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1. Zahorski proved in [10] the following theorem:

If a continuous function f has a derivative f’ (finite or infinite)
everywhere on I,, then the set

E(a,p) = {wel,: a< f'(z)< B}

is in the class M, (see below) for each pair of numbers a,f, —0 < a
< B < +oo.
Marcus posed the following problem in [5]:

Is the above theorem still true if the ordinary derivative f’ and E(a, B)
are replaced by the approximate derivative f,, and

Eap(a’ﬂ) = {w GIO: a<f;p(w)< ﬂ},

The purpose for this paper* is to prove a general theorem which
yields an affirmative answer to this problem. Throughout this paper, f
is a real-valued function defined on a fixed interval I,. For each subset F
of I,, E and E' stand for the closure and the derived set of F, respec-
tively, and |E| denotes the Lebesgue measure of E. We write f € B, if f
is of Baire type one; f € (B,, D) if f is of Baire type one and has the Darboux
property.

We first state definitions.

Let £ + @ be a linear set of type F,. F € M, if every open interval
(@4, x;) With at least one endpoint belonging to E contains a subset of E
of positive measure. F € M, if, for each # € ¥ and any number ¢ > 0,
there is a number ¢(x, ¢) > 0 such that, for any pair of numbers 2, k,,

hhy,> 0, h/hy<e, and |h+h|<e(x,c)

* The authors wish to express their gratitude to the referee for his suggestions.
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imply
|En(z+h,z+h+h,)|>0 and |En(z+h+h,z+h)>0

for h > 0 and h < 0, respectively. f € #; if, for any real number a, {z € I,:
f(z) > a} and {w € I,: f(z) < a} are in M, (¢ = 2, 3). All these definitions
were founded in [10].
Also, in [9], Weil gave the following definition:
feB if, for every open interval (a, 8), # €f~!(a, f) and a sequence
of closed intervals I, converging to z with |f~!(a, )N I,| = 0 for every n
imply
lim IInI/d(wr In) =0,
fn—»00

where d(z,I,) =inf{lv—y|: yel,}.

2. We state known results on which this work is based.

THEOREM 1. If f € (B,, D), f., (finite or infinite) exists except perhaps
on a denumerable set, and f,, > 0 almost everywhere, then f is continuous
and mnon-decreasing on I,.

THEOREM 2. If fe(B,,D),f,, (finite or infinite) ewists everywhere
on I,, and f,, € By, then f,, € #, and hence f,, has the Darbouz property.

These two theorems appear in [1]. However, it should be noted that
the condition f,, € B, in Theorem 2 is in fact a consequence of the remaining
hypotheses because of Preiss’ Theorem 3 in [8].

The following theorem can be obtained from Bruckner’s result ([2],
P. 76), but we present a direct and easy proof here.

THEOREM 3. If f € (B,, D) and g i3 continuous on I,,, then f 4 g € (B,, D).

Proof. With the aid of Neugebauer’s work [7], we need only to
show that for any real a

E={el: fo)+g(e)>a} and F ={zel,: fle)+g(z) < a}

have compact components. Let Q@ be any component of E; then we may
suppose that @ is a non-degenerate interval with endpoints ¢ < d. If
f(e)+g(e) < a, then we choose r with g(¢) < r < a—f(¢). Since g is con-
tinuous, there is a 6 > 0 with ¢+ é < d such that

gle)<r<a—f(c) if ze(c,c+9).
This implies that
f(@)>a—r>f(c) if ze(e,c+9).

Then this leads to a contradiction with the hypothesis that f has
the Darboux property. Hence f(c) + ¢g(¢) > a and, similarly, f(d) + g(d) > a.
By the same reason, F also has compact components.
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THEOREM 4. If f,, (finite or infinite) exists on I,, then f,, is finite
almost everywhere.

This can be obtained from Burkill and Haslam-Jones’ results ([3],
p. 355).

3. In this section, we assume that f e (B;, D) has an approximate
derivative f,, (finite or infinite) everywhere on I,. It follows from Section 2
that, for any subinterval I of I, f., = 4 (or f,, < 1) almost everywhere
on I implies f,, > 4 (or fy, < 4) on I and that f,, has the Darboux property.
Also, px—f(x), f(#)—pz, f(—2)+px, —po—f(—) are in (B,, D) for
every real number ux and

{z € Iy: fap(®) = L o0} =0.

With the aid of this remark we now prove

LEMMA 1. E, (a, B) is emply or of positive measure.

