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We shall discuss here the two transfinite dimensions trInd and trind.

First, motivated by the fact that the existence of the transfinite dimen-
sion trInd is an invariant of closed mappings with fibres of cardinality less
than k, where k is a positive integer (see Theorem A, below), we give an
estimation of trInd Y in terms of trInd X and k. This estimation, however,
depends heavily upon the method of proof; it can be slightly improved in the
case of open-and-closed mappings for some values of trInd X.

Next, we introduce the sets S7(X), where X is a normal space and « is
an ordinal number, and by means of these sets we define the class of small
spaces. We investigate the behaviour of such spaces under closed mappings.

Finally, we prove the sum theorem and the Cartesian product theorem
for the sets S7(X). Employing these theorems along with a localization
lemma for the sets S7(X) (see Lemma 2.4, below) we give an account of the
other dimensional properties of the class of small spaces; in particular, our
results on the sets S5(X) imply some known facts about the transfinite
dimension D introduced by Henderson ([6]).

Our terminology and notation follow [3] and [4]. We shall quote
definitions and theorems from [5] when transfinite dimension is concerned.
By “dimension” we always mean the large inductive dimension Ind.

1. We begin with recalling the definitions of the transfinite dimensions
trInd and trind.

Definition 1.1. For a normal space X we let

1) trind X = —1 if the space X is empty;

2) trlnd X <a if for every pair A, B of disjoint closed subsets of X
there exists a partition L between A and B such that trind L < x;

3) triInd X =« if trInd X < a and there exists no ordinal number B
< 2 such that trInd X < 8.
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A normal space X is said to have trInd if trInd X = a for an ordinal
number a.

Definition 1.2. For a regular space X we let

1) trind X = —1 if the space X is empty;

2) trind X < a if for every point xe X and each closed subset F of X
that does not contain x there exists a partition L between {x} and F such
that trind L < a;

3) trindX =a if trind X <a and there exists no ordinal number B
< a such that trind X < 8.

We state, now, two theorems on invariance and inverse invariance of the
transfinite dimension trInd (see [16], Theorems 4.9 and 4.10).

THEOREM A. If f: X - Y is a closed mapping of a metrizable space X
onto a metrizable space Y, there exists a positive integer k such that
|f =Y (y)| < k for every yeY and the space X has trInd, then the space Y has
tr Ind.

THEOREM B. If f: X > Y is a closed mapping of a metrizable space X
onto a metrizable space Y, there exists a positive integer k such that
Ind f ~'(y) < k for every yeY and the space Y has trInd, then the space X
has tr Ind.

Motivated by Theorem A, we give an estimation for trInd Y. Let us
recall that every ordinal number a can be expressed in a unique way in the
form wg-A(x)+n(x), where n(x) < w, (see [10], Ch. VII, § S, Theorem 4).

We begin with a lemma (cf. Theorem 3.16 in [S] and its proof given
therein).

LEmMMA C. If a hereditarily normal space X contains a closed subspace C
such that trInd C < a with the property that each closed subspace T of X
contained in X\ C satisfies the inequality trInd T < B, then trInd X is defined
and

ﬂ+a+1 lf a < o,

trInd X < é
rInd B+a otherwise.

THeoReM 1.3. If f: X = Y is a closed mapping of a metrizable space X
onto a metrizable space Y, there exists a positive integer k such that
|f Y (y) < k for every yeY and trind X < a, then

n@+k—1 if A(@) =0,
d® m(a, k)+n(a, k)+k—1

if A(x) > 0 and a is a non-limit number,
@d® m(a, k) if A(x) > 0 and a is a limit number,

trindY <
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where, for every ordinal number a and each positive integer k,

ma, 1)=1,
m(a, k+1)=m(a, k)+m(p, k+1) ifa=p+1,
m(e, k+1) = m(a, k)+1 if o is a limit number

and
n(a, 1) = n(a),

n(a, k+1) = n(a, k)+1 if a is a non-limit number,
n(a, k)=0 if a is a limit number.
Proof. It follows from the assumptions that
(1) m(a, k) > m(B, k) whenever n(a) > n(f).

As the case when A(a) =0 is the theorem on dimension-raising map-
pings (see [4], Theorem 4.3.3), it suffices to prove the theorem in the case
when A(a) > 0. This will be done by induction with respect to the number a.

Let us assume that the theorem holds for all spaces with tr Ind less than
a and consider a space X such that trInd X = a. Now, we apply induction
with respect to the integer k. Since w% B < wb for every ordinal number B
and n(B, k) = n(P) for every ordinal number B and k =1, 2,..., our theorem
holds for k =1. Let us assume, now, that the theorem is true for k
=1, 2,...,1—1 and consider the case when k = I.

Consider a pair of disjoint closed subsets of Y. There exists a partition L
between f~!(4) and f~!(B) in X such that trInd L = B <a. There exist
closed subsets M, N of X such that X=MUN, L=MnN,
f™1(A) = M\N and f~!(B)c N\M. It is easy to see that the subset K
=f(M)n f(N) of Y is a partition between A and B in Y.

There are two cases to consider.

