, U,»Veh.
On the other hand,
holU,: U,»Woeh and hU,: U,—>W,eh,

and then there exist U, e U(X, P) with U; < U, and a homotopy H: U, x I
— W, such that H(x, 0) = hy(x) and H(x, 1) = h(x) for every xeU,. Con-
sequently,

rH: UyxI-V
is a homotopy with
rrH(x,0)=rhy(x)=g(x), rH(x,1)=rh(x) for every xeU,.

On the other hand, r-h(x) = h(x) for every xe€ X; then g|X ~ hjX in V and,
consequently, there exists U, e U(X, P) with U, < U, such that g|U, ~ h|U,
in V. This fact clearly implies that g ~ b and the proof is complete.

The last result is implicitly contained in [4] (see also Proposition 3.3 in
[13] for the compact case and fundamental sequences).

We are going to deal now with relations between the concept of
IMANR-space and the shape. domination. More precisely, we shall give
a shape representation theorem for spaces shape dominated by an
IMANR-space. Such. a result says almost that a metrizable space shape
dominated by an IMANR-space Y can be (topologically) embedded as
a mutational retract of a product Y x P, where P is an AR-space. But there is
a hedging clause arising from the unprovability in ZFC of the existence of
measurable cardinals. In particular, we have '

3.6. THEOREM. Let Y be an internal MANR-space and X a real-compact
metrizable space such that Sh(Y) = Sh(X). Then there exist an AR-space P and
a homeomorphism m: X Y x P onto a closed subset such that m(X) is
a mutational retract of Y x P.

Proof. By the Kuratowski-Wojdystawski theorem, there exist an
AR-space P and a homeomorphism h: X — P onto a closed subset of P. Since
Y x P and Y have the same homotopy type, we have Sh(Y x P) > Sh(X) and
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Y x P is an internally movable MANR-space. Let S and T be two ANR-spaces
such that Y = S and X < T as closed subsets. Let § = S x P. Then there exist
two mutations

f: UX, T)»V(YxP,$) and g: V(YxP,8-UX,T)

such that g-f ~ uy r. From Proposition 3.5 it follows that there exists
a continuous map f’: X —» Yx P such that f'~ f (where f’' is a mutation
generated by f’). Let

p;: YxP—->Y and p,: YXP-P

be the projections and | = p,-f', f5 = p,'f'. Let us definenow m: X > Yx P
as follows:

| m(x) = (f1(0), h(x).
Obviously, m is a continuous map, and since P is an AR-space, m is hemotopic
to f'. Let

M: UX, T)-V(YxP,S)

be a mutation generated by m; then M ~ f' ~ f.

Let Z = m(X). We are going to prove that m: X — Z is a homeomorphism
and that Z is a closed subset of Y x P. Since h: X — P is a homeomorphism
onto a closed subset of P, it follows that p,|Z: Z — h(X) is a homeomorphism
because p,|Z is a continuous bijective open map. Let

m~' =h""(p,|Z);

m~': Z— X is the inverse map of m.
In order to prove that Z is closed in Y x P we need the real-compactness
of X. As usual, R is the real line. Let k: Z— R be a continuous map; then

k-(p,1Z)~': h(X)—>R

is continuous. Since h(X) is closed in P, there exists a continuous extension
k: P—R of k-(p,|Z)~ . Finally, let k: YxP—R be the map k = k'p,. If ze Z,
then
E(Z) = k_(Pz (Z)) = k-(p, |Z)_1(P2(2)) = k(2).

Then £ is a continuous extension of k to Y x P. In particular, we have proved
that every continuous map from Z to R can be continuously extended to the
closure Z of Z in YxP, and since Z is real-compact (because X is
real-compact), we have (see [S], pp. 271-272) Z = Z, and hence Z is closed in

Y xP.
Let us denote by

m: UX, T)->V(Z,S)
a mutation generated by m, and by
m L VEZ S-UX,T)
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a mutation generated by m~!. Let us recall that M ~ f' ~ f, and then
gM >~ Uy, T-

On the other hand, ri-ri~ ! ~u;5. Let us denote by g’ the mutation
g considered as a mutation from V(Z, S)to U(X, T); g is then an extension of
g’ (see [8], p. 50). Since g-M =~ uy r, it follows that

1 -1

Uz s~ m-m- ' ~rig-M-r
Let now m, e, geg, M,eM and m,em' be such that the composition

m,-g-M,-m) makes sense and let ze Z. We have

my-g-M,-m\(2) = m,(g(2)),
and then

g-M-~! ~ g’
consequently, uz 5 ~ ri-g’. On the other hand, since g is an extension of g’, we
infer that

wm-g: V(YXP, -V (Z,YS)

is an extension of mi-g’, and from the homotopy extension theorem for
mutations (due to Godlewski in [9]) it follows that there exists a mutation

r: V(YXP,S)-V(Z,S)

which is an extension of u; 5. Consequently, r is a mutational retraction and
the proof is complete.

3.7. Remark. (I) As we know, a metrizable space with nonmeasurable
cardinal is real-compact (see [7], p. 232). On the other hand, the problem of the
existence of measurable cardinals is unprovable in ZFC.

(IT) Theorem 3.6 is not true if we assume only that Y is an MANR-space,
even in the compact case. For example, let Y be the Warsaw circle and X the
1-dimensional sphere. As we know, Sh(X) = Sh(Y). Let us suppose that P is an
AR-space such that X can be (topologically) embedded as a mutational retract
of YxP. Let us consider the projection p,: YxP—Y. As we know, p,(X)
must be an arc in Y and, consequently, p,(X) x P has a trivial shape. On the
other hand, X < p,(X)x P must be a mutational retract of p,(X) x P, and this
is not possible because X does not have trivial shape.

As we have pointed out in the proof of Theorem 3.6, the AR-space P can

be chosen with the only condition that X can be embedded as a closed subset
of P. We derive the following consequences:

3.8. COROLLARY. Let Y be an internally movable M ANR-space. Then
a compact metrizable space X is shape dominated by Y if and only if X can be
(topologically) embedded as a mutational retract of Y x Q, where Q is the Hilbert
cube. ' '

39. Remark. If in Corollary 3.8 we suppose that Y is compact, then we
obtain the main result of Borsuk and Oledzki in [3].
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3.10. COROLLARY. Let Y be an internally movable M ANR-space. Then
a locally compact separable metrizable space X with (covering) dim(X) = n is
shape dominated by Y if and only if X can be embedded as a mutational retract of
Y x R2"+l.

The proof of Corollary 3.10 is directly obtained from Theorem 3.6 in this
paper and Corollary 21 and Lemma 22 in [12].
Following Hyman’s notation in [11], if X < Y, then

Z(X,Y)=Yx[0,1]-((Y-X)x {0}) = X x {0} U Y x(0, 1].

Hyman has proved in [11], Lemma 4, that if Y is an ANR-space and X c Y,
then Z(X, Y) is an ANR-space and X is homeomorphic to a closed subset of
Z(X, Y). Using the same arguments as Hyman we have

3.11. COROLLARY. Let Y be an internally movable MANR-space. Then
a separable metrizable space X is shape dominated by Y if and only if there exists
A < Q (where Q is the Hilbert cube) such that X is homeomorphic to a mutational
retract of YxZ(A, Q).
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