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ORDERED TOPOLOGICAL SPACES AND
THE COPRODUCT OF BOUNDED DISTRIBUTIVE LATTICES

BY

WILLIAM H. CORNISH (HALIFAX, N. 8.)

We show that the coproduct of two bounded distributive lattices
L, and L, is isomorphic to the lattice of all continuous monotonic functions
from the Priestley space of L, to the discrete space L,. Though this is
an asymmetrical representation of the coproduct, it leads to simple new
proofs of the characterizations of the centre and minimal Boolean ex-
tension of a coproduct. The representation generalizes Speed’s description
of the coproduct of a Boolean lattice and a bounded distributive lattice.
It also gives an exact topological description of Quackenbush’s represen-
tation L,[L,] of the coproduct of bounded distributive lattices L, and L,.

1. Preliminaries. An ordered topological space is a triple (X, <, T)
such that (X, <) is a partially ordered set and (X, T') is a topological
space. When there is no ambiguity, we speak of the underlying set X
as the ordered (topological) space. A subset U of such a space X is called
increasing if ye U whenever <y for some # in U. 2(X) denotes the
set of all clopen increasing subsets of X; under set-theoretic operations
2(X) is a bounded distributive lattice. An ordered space X is said to
be totally ordered-disconnected if xnon <y (x,yeX) implies ze U and
YyeX\U for some Ue 2(X). In a totally order-disconnected compact
ordered space X, the topology is that in which the members of 2(X)
and 2(X) = {X\U: Ue 2(X)} form a subbase for the open sets (cf. [13]).

If X and Y are ordered spaces, then ¢(X, Y) denotes the set of

all continuous functions from X into Y; ¥(X, Y) denotes the subset of
€¢(X, Y) consisting of all functions whose ranges are finite; ¢, (X, ¥)
denotes the subset of all monotonic functions in ¢ (X, Y), where f: XY
is monotonic if x, <, (2, ¥3¢X) implies f(,) < f(23); €m(X, Y) is the
set €,,(X, Y)Nn€(X, Y). A bounded distributive lattice L can be con-
verted into an ordered space by endowing it with the discrete topology.
Thus, if X is an ordered topological space and L is a bounded distributive

lattice, then w® can meaningfully consider ¥(X, L), %,,,(X, L) ete. If



28 W. H. CORNISH

Ue 2(X) and de L, then we use the following notation: [d) = {ae L:
d < a}; x(U) is the characteristic function of U, i.e. y(U)(x) =1 if ze U
and x(U) (x) = 0 if ze X\ U; ¢(d) is the constant function which assumes
the value d at each point of X. Clearly, both y(U) and ¢(d) are members

of .‘Em(X, L). It readily follows that €, (X, L) is a bounded distributive
lattice under pointwise-defined operations; for fe %, (X, L), we have
f=Vi{e@nag(f([@)): def(X)}.

Dist,, denotes the category of bounded distributive lattices and
(0, 1)-homomorphisms, i.e. lattice homomorphisms f such that f(0) = 0
and f(1) = 1; Spec denotes the category of spectral spaces and strongly
continuous functions; Tede denotes the category of totally order-discon-
nected compact ordered spaces and monotonic continuous functions. If L
is an object in Dist,, and 2 (L) denotes the set of all prime ideals of L
endowed with the spectral (= hull-kernel = Stone) topology, while 4 (L)
denotes the set of all nrime filters of L endowed with the dual spectral
(= dual hull-kernel = dual Stone) topology, then we obtain naturally
equivalent equivalences X, 4: Dist, , > Spec®®. This is the classical duality
of M. H. Stone (cf. [9], Section 11). Recently, Priestley [13] has shown
that Tede is the dual or opposite category of Dist,,. Thus, Priestley
represents a bounded distributive lattice L as the lattice 2(X) of a certain
object X in Tode, which is unique up to an order-isomorphism and homeo-
morphism — the ordered space is denoted by Pr(L) and is called the
Priestley space of L. In [7], the author showed that there is an isomorphism
2: Spec —>Todc. For an object X in Spec, the order on 2(X) is the topo-
logical order: v < y (z, ye X = £2X) if and only if « is in the closure (with
respect to the spectral topology) of {y}, while the topology is that which
has the compact-open subsets of X, together with their complements,
as a subbase. This means that Priestley’s duality follows by composing
the dual Q°° of Q with either of the classical functors 2 and 4. Most im-
portantly, it means for the purposes of this paper that we can take the
space Pr(L) as either Q22 (L) or Q2A4(L). As partially ordered sets, the
first is the set of prime ideals with a partial order which is the converse
of set-theoretic inclusion, while the second is the set of prime filters ordered
by set-inclusion.