Case 1. a is a non-limit number, « = y+1. It follows from the first
inductive assumption applied to the restriction f|L: L — f(L) that

np)+1-1 if AB)=0
g -m(B, h+n(B, h+1-1

if A(B) > 0 and B is a non-limit number,
od® -m(B, 1) if A(B)> 0 and B is a limit number.

trInd f(L) <

Consider, now, a closed subset T of K contained in K\ f(L) and the
closed subset C = M n f~1(T) of X. Since the restriction f|C: C - T has
the property that |(f|C) ' (y)) <I—1 for each yeT it follows from the
second inductive assumption applied to the restriction f|C: C —» T that

trInd T < wd@ -m(a, |- 1)+n(e, I-1)+1-2.



64 L. POLKOWSKI

It follows from Lemma C that

[ W@ -m(a, I=1)+n(a, I=1)+1=2+n(B)+I
if 1(f) =0,
0@ -ma, I—=1)+n(x, I=1)+1-2+}® -m(B, h+n(B, N+1—-1
if A(f) >0 and B is a non-limit number,
i@ m(a, I—1)+n(a, I—1)+1-24+wi® -m(B, )
if A(f) >0 and B is a limit number.

trInd K <+

It is easy to see, by (1), that in either of the two cases A(f) < A(a), A(B) = A(a)

0@ m(a, )+n(e, )+1—-1 if A(f)=0,

i@ -m(a, l)+n(e, l)+1—1 if A(B)> 0andBisanon-limitnumber,
@@ [m(a, | —1)+m(y, )] +n(x, ) +1—1

{ if A(f) > 0 and g is a limit number

trind Y < 1

and thus in ‘Case 1 the theorem is proved.

Case 2. a is a limit number. By the second inductive assumption we
have, in the notation of Case 1,

trind T < wd® -m(a, 1-1).
Thus,

[ 02 -m(a, I-1)+n(f)+1 if A(B) =0,
i@ -m(a, I—1)+wd® -m(B, h+n(B, D+1-1
trindK < 4 if A(B) > 0 and B is a non-limit number,
i@ -m(a, - 1)+ wd® -m(B, )
if A(f)>0 and B is a limit number.

Since A(B) < A(x), in all three cases

trind K < wd® - [m(a, I—1)+1]

and thus

trInd Y < wd®-m(a, ).

This completes the proof of the theorem. O
We begin our discussion of the case of open-and-closed mappings with a
lemma.

Lemma 14. If f: X > Y is an open-and-closed mapping of a space X
onto a space Y, two closed subsets A, B of Y are disjoint and a closed subset L
of X is a partition between f~'(A) and f~'(B) in X, then the closed subset
f(L) of Y is a partition between A and B in Y.
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Proof. Consider disjoint open subsets G, H of X such that X\L
=GUH, f71(A) =G and f~'(B) c H. The open sets U = Y\ f(X\G) and
V=Y\f(X\H) are disjoint, A c U and B < V. Consider also the open
subsets W, = f(G)nf(H) and W, =Y\ f(L) of Y. Since

UnW, =f(GnfH)\f(X\G)=0,
Vaw, = f(G)nfH\f(X\H) =0
and
YN[ULVVOUW, nWy)] =[Y\(Uu V)In[(Y\W) u(Y\W,)]
=f(X\G)nf(X\H)n[(Y\f(G)nf(H)v f(L)]
= (DS X\G) N f(X\H)\(f(G)n f(H)] = f (D),
the set f(L) is a partition between A and B. Thus, the lemma is proved. O

THeoREM 1.5. Iff: X — Y is an open-and-closed mapping of a metrizable
space X onto a metrizable space Y, there exists a positive integer k such that
If ") < k for every yeY and trInd X < a = wg*A(a), then trInd Y < wd®.

Proof. Let A, B be a pair of disjoint closed subsets of Y. There exists a
partition L between f~!(A4) and f~!(B) in X such that trIndL =8 <a. It
follows from Theorem 1.3 that

trInd f (L) < wg® -m(B, k)+n(B, k)+k—1 < w§®.

By Lemma 14 the set f(L) is a partition between A and B and thus
trInd Y < wf® so that the proof is concluded. O

2. In this section we shall investigate the behaviour of small spaces
under closed mappings and we shall show that in this case more precise
results can be obtained.

We begin with some definitions.

Definition 2.1. For a normal space X we let
S;(X)=X\U{UcX: Uis open in X and Ind U < 0}.

Definition 2.2. For a normal space X and each ordinal number a of
cardinality less than w(X)* we let

1) SPX) =X,

2) S{(X)=S8,(S{(X) if «=p+1,

3) $3(X)= () SH(X) if a is a limit number.

B <a

Clearly, for every normal space X, the sequence SY(X), S!(X),
..., 85(X),... is eventually constant. We denote by a(X) the first ordinal
number a, with the property that S3(X) = $;°(X) whenever a > aq.

Definition. 2.3. A normal space X is said to be small if $3*¥(X) = Q.

