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1. Introduction. Let X be a topological space and X" = X xX x ... xX
its n-fold Cartesian product. An n-mean on X is a map (= continuous
function) m: X" — X satisfying the two conditions below:

1. m(x, x, ..., x) = x, for each xe X,

2. M(Xgqq)s - v s Xgm) = M(xy, ..., x,), for each (x;, ..., x,)e X" and o €S,.
Here S, is the group of permutations of the set {1, 2, ..., n}, also called the
symmetric group on n elements.

A space admitting an n-mean is referred to as an m,-space. It is an
m-space if it is an m,-space, for some n > 2.

For topological spaces, this concept was introduced and studied by
G. Aumann in [1]. In this paper he proved that every retract of an m,-space
is an m,-space. Clearly, this result extends to r-images. Since m(x,, x,, ..., x,)
=(x;+x,+ ... +x,)/n is always an n-mean on a convex subset of a normed
linear space and every AR (see [4], Theorem 2.1, p. 85) is the r-image of such
a set, we see that every AR admits an n-mean, for n > 2. In this paper, we
extend this result by establishing Theorem 1.1 below.

Here, and elsewhere in this paper, by a pair of spaces we shall mean a
space X and a closed subspace A. Also, our spaces are Hausdorff.

THEOREM 1.1. Let (X, A) be a pair of finite dimensional AR’s (not
necessarily compact). Let f be a closed mapping of A onto a closed, metrizable
subspace of a space Y. Then, for n > 2, X U, Y admits an n-mean if and only if
Y does.

We remark that the mapping condition is always satisfied if X is
compact. '

In establishing this result, we are led to the consideration of a type of
symmetric product X"/T of a space X introduced by Eckmann in [11]. For
n > 2, this product is closely related to, but different from the product X (n)
considered by Borsuk and Ulam in [6], and others in [5], [7], (8], [13], and
[15]. Other results on m-spaces can be found in [2], [17], [18], and [20].
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2. Definitions and notation. First, let us define the space X"/T. For each
geS,, the (twisting) homeomorphism

T, X" X"

is given by T, (&, ..., &) =(auys ---> Eom)- We shall say that (&, ..., &)
L (4, -.., ny if there exists a€S, with (n,, ..., ) = T,(&;, ..., &,). It is not
difficult to see that this is an equivalence relation on X". The resulting
quotient space is designated X"/T and

v: X" X"/T

is the natural map. One should also observe that X"/ T is the orbit space of
the action S, x X" — X" of the finite group S, on X" If § =« X", v(S) will also
be designated [S]. Similarly, we shall sometimes write [&,, ..., &,] for
v((CI’ cecy én))'

The product X (n) is defined as follows: The points of X (n) are those
non-empty subsets of X having n or fewer elements. If

n: X"> X(n)

is given by =(x,,..., x,) = {x;, X3, X3, ..., X,}, We assign the quotient
topology to X (n). If X is metric, X (n) is a subspace of the hyperspace 2*
(with the Hausdorff metric) by [6].

By an ANR, we shall mean an ANR(Y0)-space of Borsuk [4]. Thus, an
AR is an AR (9Y)-space of Borsuk. We remark that this is consistent with the
notation of Hu [14], and that neither ANR’s nor AR’s need be compact.

Concerning diagram terminology, we are quite standard. In particular, h
completes a diagram such as

if his a function from X to Z making it commute. To avoid cumbersome
notation, functions appearing in diagrams that are obvious restrictions of
other existing functions will usually be given the same name.

Let X and Y be disjoint spaces, A a closed subset of X, and f: A > Y a
map. Let 2 be the decomposition of the topological sum X+ Y whose
elements are: [x}, for xe X ~ A; [y}, for ye Y~ f(A); {y}uf~'(y), for
y€f(A). The quotient space (X + Y)/<Z is denoted by X U, Y and we say that
X is attached to Y by the map f and f is the attaching map. The map p: X
+Y->Xu,Y is the natural (quotient) map.

3. Symmetric products. In [13], Ganea proved that the natural map
n: X"— X(n) is closed, but for n>3 may not be open. Concerning
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v: X, — X"/T, however, several authors have observed the following theorem
(and corollary).

THeoreM 3.1. For each space X, the natural map v: X" — X"/T is both
open and closed.

Proof. For each subset S of X" it is easy to see that
v iviS) = U T0).

oS,

If U is open, v~ !v(U) is the union of the open sets T,(U). (Recall that
T, is a homeomorphism.) Thus, since v is a quotient map, v(U) is open.

If F is closed, v~ ' v(F) is the finite union of the closed sets T,(F). It
follows that v(F) is closed.

CororLArY 3.2. If X is Hausdorff, so is X"/T. If X is metrizable, so is
X"T

Proof. It is clear that X"/ T is always Hausdorff since v is closed, X is
Hausdorff, and point-inverses finite.

