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In [4] Lelek posed the following question:

Suppose that M is an irreducible continuum and f is a local homeo-
morphism of M onto the continuum N. Does it follow that N is irre-
ducible ¢

In [5] Mohler provided affirmative answers to two special cases
of this question. In this note we show that the answer to Lelek’s question
is “yes”. This follows from our principal result, Theorem 3, which says
that the quasi-monotone image of an irreducible continuum is irreduc-
ible. (If a map from one continuum onto another is either monotone
or a local homeomorphism, then it is quasi-monotone; if it is either mono-
tone or open, then it is confluent.)

A continuum is a compact connected metric space. If p and ¢ are
points of the continuum M, then M is irreducible from p to q provided
that no proper subcontinuum of M contains both p and ¢; a continuum
is irreducible provided it is irreducible between some pair of its points.

A finite collection ¥ of subsets of a topological space is a chain
provided & can be counted, ¥ = {§,,...,8,} so that §;n8; # O iff
[¢—3] < 1. If = belongs only to S,, and y belongs only to §,, then & is
a chain from x to y. The union of the members of % is denoted by #*.

If M is a continuum, an essential sum decomposition of M is a finite
collection 2 of subcontinua of M such that

(i) M = 9%,

(ii) if De 2, then D contains a point not in the union of the other
members of 2.

THEOREM 1. The continuum M is irreducible from p to q if and only
if each essential sum decomposition of M i8 a chain from p to q.

Proof. Suppose that 2 = {D,, ..., D,} is an essential sum decom-
position of M. Using normality and the fact that each member of 2 con-

tains a point not in the union of the other members, we may obtain a collec-
tion # = {U,, ..., U,} of open subsets of M such that
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(i) for each ¢, D, = U,,

(i) U;nU; #0O if and only if D,nD; #6.

Since % is an open cover of M, it follows from Theorem 8 of [3],
p. 136, that there is a chain from p to ¢ whose elements are members
of %. We may assume that this chain is {U,,..., U;} and that peU,,
geU,. From (ii) we see that the corresponding subcollection & of 2,
& = {D,, ..., D;}, must also be a chain, though perhaps p¢ &*. However,
we may find a continuum D, e 2 such that peD,. Since pe U,nU,, D,Nn D,
# . Letting D, be the last element of & which D, mects, we obtain a chain
{Dg, D,, ..., D;}. Thus we can assume that pe &* and, by a similar argu-
ment, that ge &*. Moreover, & must be a chain from p to ¢ and & = 2,
otherwise there is a subcollection &# of & such that & is a proper sub-
collection of 2 and a chain from p to ¢q. Then F* is a proper subconti-
nuum of M containing p and ¢, which contradicts the irreducibility of M.

Conversely, if each essential sum decomposition of M is a chain,
then an essential sum decomposition into three subcontinua of M has
the property that some two of these continua are disjoint. Applying
a theorem of Sorgenfrey [6], we conclude that M is irreducible.

If € is a finite collection of subsets covering a topological space,
then one may obtain an abstract simplicial complex, called the nerve
of €, asin [2], p. 68. There is a geometric simplicial complex, in Euclidean
space, which is abstractly isomorphic to the nerve of €. The polyhedron
of this geometric simplicial complex is called the geomelric realisation of
the nerve of €. Using this language, we may rephrase Theorem 1.

THEOREM 2. A continuum M is irreducible if and only if for each
essential sum decomposition 2 of M, the geometric realisation of the merve
of 2 is an arc or a point.

If X and Y are topological spaces, a mapping f: X—Y is quasi-
-monotone provided that for each subcontinuum K of Y with non-void
interior, f~'[K] has finitely many components, each of which is mapped
onto K.

THEOREM 3. If M 48 an irreducible continuum, N is a continuum
and f is a quasi-monotone map of M onto N, then N is irreducible.

Proof. Suppose that M is irreducible from p to ¢. We wish to show
that N is irreducible from f(p) to some point. If this fails, then certainly ¥
is decomposable. Moreover, according to Theorem 4 of [3], p. 192, there
are proper subcontinua A and B of N such that N = Au B and f(p)e
eANB. Since 4 has non-void interior and f is quasi-monotone, f~'[4]
has only finitely many components, 4,, ..., 4;. Denote the components
of f~'[B] by B,, ..., B,. Since each component of f~[A4]is mapped onto 4,
no component of f~'[A] is contained in f~![B]. Similarly, no component
of f~![B] is contained in f~'[4]. It follows that {4, ..., Ay By, ..., By}
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is an essential sum decomposition of M; denote this collection by 9.
We now apply Theorem 1 and conclude that 2 is a chain from p to g.
But this is impossible, since p belongs to distinct elements of this chain,
namely, some component of f7'[A] and some component of f~![B].
Thus N is irreducible from f(p) to some point.

Another generalisation of the concept of monotone mapping is given
by the following definition. A mapping f: X—Y is confluent provided
that for each subcontinuum K of Y, each component of f~'[K] is mapped
onto K. The following theorem is a corollary of a theorem of Whyburn
([7]), Theorem 7.5, p. 148):

THEOREM 4. If f is an open mapping of a continuum M onto a con-
tinuum N, then f is confluent.

Unlike quasi-monotone mappings, confluent mappings do not pre-
serve irreducibility. Indeed, even open images of irreducible continua
need not be irreducible, as is shown by the following example of Chara-
tonik [1], p. 216.

Example. The irreducible continuum M is the sum of two concen-
tric circles in the plane, together with a topological line limiting on the
outer circle from the inside and on the inner circle from the outside. The
continuum X is the outer circle and an open map of M onto N is given
by radial projection.

As we see from the corollary to the next theorem, the reason that
the function in the preceding example fails to preserve irreducibility is
that point-inverses have too many components.

THEOREM 5. S@ppose that M and N are continua, f: M—N is a con-
fluent mapping onto N such that for each peN, f~'[p] has finitely many
components. Then f is quasi-monotone.

Proof. Suppose that A4 is a subcontinuum of N and peA. Then f~![p]
has finitely many components. Since each component of f~'[A] contains
a component of f~'[p], f'[4] has at most as many components as f~'[p].
Since f is confluent, each component of f~'[A] is mapped onto A, thus f
is quasi-monotone.

COROLLARY 6. Suppose that M and N are continua, and f: M—N
is a confluent mapping onto N such that for each peN, f~'[p] has finitely
many components. If M is irreducible, then so is N.

_ Note that any mapping of a continuum M onto an indecomposable
continuum N must be quasi-monotone. From this it follows that the
converse to Theorem 5 is false. For instance, let M be an indecomposable
continuum and f the mapping induced by identifying two points of M.
Then f is quasi-monotone but not confluent.

A function f from a topological space X to a topological space Y
is a local homeomorphism provided that each xeX has an open neighbour-
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hood U, such that f[U,] is open in Y and f restricted to U, is a homeo-
morphism of U, onto f[U,]. Clearly, local homeomorphisms are open
maps, hence, if X and Y are continua, confluent maps.

The following theorem follows immediately from Lemma 1 of [5],
p. 69:

THEOREM 7. If f is a local homeomorphism of the continuum M onto
the continuum N, then for each peN, f~'[p] has finitely many components.

An immediate consequence of Corollary 6 and Theorem 7 is an affir-
mative answer to Lelek’s question.

THEOREM 8. If f is a local homeomorphism of the irreducible continuum M
onto the continuum N, then N is irreducible.
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