5 — Colloquium Mathematicum L.1
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It should be observed that a more general approach was described by
Stone ([18]), who — for any property 2 hereditary with respect to closed
subsets — defined the sets F*(X) and K (2, X) of which the sets $5(X) and
S§®(X) defined here are particular cases; Stone’s idea goes back to the
classical idea of localization (see [9], Ch. 1, §7, IV). Later, Nagami defined
independently — for any property £ hereditary with respect to closed
subsets — the class of #-dispersed spaces ([14]); it turns out that the class of
P-dispersed spaces coincides with the class of spaces X with the property
that K(2, X) = @ and thus the class of small spaces coincides with the class
of normal #-dispersed spaces with & being the property of being locally
finite-dimensional space. The class of small spaces coincides also — in the
realm of strongly hereditarily normal spaces (see [4], Definition 2.1.2) —
with the class of spaces X satisfying the inequality D(X) < 4, where D(X)
denotes the transfinite dimension of X in the sense of Henderson [6], defined
originally for metrizable spaces only (cf. Proposition 3.3, below and Theorem
1 in [7]), which can be generalized without difficulty to strongly hereditarily
normal spaces. A couple of results on D-dimension was announced in [12]
and [11]. Kozlovskii ([8]), without mentioning the more general construc-
tions of [18] and [14], defined in the realm of metrizable spaces the class of
small spaces (under the name of d-spaces) and announced a couple of results
on dimensional properties of these spaces. It should be added that some
subclasses of the class of small spaces were also discussed by Shmuely ([17])

and Bakovi¢ ([17).
Let us recall that if a normal space X has trInd, then the subspace

S, (X) of X is countably compact (see [5], Lemma 3.14; the argument applied
in [5] in the case of metrizable spaces holds in the more general case) so that
if the space X is, moreover, weakly paracompact, then S;(X) is compact (see
[3], Theorem 5.3.2). This implies that if a weakly paracompact small space X
has tr Ind, then the ordinal number a(X) has a predecessor, i.e. a(X) = x(X)
+1; one easily checks that 0 < Ind S¥*(X) < oo (see [5], Lemma 3.13).
We shall now state two properties of the operation S7(X) to be
frequently used in the sequel. It should be observed that it follows from the
monotonicity of the dimension Ind in the class of strongly hereditarily
normal spaces that if X is a strongly hereditarily normal space, then

S/ (X)=X\U!Uc=X: U is open in X and Ind U < o}.
We denote from now the sets S7(X) by S$*(X).

LemMMA 2.4. If X is a strongly hereditarily normal space, then

(i) S*(A) = S*(X) for every ordinal number a and each subset A of X;

@) if U is an open subset of X, then S*(ANU) = S*(A)nU for every
ordinal number a and each subset A of X.

Proof. Since the family of open finite-dimensional subsets of the space
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X is an ideal of sets (see [4], Theorems 2.2.5 and 2.3.6), (i) holds for & = 1 by
[9], Ch."1, § 7, 1V, property (1), the general case follows by obvious inductive
argument.

We shall prove (ii) by induction with respect to the ordinal number a.
We consider first the case when a=1. It follows "from (i) that
S(ANnU)cS(A)nU. To prove the reverse inclusion, consider a point
xeX\S(A nU). There are two possibilities: either xe X \(4 N U), then of
course xe€X\(S(4)nU) or xe(AnU). In the latter case, since
x€ AN U\S(A NU), there exists an open subset V of A nU such that xe V
and IndV < oco. Consider an open subset W of X such that W n(4 nU)
= V. Thus, A n(U n W) is a neighbourhood of x in 4 and Ind 4 n(U n W)
< oo so that xe X\S(A4) < X\(S(A) nU). The proof in the case a =1 is
concluded.

Assume, now, that (ii) holds for all ordinal numbers f <a < 1. There
are two possibilities: either a is a limit number, then it follows from the
inductive assumption that "

SAnU)= N S8(AnU)= N (S*(A)nU)=85(4)nU
B <a B <a
or « has a predecessor f, then it follows from the inductive assumption for f
and the already proved case a = 1, that

S*(ANU)=S(S*(ANU)) =S(SP(A) " U) = §*(4) A U.
Thus, the lemma is proved. O

It should be noted that for A = X (ii) was proved in [18] (property
(2.4)).

We shall now define for each small space X an ordinal invariant ¢ (X)
and for some small spaces we define an ordinal invariant ..

Definition 2.5. For each small space X we let (X) = wq,-a(X) and
for each small space X such that a(X) has a predecessor »(X) and
0 < Ind $*®(X) < o0 we let

1 (X) = wg % (X)+Ind S*¥ (X).

Let us observe that if for a strongly hereditarily normal space X the
invariant ¢(X) is defined, then ¢(X) < D(X). Indeed, let D(X) = a and con-
sider an (x— D)-representation {A4,};<, for the space X (see [7], Definitions);
we prove by induction with respect to the ordinal number g, that
SP(X) = |J A,;. This inclusion obviously holds for 8 = 0. We assume that

5>wqp
the inclusion holds for each ordinal y < . To prove that S*(X) = ) A4,

Zwgp
we consider two cases.