2. Coproducts. Because the free bounded distributive lattice with
one free generator exists, monics in Dist,, are one-to-one maps ([9],
Lemma 3, p. 141). Hence, the Dist, ;-coproduct L, II L, of two bounded
distributive lattices L, and L, can be regarded as the bounded distri-
butive lattice which is generated by the sublattices L, and L, and uni-
versal with respect to simultaneously extending (0, 1)-homomorphisms
of L, and L, into another bounded distributive lattice. We need the follow-
ing fundamental characterization of L; II L,:
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A bounded distributive lattice L containing L, and L, as (0, 1)-sub-
lattice is isomorphic to L, 11 L, if and only if it is generated by L, and L,
and for any l,, me L, and 1, mye Ly, LAl < myvm, implies that either
L, <my or I, < my.

This characterization was stated without proof in [17]; Rousseau
attributed it to W. Holsztynski. An extension to arbitrary Dist,, co-
products is proved, without the Axiom of Choice in Gratzer and Lakser’s
paper [10]; in his book ([9], Theorem 5, p. 131) Gritzer presents a proof
of their result using prime ideals. It is perhaps worth noting that all
proofs assume the existence of the coproduct.

Before proceeding to our results it should be mentioned that the
existence and representation of Dist, ,-coproducts have been much studied.
See Nerode [12], Theorem 2.3, and Grétzer [9], Section 12 (especially
Lemma 3), for discussions dependent on the Axiom of Choice, and Chen [5]
and Gréatzer and Lakser [10] for choice-free constructions. Coproducts
were first studied by Sikorski [16]. Coproducts of distributive lattices
have also been studied becaure of their connection with Post algebras.
The connection was first noticed by Rousseau [15] and subsequently
exploited by others, e.g. Balbes and Dwinger [2], and Speed’s paper
[17] contains a comprehensive bibliography on Post algebras.

2.1. THEOREM. Let X be an ordered topological space and L be a bounded
distributive lattice. Then _(Km(X\, L) is isomorphic to 2(X) 11 L.!

Proof. Clearly, 2(X) is isomorphic to the (0, 1)-sublattice {y(U):
Ue 2(X)} of €,,(X, L), and L is isomorphic to the (0, 1)-sublattice {c(d):
de L}. Let fe _%;m(X, L). Then the range f(X) of f is finite and for each
de f(X), f“([d)) = {xeX: f(x)e [d)} is a non-empty clopen increasing
subset of X. It is evident that

F=V{e@nx(f-(i®): def(X)}.

Hence, these sublattices generate %m(X, L).
Let us assume that d,, dye L and U,, U,e 2(X). Suppose that
c(d)nyx(U,) <e(dy)vy(U,). It U, £ U,, there is a point ye U,\ U, and so

dy = d;Al = (c(dl)/\Z(Ul)) (¥) < (c(dz)VX(Uz)) (¥) = d,v0 =d,.
Hence %m(X, L) is isomorphic to 2(X)1I L.

2.2. COROLLARY. Let X be a topological space and let #(X) denote
its Boolean lattice of clopen subsets. Then, for any distributive lattice L,

€ (X, L) is isomorphic to #(X)1I L.

Proof. Partially order X by using the equality relation. X can then
be considered as an ordered topological space.
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2.3. COROLLARY. Let L, and L, be two bounded distributive lattices.
Then L, 11 L, is isomorphic to €,,(Pr(L,), L,).

Proof. Pr(L,) is compact and L, is isomorphic to 2 (Pr(L,)).

2.4. COROLLARY. Let L, and L, be two bounded distributive lattices.
Then L, 11 L, is isomorphic to each of ‘fm(QZ(Ll), Lz) and %m(.QA (Ly), Lz).

Proof. These are specializations of 2.3.

2.5. COROLLARY. For any two bounded distributive lattices L, and L,,
€m(Pr(Ly), L,) and €, (Pr(L,), L,) are isomorphic.

Proof. L, 11 L, is isomorphic to L, I1 L,.

2.6. COROLLARY. Let L be a bounded distributive lattice and X be an
ordered topological space. Then ?m(X, L) i8 isomorphic to ‘fm(Pr (.@(X )), L)
and €(X, L) is isomorphic to ?(Z(Q(X)), L).