By Stone [21] or Balachandran [3], the clopen (closed and open) image
of a metrizable space is metrizable. Since X" is metrizable and v clopen, the
result follows.

There is clearly a map ¢ completing the diagram below.

n

/\
X/T—————=Xn)

For n = 2, ¢ is actually a homeomorphism. Since v and n are both closed, ¢
is always closed. Again from Theorem 3.1, we see that ¢ is open if and only
if = is open. (Recall that Ganea [13] has shown that = need not be open,
for n>2)

By Theorem 3.1, we see that v|[4X embeds 4X as a closed subset of
X"/T. Denoting the inverse of v|4X followed by the map (&, ..., &) - ¢ by j,
the following lemma was established by Eckmann in [11].

LEMMA 3.3. For each n-mean m: X"— X, there is a unique map m
completing the diagram )

x"/T”
Moreover, m|[AX] =j. Conversely, if m: X"/T— X is a map extending j,
m = v is an n-mean on X.

Eckmann used this lemma to prove that a contractible, finite polyhe-
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dron admits an n-mean, n> 2. If X is an AR (as is a contractible, finite
polyhedron) the extension is possible, clearly. This offers another proof that
each AR admits an n-mean. This lemma is used throughout this paper. We
extend the result on AR’s slightly with the next theorem.
' THEOREM 3.4. Let X be an AR and A a closed subset of X. Then any n-
mean on A can be extended to an n-mean on X.

Proof. A" and 4X are closed subsets of X" and A"~ 4X = 4A. Thus m
can be extended to m' on A"UAX by m'(¢, ..., §) = ¢, for {e X. Modifying

the previous lemma slightly, we see that m’ determines a map 7’ completing
the diagram

A"y AX

\
v X
d
-
-
-
-
(A" v AX])

The map v|(4" U 4X) is closed and thus a quotient, so #’' is continuous.
Also, [A"U 4X] is a closed subset of the metrizable space X"/T, and X an
AR. Thus, by [4], Theorem 4.2, p. 87, /i’ admits an extension m”: X"/T - X.
Clearly, m"”v is an n-mean for X extending m.

The converse of this theorem is not true even for cellular subsets of
a manifold. For, let

={(x,y): 0<x<1, y=sin(l/x)}u{(x,y): ~1<y<1}.

Then X is cellular (ie., X = ﬂ D;, where each D; is a topological disk in

the plane and D;,; < Int D), but X admits no mean [2], whereas D, does,
for n>2 [1].

4. Invariance of AR and ANR under n and v. In [6], Borsuk and Ulam
asked if the property of being an AR were a n-invariant. In [13] Ganea
‘partially answered this question, for a compact, finite dimensional (metric)
space X, by proving that X (n) is an ANR or AR accordingly as X is. Later
Jaworowski [15] removed the hypothesis of finite dimensionality. Finally,
Cauty [8] eliminated the compactness assumption and obtained the same
result in [9] for X"/T (which he denotes by X™)

LEMMA 4.1. Let (X, A) be a pair of finite dimensional AR’s, n > 2, and
1<j<n Then v(A’ xX"J) is an AR.

Before giving the proof, let us remark that should n = 2, we could apply
Cauty’s result [9] directly as follows: Considering the diagram A x X > A4
x A v(A x A), it is not difficult to see that v(4 x X) is homeomorphic to
the adjunction space (4 x X) U, v(A4 x A). But A xX, A x A, and v(A4 x A) (by

\
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Cauty’s result) are AR’s. Also, v(A4 x A) is metrizable, so by [14], Theorem
1.3, p. 181, the adjunction space is an AR.

This allows us to drop the hypothesis of finite dimensionality in the
lemma and ultimately in Theorem 1.1 itself for the case n = 2. For n > 2, we
present a relative version of Ganea’s proof in [13] of contractibility and local
contractibility of v(4/ x X"~ /). But first a relative homotopy lemma is needed.

LEmMMA 4.2. The following are true.

(1) If (X, A) is an AR pair, there is a homotopy h: X xI — X contracting
X to a point so that h(A xI) < A.

(2) If (X, A) is an ANR pair and U a neighborhood of xq€ A, there are a
neighborhood U, of x, and a homotopy h: Uy xI — U contracting U, to a
point in U such that h(({Uy N A) xI) < A.

Proof. For (1), let i': AxI— A contract A to a point a,. Extend h’
to h': (Xx{0,1}))u(AxI)—»X by h"(x,0)=x and h"(x, 1) =a,. Since
(X x{0, 1})u(A xI) is closed in X xI and X is an AR, h” extends to h:
X xI - X by [4], Theorem 4.2, p. 87.

- To prove (2), we use a rather technical proposition of S. T. Hu ([14],
Proposition 3.4, p. 121). Let U be a neighborhood of aoe A. Let G and V be
neighborhoods of a, such that V< V= G < U and Gn A contracts to a
point in UnA. Let « be the open covering {G, X ~ V} of X. By [14],
Proposition 3.4, p. 121, there is a homotopy h': X xI — X satisfying (a) hy
= identity, (b) h'(x, t) = x if xe A4, tel, and (c) for some neighborhood W of
A, hi (W) < A. Additionally, this homotopy satisfies the particular condition
W(WVxI) <cG.