Case 1. B has a predecessor y. By the inductive assumption
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S'(X) = |J A;. Consider a point xeS*(X)\ (J A;. There exists a

gzwoq 6Z2wgp
positive integer n such that X€Augy+n\ U Aygy+m (see [7], 1. c., condition
m>n

(d)) and thus the open subspace U = §”(X))\ U A; of §7(X) is a finite-

6Zwgytn

dimensional neighbourhood of x in §”(X), so that xeS’(X)\S"*1(X). Thus,
SSX)= U A,

6Zwqgp
Case 2. B is a limit number. Consider a point x e S?(X). Since for each
y < B, by the inductive assumption, xe () A;, it follows that 6 (x) = w, - B,

é6Zwqy

d(x) being the largest ordinal § such that xe A;. Thus, S#(X) = (J A,.
6Z2wpp

This implies that »(X) < A(y), hence ¢(X) < D(X). It should be also
noted that if A, =@, then a(X) < A(y), so that ¢(X) < D(X). Let us also
observe that if the space X is, moreover, hereditarily paracompact and the
invariant ¢(X) is defined, then D(X) <¢(X). Indeed, for each a < x(X),
consider the subspace X, = S$*(X)\S**!(X). Since X, is locally finite-
dimensional, by the hereditary paracompactness of X, there exists a locally
finite in X, cover #, = {F,},s, of X, by closed in X, finite-dimensional sets.
For n=1, 2,..., we let

Fo,n=U{F,: IndF,=n and s€S,};

by the locally finite sum theorem for Ind (see [4], Theorem 23.10),
IndF,,<nforn=1,2,... and a < %(X). Moreover, since () F,, is closed

m2n

in X,, there exists a closed subset F, of X such that

F,nX,=F,n$*(X)nX,= U F,m

m2n

and thus

S X) U (FenS* (X)) = S XU U Fam
so that the last set is closed in X for n=1, 2,... and a < »#(X). Since the
countable family {F,,},<, is locally finite, for each xe X, there exists a
positive integer n such that xeF,,\ (J F,, for a <x(X). The family

m>n

F ={F,p a<x(X); n=1,2,...} U{SX®(X)},

where the subfamily {F,,: a <x(X); n=1,2,...} is ordered lexicographi-
cally, with the last element S*®(X) is a well-ordered family of type y+1,
where y = wo % (X). We let 4; = F,, whenever 6 = wy 1+n and t < %(X)
and A, =S$*®(X). It follows that the family & is a ((y+IndA4,)-— D)-
representatxon and thus

D(X) < y+Ind A, = wo - %(X)+Ind $*®(X) = ¢(X).
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Let us finally emphasize that we distinguish between the two cases: a(X) is a
limit number and a(X) is a non-limit number to avoid the difficulty caused
by the empty set, whose dimension, —1, is no ordinal number.

The following two theorems give some evaluations of the transfinite
dimensions trind and trInd in the realm of small spaces. The existence of
trind X for every small metrizable space X was announced by Kozlovskil
([8]).- The second evaluation was established by Henderson ([7]) for metriz-
able X.

THEOREM 2.6. If a strongly hereditarily normal space X is small, then X
has trind and

trind X < 6(X) = wg - a(X).

Proof. We proceed by induction with respect to the ordinal number
a(X). If a(X) = 1, then X is locally finite-dimensional and thus trind X < w,
(see [4], Theorem 1.6.3). Let us assume now that the theorem is true for all
spaces Y with a(Y) <a and consider a space X with a(X) = a. There are
two cases to consider.

Case 1. a is a limit number. For each x€ X, choose an open neigh-
bourhood U(x) and an ordinal number x(x) < a such that U (X) n $*(X)
= (. By Lemma 24 (ii) and the inductive assumption,

trind U (x) < o(U(x)) = wo-a(U(x)) <wo-a for each xe X.
Thus, trind X < wgy-a.

Case 2. 2 has a predecessor f. By Lemma 24 (ii) and the inductive
assumption, trind(X\S?(X)) < wo'B < w,-a. Consider a point xeS?(X).
There exists a neighbourhood W of x in X such that IndWnS#(X)=n
< oo. It is easy to prove by induction with respect to n, that

trind W < wq- f+n.
This implies that trind X < w,-a and the theorem is proved. O

A similar inductive argument will be applied to obtain an evaluation for
tr Ind.

THeoOREM 2.7. If a strongly hereditarily normal weakly paracompact small
space X has trInd, then

trInd X < ¢(X) = wo ' #(X)+Ind $*® (X).

Proof. We prove the theorem by induction with respect to »(X). If
%x(X) =0, then S(X) =@, so that ¢(X) =Ind X. Now, we assume that if
x(Y) <a, then trInd Y < ¢(Y) and consider a space X such that »(X) = a.
We prove by induction with respect to the non-negative integer n
= Ind $*® (X) that trInd X < wy-a+n. Let A, B be a pair of disjoint closed
subsets of X.
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First, consider tﬁe case where n = 0. There exists a partition L between
A and B in X such that L < X \S*(X) (see [4], Theorem 2.24) and Lemma
24 (i) implies that x(L) < a, so that by the inductive assumption

trInd L < wy % (L)+Ind "V (L) < wo [ (L)+1] €< wy-a.