Proof. For a Boolean lattice B, QX (B) = X (B) since 2'(B) is compact
and totally disconnected and all primes in a Boolean algebra are maximal
and so the topological order on X'(B) is the equality relation. The corollary
now follows from 2.1, 2.2 and 2.3.

In [17], Speed proved that the coproduct of a Boolean lattice B
and a bounded distributive lattice L is isomorphic to ¥ (2 (B), L). Theo-
rem 2.1 and its corollaries can be regarded as generalization of this.

Let L, and L, be bounded distributive lattices. #(L,) is the set of
all prime filters of L,, partially ordered by set-inclusion. Let L,[L,]
denote the (0, 1)-sublattice of the distributive lattice of all monotonic
functions mapping & (L,) into L, which is generated by {c(a): ae L,} U
U{x(h(d)): be L,}, where h(b) = {Pe F(L,): beP}. Quackenbush [14]
showed that L,[L,] is isomorphic to L, II L,. Corollary 2.4 can be viewed
as a supplement to this. For, it is clear that L,[L,] is actually equal to
€m(24(L,), L,) and hence we not only have a precise description of
L,[L,], but also an explanation of Quackenbush’s results.

If B, and B, are Boolean lattices, then their coproduct is isomorphic
to %(2 (By), Bz) and is thus a Boolean lattice. Thus, we obtain the known
fact that two Boolean lattices B, and B, have the same coproduct in
the subcategory Bool of Boolean algebras and Boolean homomorphisms
as in Dist,,. We now consider two known results concerning Boolean
algebras in the setting of Theorem 2.1.

Let L be a bounded distributive lattice. 2°(L) denotes the centre
of L; Z (L) is the sublattice of L consisting of all complemented elements.
Of course, it is a Boolean lattice. B(L) denotes the minimal Boolean
extension of L. For an ordered topological space X we use &(X) to denote
{U: Uc X; U, X\Ue2(X)}. Of course, £(X) is a Boolean sublattice
of 2(X) and, in fact, &(X) = Z(2(X)).



BOUNDED DISTRIBUTIVE LATTICES ' 31

2.7. THEOREM. Let L be a bounded distributive lattice and X be an
ordered topological space. Then Z (‘Em(X, L)) 18 isomorphic to &(X) 11 Z (L).

Proof. Let fe Z (‘Em(X , L)) and let g be the complement of f. Suppose
de L is in the range of f. Then d = f(z) for some zeX and so d' = g(x)
is the complement of d in L. In addition, f([d)) = g~ ((d’]), where (d']
={aeL: a<d'}. Hence f<([d))e&(X). Since f=V{e(d)ayg(f[d):
de f(X)}, we can infer that Z (¥, (X, L)) is contained within the (0, 1)-
sublattice of €, (X, L) which is generated by y(&(X))uec(Z(L)). But
the reverse inclusion is obvious and so £ (‘Km(X, L)) is the (0, 1)-sublattice
generated by x(&(X))ue(Z(L)). The fundamental characterization of
Dist, ,-coproducts implies that 2 (%m(X , L)) is isomorphic to &(X) II Z(L).

2.8. CoROLLARY (Balbes). For any two bounded distributive lattices L,
and L,, Z(L,II L,) is isomorphic to Z(L,) Il Z (L,).

Corollary 2.8 was established without using the Axiom of Choice

by Balbes in [1]; his proof is highly computational. For another proof
see Blok [4].

2.9. THEOREM. Let L be a bounded distributive lattice and X be a
totally order-disconnected compact ordered space. Then B(‘ém(X, L)) 18
isomorphic to € (X, B(L)).

Proof. Identify L with a (0, 1)-sublattice of B(L). Then ¥, (X, L)
is a (0,1)-sublattice of the Boolean algebra € (X, B(L)). To establish
the theorem it is sufficient to show that each element of ¥ (X, B(L))
is a finite supremum of elements or the complements of elements in
€Cm(X, L).

Let fe (X, B(L)). As X is compact, f(X) is finite and

f=Vlie@az(f-({a}): aef(X)].
Now, for any aef(X), there are d,,...,d,, €,,...,6,e L such that

n
a=\d;ne.
Clearly, =1

o(@) = V/ c(d) neley)-

i=1
Since f<({a}) is a clopen subset of totally order-disconnected compact
X, there exist U,, Uy, ..., Upy Vi, Vyy ...y V,ue 2(X) such that

fF{a}) = C:)l U;N(X\V);).