Proof. The proof presented here parallels Clarkson’s [4]. For sim-
plicity, let E = E, (q, f),

E,={wel;: fp(@)<a} and E;={wel: fop (@) = B};

then I, = E,VEVUE,. Suppose that E # @ and |E| = 0. It suffices to
prove this lemma for the case where a and g are finite. The proof is divided
in two steps.

Step I. E < E,n E,. Suppose that z, € E\ E,; then there is a closed
interval I containing x, such that f,,(z) > a for every = € I. Since |E| = 0,
fap = B almost everywhere on I. By the remark, fap= B on Iand, in par-
ticular, f, (%,) > B. This is contradictory to the fact that x, € E. Hence
E c E, and, similarly, ¥ c E,.

Step II. E contains no point of continuity of f,,|E. Let z, € £ and
let I be any open interval of I, containing z,; then there is 2, € In E. Since
E < E,n E;, we have

inf{f,(2): zel}<a and sup{f,,(z): zel}>p.
By the Darboux property of f,,, we can conclude that
inf{f,,(#): € InE} =a and sup{f,,(¢): zeInE} = p.
Now we have
8up {fap (¢): © € InE}—int{f, (¢): e InE}> f—a.

This implies that f, |E is discontinuous at x,, which contradicts
the fact that f,, € B, (see [6], p. 143). Hence the proof is completed.

LEMMA 2. f,, € B.
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Proof. We assume that 0 < f,,(0) < + oo, f(0) = 0, and I,, = [a,, b,]
is a sequence of closed intervals with 0 < a, < b, converging to 0 such
that

[Eop(0, +00)nI,| =0 for every n.
By Lemma 1, B,,(0, +o0)n I, = @, that is, f,,(#) < 0 or f,,(z) = + oo
whenever z eI, (n =1, 2,...). Since
[{w € Ip: fop(®) = oo} =0,

for every n, f,, < 0 almost everywhere on I,. By Theorem 1, f is mono-
tone non-increasing, continuous, and f,, <0 on I, (» =1,2,...).

Now the proof of this lemma can be completed in the same manner
a8 Weil proved his Theorem 2 in [9].

THEOREM 5. E ,(a, f) € M,.
Proof. Suppose that E,,(a, f) ¢ M;. Then there are z, € E,,(a, f)
and ¢, > 0 such that, for every n, there are h,, and h,, with
Bphin >0,  hyfhy, <oy |hythy,|<1n
but
|Eap(a’ B) (2o + hyy o+ Ry +hyy)| =0
or
|Eap(a7 ﬂ)('\ (w0+hn+hln’ m0+hn)| = 0.

We need only to show that this leads to a contradiction for the case
where h, > 0 for every n. Let

In = [mo+hn1 w0+hn+hln];
then {I,} is a sequence of closed intervals converging to z, and
(L,|/d(%o, I,)) = by, [k, > 1]c, for every n.

By Lemma 2, we can conclude that
|Eap(ay B)N (o +hyy g+, 4+ k)l >0 for some n.

This is contradictory to the assumption. Hence E,,(a, f) € M.
COROLLARY. If f,, is real valued on I, then f,, € #.
This is a direct consequence of the theorem.

It may be interesting to note that there is a function f satisfying the
conditions of the theorem without being approximately continuous. Let

(1L—2"¥)sinz™* if 2> 0,
fo) =] =1 if & =0,
2P —1 if < 0.
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Clearly, fe(B,,D), f.,(®) =f'(x) is finite for # # 0, and f,,(0)
= f'(0) = +co. We show that

limapf(z) > 0 > £(0),

and hence f is not approximately continuous at # = 0. To do this, we need
only to check that # = 0 is not a point of dispersion of the set {z: f(x) > 0}.
Suppose the contrary, that is, there is a 4 > 0 such that

{z:f(x) > 0,0< o< h}/h< i if he(0,d).
‘We choose n, with 1/2n,n< 6 and let hy, = 1/2ny%. Then we have
B| = |{a: f(@)>0,0< o< ho}|

o 1 1
,.y,o((2n+1)n’ 2n1:)

\F| = |{z: f(#)<0,0<2<h}|

o0 1 1
,,Ho[(zn+27§’ '(2n+1)n]

1 1
T e— < Eo
T Zn' (2n+1)(2n+2) e
n=nq

By the choice of &,

|E|+I|F| _ 2|E|
= <
e - ke

This is impossible. Hence

1 1.

Hna.pf(w)} 0.
-0
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