We assume, now, that if Ind $** (X) = m, then trInd X < wq-»(X)+m for m
=0, 1,...,n—1 and consider the case where Ind $*®(X) = n. There exists a
partition L between 4 and B in X such that Ind LnS$*®(X) < n—1 and
Lemma 24(i) implies that either »(L) <a or %(L)=a and IndS*P (L)
< n—1. In either case by the inductive assumption trInd L < wy-a+n—1, so
that trInd X < wg-a+n. Thus, the theorem is proved. O

We pass now to a discussion of closed mappings. We begin with a
lemma.

LemMa 28. Iff: X — Y is a closed mapping of a metrizable space X onto
a metrizable space Y and there exists a positive integer k such that
Ind f~'(y) <k for each yeY, then f(S*(X)) = S*(Y) for every ordinal num-
ber a.

Proof. We prove the lemma by induction with respect to the ordinal
number a. First, we prove that f(S(X)) = S(Y). Consider a point ye Y\ S(Y);
there exists an open subset U of Y such that yeU and Ind U < co. The
restriction fg: f~'(U) - U being closed, it follows from the theorem on
dimension-lowering mappings (see [4], Theorem 4.3.6), that Ind f ! (U) < oo,
so that Indf~'(U)<oo. Thus, f~'(y) =« X\S(X). This implies that
£(S(X)) = S(Y). We assume now that f(S?(X)) c S#(Y) whenever f <a. To
prove that f(S*(X)) = S*(Y) we have to consider two cases.

Case 1. a has a predecessor B. The inductive assumption implies that

f(8*(X)) = f(S(S* (X)) = (1S5 (X))(S(S* (X))
< S(f(SP(X)) = S(S(Y)) = S*(Y).
Case 2. « is a limit number. The inductive assumption implies that

f(S°(X))=f(ﬁQ S”(X))Cﬂo [P X)) = N SH(Y) =5(Y).

. 5 <a
Thus, the lemma is proved. O

Remark 29. Let us observe that the above argument, employing the
theorem on dimension-lowering mappings due to Zarelua [20], can be
applied to prove the lemma in the case when X is an L-space (see Nagami
[15]) and the space Y is normal.

THeEOREM 2.10. If f: X - Y is a closed mapping of a metrizable space X
onto a metrizable small space Y, there exists a positive integer k such that
Ind f~'(y) < k for each yeY and the space Y has trInd, then X has trInd
and ¢«(X) <¢(Y)+k, so that trInd X <¢(Y)+k.



TRANSFINITE DIMENSION 71

Proof. It follows from Theorem A that trInd X is defined. By Lemma
28, X is a small space, x(X)<x(Y) and if »(X)=x(Y), then
£ (8*® (X)) = $*™(Y); hence

Ind $*® (X) < Ind ¥V (Y)+k.
Thus,

¢(X) = 0o %(X)+Ind S*®(X) < 0y % (Y)+Ind S*V (Y)+k = ¢«(Y)+k.
To conclude the proof it suffices to apply Theorem 2.7. O

Applying Theorem 2.6 and Lemma 2.8 in a similar way we obtain a
counterpart of Theorem 2.10 for the dimension trind.

THeorReM 2.11. If f: X = Y is a closed mapping of a metrizable space X
onto a metrizable space Y, there exists a positive integer k such that
Ind f~!(y) <k for each yeY and Y is a small space, then X has trind and
o(X)<a(Y), so that trind X < o(Y).

It should be noted that Theorem 2.11 holds in the case when X is an L-
space and Y is normal (cf. Remark 2.9).

Lemma 2.8 can be strenghtened in the case of closed mappings with
finite fibres.

LEMMA 2.12. If f: X > Y is a closed mapping of a metrizable space X
onto a metrizable space Y and there exists a positive integer k such that
|f Y (y)l < k for each y€Y, then f(S*(X)) = S*(Y) for every ordinal number o.

Proof. By Lemma 28, f(S*(X)) = S*(Y) for every a; to prove the
reverse inclusion we apply induction with respect to a. We start with a = 1.
Consider a point ye Y\ f(S(X)). Since f ~!(y) = X\S(X), the finiteness of
f~'(y) implies that there exists an open subset W of X such that
7)) =cWcX\S(X) and IndW < o00. We let V =Y\ f(X\W). The re-
striction fy: f~1(V)—> V being closed, it follows from the theorem on
dimension-raising mappings (see [4], Theorem 4.3.3) that Ind V < oo. Thus,
ye Y\S(Y). This implies that S(Y) < f(S(X)). We assume now that S?(Y)
= f(S?(X)) for each B <a and consider two cases.

Case 1. a has a predecessor . It follows from the inductive assump-
tion that

§*(Y) = S(S*(Y)) = (IS8 (X)) (S (S* (X)) = S (5% (X))
Case 2. a is a limit number. It follows from the inductive assumption
and the finiteness of the fibres of the mapping f that

s(Y)= S”(X)=ﬂQ fEX)=7(N S”(X))=J_‘(S“(X))~

B <a B <a
Thus, the lemma is proved. O
Remark 2.13. Let us observe that the above argument, employing the
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theorem on dimension-raising mappings due to Morita [13] can be applied
to prove the lemma in the case when X is an L-space and Y is a normal
space (cf. Remark 2.9).