Hence,
Z(f‘—({a})) = .\=/lx( Uj)Ax(Vj),'

The conclusion is now immediate.
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2.10. CoroLLARY (Nerode). For bounded distributive lattices L, and L,,
B(L, I L,) is isomorphic to B(L,) 11 B(L,).

Proof. Pr(L) is homeomorphic to X(B(L)).

From the duality proof of the existence of L, Il L,, it is obvious
that Pr(L, II L,) is order-isomorphic and homeomorphic to Pr(L,) X Pr(Lz).
However, this does not show how the prime ideals of %, (Pr y Ly)
are ‘‘co-ordinatized” in %,, (Pr L,), ) We now consider this que%tlon
The proof of our answer is longer than the previous proofs, for we are
paying the price for our asymmetrical representation of L, IT L,. Our
method is along the lines of a procedure used by Kaplansky [11] in a
different situation.

Let X be a totally order-disconnected compact ordered space and
L be a bounded distributive lattice. A prime ideal P in %, (X, L) is said
to be associated with point xe L if whenever fe P and ge €,,(X, L), g(x) < f(x)
implies ge P.

A prime P can be associated with at most one point in X. For, suppose
P is associated with two distinct points # and y. Choose fe P and
ge€,(X, L)\P. Without loss of generality we may assume that < y. Since
X is totally order-disconnected, there exists Ue 2(X) such that ze U and
ye X\ U. Define h: X—L by h(z) = f(x) for each ze U and h(2) = g(v)
for each ze X\ U. Then he¥,,(X, L), h(z) < f(z),s0 he P and yet g (y) < h(y),
while g¢ P. This contradiction proves our assertion.

A prime P is associated with at least one point in X. Otherwise, for
each xe X there must exist f e P, g,.¢ €,,(X, L)\P such that g,(z) < f,(«
Define <{f,, g,> by

’ <fx7 gz> = {yGX: ga:(y) <fx(y)}

Then {f,, 9> = U |9z ({ah)n(forg)"({a}): ae L} and so {{fy, 92>
zeX} is an open cover of the compact space X. It follows that there exist
Ty, &gy ..., X, eX such that ‘

X = U (fapr 9 —<\/fxz ,/\gx>

2_—

Hence,
n n n
Aoy <V ey VfoeP
i=1 i=1 i=1

and yet none of g, , ..., g, are in prime ideal P. This contradiction yields
the claim.

Thus a prime P is associated with one and only one point of X. Denote
this point by X(P) and define L(P) by L(P) ={aecL: f(X(P)) =a
for some fe P}. It is easy to see that L(P) = {ae L: ¢(a)e P} = ¢~ (Pne(L))
and so L(P) is a prime ideal in L.
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2.11. THEOREM. Let X be a totally order-disconmected compact ordered
space and L be a bounded distributive lattice. Then the map f: P—(X (P), L(P))
is an order-isomorphism and homeomorphism of QX (%,(X,L)) onto
X x Q2(L).

Proof. Suppose P, and P, are prime ideals in %, (X, L). Assume
that P, < P, in the order of QZ(‘gm(X, L)). Hence P, < P,. If X(P,)
& X (P,), then there exists Ue 2(X) such that X (P;)e U and X (P,;)e X\ U.
Then x(U) (X (P,)) = 0< g(X(P,)) for any ge P,. Hence, y(U)e P,, and
so x(U)eP,. But x(U) (X(P,)) =1, which implies P; = %,,(X, L). This
is impossible. Hence X (P,) < X(P,). Moreover, it is clear that L(P,)
c L(P,), whence L(P,) < L(P,) in the order of QX(L).

Conversely, suppose X (P,) < X(P,) and L(P,) < L(P,). Now for any
prime P in %,,(X, L) it is easy to see that P = {ge %,,(X, L): g(X (P))e L(P)}.
Thus, if fe Py, f(X(P,)) < f(X(P,))e L(Py) > L(P,), and so fe P;. Hence,
P, < P,. Thus, the map P — (X (P), L(P)) is, indeed, an order isomor-
phism.

Consider f,: QX(¢,(X, L)) - X, defined by f,(P)eX(P) for each
Pe QX (%m(X, L)). Let W be a basic clopen neighbourhood of X(P) in X.
Then W = Un(X\V) for suitable U, Ve 2(X). Then Pe g (x(U)) nh(x(V)).
For Pg‘g(x(U)) implies x(U)e P, yet x(U) (X(P)) = 1. This implies
the impossibility that P = €,,(X, L). While X(P)eX\V implies
2(V)(X(P)) = 0 and so x(V)eP,ie. Peh(x(V)). Thus, g(x(U))nh(x(V)) is
a clopen neighbourhood of P in QZ(?,,,(X, L)). Since it is clear that f,
maps this neighbourhood into W, f, is continuous.