THEOREM 2.14. If f X — Y is a closed mapping of a metrizable space X
onto a metrizable space Y, there exists a positice integer k such that
If ') < k and X is a small space which has trInd, then Y has trInd and
W(Y)<e(X)+k—1, so that trIndY < «(X)+k—1.

Proof. By Theorem A trIindY is defined and it follows from Lemma
2.12 that Y is a small space, %(X) = x(Y) and $*P(Y) = f(S*®(X)); hence
Ind $*Y(Y) < Ind $*®(X)+k—1. Thus,

((Y) = 0o %(Y)+Ind S*V(Y) < g %(X) +Ind S*® (X)+ k—1 = o(X)+k—1.

To conclude the proof it suffices to apply Theorem 2.7. O

Applying Theorem 2.6 and Lemma 2.12 in a similar way we obtain a
counterpart of Theorem 2.14 for the dimension trind.

THEOREM 2.15. Iff: X — Y is a closed mapping of a metrizable space X
onto a metrizable space Y, there exists a positive integer k such that
Ilf ~'(y) < k for every ye Y and X is a small space, then Y has trind and
o(X)=0(Y), so that trind Y < o(X).

It should be noted that Theorem 2.15 holds in the case when X is an L-
space and Y is a normal space (cf. Remark 2.13).

Let us add that in Bakovi¢ [1] one can find some special cases of
Lemmas 2.8 and 2.12.

3. In this section we establish some new facts about small spaces. We
begin with a definition.

Definition 3.1. A normal space X is said to be strongly countable-
dimensional in the sense of Ind (abbreviation s.c.d.l.) if it can be represented
as the union of a sequence F,, F,,... of closed subspaces each of which is
finite-dimensional in the sense of the dimension Ind.

We establish now a relation between the class of small spaces and the
class of sc.d.I. spaces.

THeOREM 3.2. 'Every perfectly normal weakl;v paracompact small space X
is a sc.d.l. space.

Proof. For each o < a(X), we let X, = $*(X)\S**!(X). It follows from
the assumptions that X, is a G,-set in X for each a < a(X). Now, as proved
by Chaber -([2]), under the weaker assumption that X is f-refinable rather
than weakly paracompact, for the cover {X,}, <ox) of X there exists a closed

[+ o]

refinement .# = () #,, where the family %, is discrete in X for n

n=1
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=1, 2,... Consider a subspace Fe .#. Since F is locally finite-dimensional,
there exists an open cover # = {U,}, of F such that Ind U; < oo for each
s€S. Since, for k=1, 2,..., the subspace U,(F)=){Ue#: IndU < k] is
an F_-set in X, U,(F) is weakly paracompact (see [3], Exercise 53 C(b))

and thus Ind U, (F) < k (see [4], Theorem 2.3.14); we let U,,(F) U K, ;(F),
=1

where K, ;(F) is closed in X for k,j=1,2,... For n= 1,2,...,
Ind{) |K, ;(F): FeF,} <k for k,j=1,2,... and this implies that X is a
s.cd.l. space. O

Theorem 3.2 was proved by Henderson ([7]) for separable metric spaces
and announced by Kozlowskii for metrizable spaces ([8]). In the case when
the space X is perfectly paracompact, Theorem 3.2 follows also from
Theorem 4’ in Stone [18].

Let us note the following characterization of small spaces.

ProPOSITION 3.3. For every strongly hereditarily normal space X the
Jollowing conditions are equivalent:

a) the space X is small;

b) each non-empty subset A of X contains a non-empty relatzvely open
subset U such that IndU < o0;

c) each non-empty closed subset A of X contains a non-empty relatively
open subset U such that Ind U < oo.

Condition b), above, was introduced by Stone (cf. Theorem 3 in [18]);
condition c), above, was discussed by Stone (l. ¢.), Nagami ([14]) and, in an
equivalent form, by Henderson (cf. Theorem 1 in [7]).

From Proposition 3.3, applying the Baire category theorem which holds
in Cech-complete spaces, we obtain

CoRrOLLARY 3.4. Every strongly hereditarily normal Cech-complete s.c.d.l.
space X is a small space.

From the already mentioned fact that if a normal space X has trInd,
then S(X) is countably compact and from Corollary 3.4 we obtain

CoROLLARY 3.5. Every strongly hereditarily normal weakly paracompact
space X that is a s.c.d.l. space and has trInd is a small space.

We now prove a sum theorem.

THeoREM 3.6. If a strongly hereditarily normal space X can be rep-
resented as the union of a locally finite family {F,},s of closed subsets, then
$*(X) = \J S*(F,) for every ordinal number a.

seS

Proof. We prove the theorem by induction with respect to the ordinal
number «. In the case when a = 1 it suffices to prove that S(X) = (J S(F,);
eS

the reverse inclusion follows from Lemma 24 (i). Consider a point
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xeX\{J S(Fy); let So = {seS: xeF,}. For each seS,, we choose an open
seS

subset U, of X such that xe U, and Ind(U; N F,) < co. The open subset W
=(X\ U F)n ) U of X is a neighbourhood of X such that Ind W
3eS\So seSq
< oo (see [4], Theorem 2.2.5) and thus xe X'\ S(X); the proof in this case is
concluded. We assume now that S#(X) = () S#(F,) for each f <a >2 and
seS

consider the two cases.

Case 1. a has a predecessor f. It follows from the inductive assump-
tion applied to the locally finite cover {S?(F,)},s of S#(X) and the already
established case of a =1 that

$*(X) = S(S"(X)) = g S(S"(F,)) = {é}g S*(F,).
Case 2. a is a limit number. Since

X =N SX)=N U SF),

B <a B <a seS

it suffices to show that () U S#(F,) < U S*(F,). But, if a point
p <a seS seS
xe X\ §°(F,), then for each seS such that xeF, there exists an ordinal
seS

number a(s) < a such that xe X \S*(F,) and thus xe X\ |J S*(F,), where &
seS

= max {a(s): xeF,} <a.
This completes the proof. O

CoroLLARY 3.7. If a strongly hereditarily normal space X can be rep-
resented as the union of a locally finite family {F,}, of closed subsets and F,
is a small space for each seS, then X is a small space and o(X)
=sup {o(F,): seS}. If, moreover X is weakly paracompact and trInd X is
defined, then there exists an soeS such that «(F,) = «(X).

The inequality D(X) < sup {D(F,): seS} was proved by Henderson in
the case of metrizable X ([6]).

The next theorem is a counterpart for small spaces of the enlargement
theorem for Ind (see [4], Theorem 4.1.19).

THEOREM 3.8. If a metrizable small space X is a subspace of a metrizable
space Z, then there exists a subspace X of Z such that X < X, X is a Gyset in
Z, X is a small space and a(X) = a(X).

Proof. We prove the theorem by induction with respect to the number
a(X). We can suppose that X is dense in Z. We consider first the case when

a(X)=1. Let #= () 4, be an open cover of Z, where &, = {Vilses,, is a
m=1

discrete family of open subsets of Z for m=1, 2, ..., such that #|X
contains a refinement of a cover of X by open in X finite-dimensional sets.
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Space X is locally finite-dimensional, so the closed subset Y =
{zeZ: Ind(V n X) = 0 whenever ze Ve®} of Z is disjoint from X. We

let 2, ={seS,: Ind(V,nX) <o} and Q = C) Q,.. For each seQ there
exists a Gy-set Q, in Z with the following pr”(';erties:
(1) V.nXcQ,cV,;
) Ind Q, = Ind(V, N X).

We let T={) (V,\Q,) and X = Z\(Y U T). By virtue of (1) and (2)
Ind(V,nX) <0 ;; each se Q and thus the equality X = |J (V, » X) implies

seQ?
that a(X) = 1. Clearly, X c X and X is a G,set in Z so that the proof in
case a(X) =1 is concluded.
We assume now that the theorem holds for all spaces Y such that a(Y)

< a and consider a space X with a(X) = a. There are two cases to consider.

Case 1. a has a predecessor f. Consider an open subset U of Z such
that Un X = X\S?(X). By Lemma 24 (ii) «(U n X) < <a and thus, by
the inductive assumption, there exists a G,-set Q in Z such that

(3) UnXcQcU and a(Q)=a(UnX).
Consider also a closed subset K of Z such that K n X = $#(X). Since

(S (X)) = 1, it follows from the already established special case of a(X) = 1
that there exists a Gsset P in Z such that

4 S*(X)cPcK and a(P)=1.

We let T=U\Q and R = K\ P; consider the subset X = (U u K)\(TUR)
of Z. By virtue of (3) and (4) X = X; clearly X is a G,set in Z. Since
UnX cQ, it follows from Lemma 2.4 (ii) that U n X nS#(X) = @, so that
S#(X) < K\(T UR) c P. Thus, by virtue of (4), S#*1(X) = @, so that X is a
small space and a(X)<f+1=0a By Lemma 24 (i) a(X)>a and this
concludes the proof in Case 1.

Case 2. a is a limit number. For each xe X there exists an ordinal
number a(x) <a and a neighbourhood U(x) of x in X such that
U(x) n$*®(X) = @ so that, by Lemma 2.4(ii), «(U(x)) < a(x) <a. For each
xe X, consider an open subset V(x) of Z such that V(x)n X = U(x).