Consider f, : .QZ(%,,,(X, L))—>.QZ(L), defined by f,(P) = L(P) for
each P in QX (.%m(X, L)). For prime P, a basic clopen neighbourhood of
L(P) in QX (L) is of the form ¢(a,)Nh(a,) for some a,, a,e L. It is easy
to see that fz(g(c(al)) nh(c(az))) < g(a,)Nh(a,). It follows that f, is con-
tinuous. Hence f is continuous. But f is a bijection and each of QX (%m(X , L))
and X x QX (L) are compact and Hausdorff. Thus, f is an homeomorphism.

2.12. COROLLARY. For two bounded distributive lattices L, and L,
Pr(L, I L,) is order-isomorphic and homeomorphic to Pr(L,) X Pr(L,).

Actually, the proof of 2.11 has nothing to do with the distributivity
of the lattice L. Moreover, for any bounded lattice I we can legitimately
consider X(L) and QX(L). Here X (L) is the set of all prime ideals of L,
endowed with the spectral topology. Because of [6] (Theorem 2.5, Propo-
sition 3.51), 2'(L) is a spectral space and so 22'(L) is totally order-discon-
nected and compact. Hence, 2.11 s true for any bounded lattice L. However,
when one of L, and L, is not distributive, neither A%m(QZ(LI), Lz) nor
€m(2Z(L,), L,) may be isomorphic to the coproduct of L, and L, in
the category of bounded lattices and (0, 1)-homeomorphisms; ‘this is
demonstrated by an example due to H. Lakser in [14].

3 — Colloquium Mathematicum XXXVI.1
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We close this paper by looking at some examples. Each of the results
in the examples is known, but we feel it is instructive to look at them
in light of our previous results.

2.13. For an integer n > 2 let » denote the n-element chain. If L
is a bounded distributive lattice, then LII®m is isomorphic to L™~ Y
= {(@yy Bgyevvy @u_y): O < A < ... < @,_;}, cOnsidered as a sublattice of
the (n —1)-fold direct power of L. For, as a poset we can identify QX'(n)
with n —1, and since n is finite, 2X(n) has discrete topology. This example
was first considered by Rousseau [15].

2.14. For L as in 2.13, L™ Y is isomorphic to €,,(Pr L, n). Hence,
if L is Boolean, then L"~" is isomorphic to #(Z(L), n). This follows
from 2.5. It was first stated in a slightly different manner by Epstein [8]
(Theorem 15).

2.15. Let B, denote the Boolean algebra with » > 2 atoms and let B,
be the lattice obtained from B, by adjoining a new largest element. For
a Boolean algebra B, let Binl {(@gy gy oovy Qppy)t Gy < A .o AL}
considered as a sublattice of the (n+1)*® power of B. Then, BI*+1 jg
isomorphic to B II B,. This example is due to Quackenbush [14]. Because
of 2.3 it is immediately clear. Indeed, 24 (B,) is discrete as a topological
space and as a poset it looks like {a,, a,,...,a,,€: e < a;foreachi =1, ...,n},
where the a; may be thought of as the atoms of B,, and e as the largest
element of B, (the dual atom in B,).

2.16. For n > 1, let B(n) denote the free Boolean algebra on n free
generators. Of course, B(n+ 1) is isomorphic to B(n) Il B(1), and B(1)
is isomorphic to B,. Hence, B(n+1) is isomorphic to B(n)? — all the
(monotonic continuous) functions from the ordered space 2 with the
trivial order and the discrete topology to B(nm). Thus, B(2) =~ 2% and
induction proves the well-known result: B(n) is isomorphic to 2%".

2.17. For n > 1, let L(n) denote the free bounded distributive lattice
on n free generators. Of course, L(1) =23 and L(n+1) =~ L(n) 1 L(1).
Hence, L(n+1) = %,(Pr3,L(n)) =the cardinal power L(n)?. Then,
L(2) =~ 2%, induction, and the properties of cardinal powers ([3], third
law of (4), Theorem 2, p. 57) allow us to assert L(n) = ~ 2% a result
which is established by other means in [3] (Section 3.4, p. 59).
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