Consider the open subset V = () V(x) of Z and a locally finite in V open
xeX

refinement {W,},s of the open cover {V(x)l,x of V. For each seS, we
choose, by the inductive assumption, a Gs;-set Q, in Z that is a small space
such that

(5) W,nXcQ,cW, and a(Q)=a(W,nX).
We let T={J) (W,\Q,) and consider the subset X = V\T of Z. It

seS
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follows from (5 and Lemma 24 (i) that W,nX =Q,nX, hence
a(W, n X) < a(Q,) < a for each seS. The paracompactness of X implies that
there exists a locally finite closed shrinking {F,},s of the open cover
(W, X),s of X. By Lemma 24 (i), «(F,) < a(W, n X) < a for each seS and
thus Corollary 3.7 implies that X is a small space and a(X) < a. Clearly
X < X so that, by Lemma 24 (i), «(X) > «; X being a G,-set in Z, the proof
in Case 2 is concluded. O

Let us add that Kozlovskil announced ([8]) that for every small

metrizable space X there exists a completion X such that $*(X)¥ = $*(X)
whenever a < a(X). This condition, however, can be easily satisfied by
introducing minor modifications in the proof of Theorem 3.8 (cf. also [19],
for the case of locally finite-dimensional metric separable X); a special case
of Theorem 3.8 was discussed by Shmuely ([17]).

We now pass to Cartesian products of small spaces. We restrict our-
selves to metrizable spaces, one easily notes, however, that the corresponding
theorems hold for strongly hereditarily normal spaces X,, X, with the
property that Ind(U x V) < Ind U +Ind V for each pair U, V of open subsets,
where U < X, and V < X,.

The following lemma is obvious.

LEMMA 3.9. For every pair of metric spaces X,, X, we have

S(XoxX;)=(S(Xo) xX;)U(XoxS(X,)).

We state now a more general result. For every ordinal number a, we
denote by T (x) the set of all pairs (B, y) or ordinal numbers such that 8 Fy
= a, where BFy denotes the natural sum of § and y (see [10], Ch. VII, § 7).
Clearly, T(ax) is finite for every ordinal number «.

THEOREM 3.10. For every pair of metric spaces X,, X, we have

(#) S%(XoxX,) =U {(5"(Xo) xS" (X)) U(S7(Xo) x SP(X,)): (B, V) T(2)}.

Proof. We prove the theorem by induction with respect to the ordinal
number a. From Lemma 3.9 it follows that the theorem is true for & = 1. We
obtain by induction that

(1) (87(Xo) x X 1) U (Xo x S7(Xy)) = §"(Xo x X)

for every ordinal number y. We assume now that the theorem is true for
p < a = 2. We denote the right-hand side of (x) by (J(a). We prove first that
U(ax) = $*¢X, x X,). Suppose, on the contrary, that (J(a) & $*(X, x X,) and
consider a point (x,, x;)eJ () \S*(Xo % X). There exists an ordinal number
®o < a such that
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o+l

2 (X0, x1)€S (X, xxl)\sa
Thus, for some (B, o) € T (o), Wwe have
(3) (xo, ;) €57 (Xo) x§7°(X,).

This, along with (1) and (2), implies that

@ x0eS(X)\SOT (X)) and  x;€80(X)\S (X)),

(XoxX,).

Since (x, x;)eJ(a), for some (B, y,)e T(a), we have

(5) (x0, X1)€8°1 (Xo) x 8™ (X ).

Thus, by virtue of (4) and (5), B, <P, and 7y, <y, SO that «
=B Fy1 < PoFyo=ao <a, a contradiction. Thus, |J(a) = $*(X, x X,).
To prove that §*(X, x X,;) = (J(a), we consider two cases.

Case 1. a has a predecessor . By the inductive assumption S$#(X, x
x X,) = U(B) and the equality S*(X, x X,;) = J(«) follows from Lemma 3.9
and Theorem 3.6.

Case 2. « is a limit number. We may write a = 6+ w}, where y > 0. By
the inductive assumption, S°(X, x X,) = |J(6) and thus, since $*(X, x X,)

;S”z)(S‘(XoxX,)), we can assume that a = w}. We have to prove that
8”5(XoxX 1) ©€ U (w}p). But were it that S“%(Xoxx 1) € U(wp), we could

y . .
choose a point (x,, x;)€S“°(X, x X,) and an ordinal number 1 < w} in such
a way that

(6) Xo€ST(Xo)\S™H1(Xo) and  x, €S (X,)\STH(X,).

Since tF1+1 < w}, it follows from the inductive assumption that, by
virtue of (6),

(Xo, X1)€ Xo X Xy \ S (Xo x X,) © Xo x X, \§0(X, x Xy),
a contradiction. Thus, the theorem is proved. O

For a pair a, B of ordinal numbers, we let

predecessor of a ¥ if either a or f is a non-limit number,
sup{oFt: 6 <a and T <B} otherwise.

(@, B) ={

The following corollary follows from Theorem 3.10.

CoroLLARY 3.11. The Cartesian product Xy, x X, of small metrizable
spaces Xq, X, is a small space and

a(Xo x X,;) < p(a(Xo), 2(Xy)).
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As a special case we obtain

CoroLLARY 3.12. If for small metric spaces Xo, X, the invariants (X ,)
and ¢(X,) are defined, then «(X,x X,) is defined and (X, x X, )<¢(Xo)
F(X,) so that, if trInd(X, x X,) is defined, then

tr Ind(Xo X Xl) < ‘(Xo):Fl(Xl).

It should be noted that Henderson established ([6]) the inequality
D(Xo XXI) < D(Xo)q:D(Xl) for metrizable Xo and Xl'

The Author is indebted to Professor R. Engelking for his valuable
advice.
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