Put Ug=VnW. Let i": (GNnA)x[1,2]>UNA contract GNnA to a
point in U n A. Define a homotopy h: Uy x[0, 2] - U by

K (x, t), if 0<
W(R(x,1),1), if 1<

It is easy to see that h is the desired homotopy.

Proof of Lemma 4.1. Since X is finite dimensional, it follows from
Nagami [19] that X"/T, thus v(4’ x X"7J) is also. It will suffice to show that
v(A4? x X"7J) is contractible and locally contractible. For the contractibility
let h: X xI - X be the homotopy obtained in part one of Lemma 4.2.
Define the mapping g: X"xI— X" by the formula g((¢,,..., &), 1)
=(h(1, 1), ..., h(,, 1)) and consider the diagram below (where 1 denotes
the identity map).

<1

t<1,
t < 2.

h(x, t) = {

3 — Colloquium Mathematicum 52.1
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There is a function § completing the diagram given by

gé, ..., &1, 0 =vg((&, ..., &), 1)

To see that § is well-defined, assume

(él’ ey éu) 1 (’lla cey ’1!!)
Then we have

(h(éla t)s Tty h(ém t)) I- (h(nl’t)’ AR h("m t))’

clearly. As for continuity, observe that by a theorem of J. H. C. Whitehead
([10], Theorem 4.1, p. 262), v x 1 is a quotient map. This, together with the
continuity of vg and commutativity insure that § is continuous.

It is easy to see that § contracts X"/T (in itself) to the point [a,, ..., ao]-
Now suppose [&;, ..., EJev(A? x X"7I). It follows that (&, ..., &,) has at
least j coordinates in A and further that §([¢,, ..., &,], t)ev(4? x X"~ ). Thus
v(Af x X"7J) is contractible (via §|v(A4’ x X"~ 9) xI).

The preservation of local contractibility is proved along the same lines,
but is a bit more delicate.

Let U be a neighborhood of [¢9, ..., 2] in X"/T. Let {,, ..., {; (written
in the same order as they occur) be the distinct terms of (&9, ..., £9), with {;
occurring k; times, i =1, ..., . Denote by (2, ..., n% the sequence

(PP ST SR 4 N

ky ki

Clearly, we have [n}, ..., n2] =[&9, ..., £2]. Choose mutually exclus-
ive neighborhoods V;, ..., V; of {,, ..., {, so that v(V) < U, where V is the
product (V;)"! x ... x (.

Since X is locally contractible, there are neighborhoods V_, ..., 1°
of {,,...,{ contractible in V,..., }; via the homotopies h,,..., h, of
Lemma 4.2 (2) to the points x,, ..., x;. That is, if {;e A, make sure that
h(V° ~ A) x 1) c A. \

Let V, = (Vo' x ... x(V°)" and Ug = v(¥,). Since v is an open map,
U, is an open subset of X"/T. (Now consider the diagram below, where g is
constructed from h,, ..., h; in the obvious way.)

ox ! — 9 .y

U ! —————=U

If (¢,,...,¢) L (ny,...,ny) and both are members of V,, we have
(él,’ ceey ékl) ‘I (’71’ ey "kl) threupon

(h (a0, ..., hn(fkl, f)) I (hl(ﬂh ), ..., hl("kls f)), etc.
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Thus, there is a function § completing the diagram. The map v| V¥, is open
and thus is a quotient. As before, § is continuous and contracts U, to
a point in U. If [&,..., E0ev(A’xX ")), then we have F([&Y,...
oy £97, ev(AP x X" ). The result follows.

CoroLLARY 4.3. The closed subset v(A x X"~ ') uv(4X) of X"/Tis an AR.

Proof. By Lemma 4.1 v(AxX""!) is an AR. Since v(4X) is
homeomorphic to X, it is an AR. Moreover, they are both closed subsets of
X"/T and their intersection is v(4A4) which is homeomorphic to 4 and thus
an AR. By [4], Theorem 6.1, p. 90, the result follows.

The following lemma is standard.

LeMMA 4.4. Each map f: X — Y induces a map f™ completing the diagram
below. n > 2.

" n

x" -y
v‘ '1’
X/T —— — — —=YT

Proof. Immediate. (We used v to indicate both natural maps.)

5. A proof of Theorem 1.1. Let (X,, A,) be a pair of finite dimensional
AR’s and f: A, — B, a closed mapping onto B,, a closed, metrizable
subspace of Y,. Let p: Xo+Y,—» Xou, Y, be the natural map. Put X
= p(Xo), A= p(Ag), Y=p(Yy), B=p(By), and Z = Xou, ¥,. Then X and Y
are closed in Z (since B, and A, are closed in Y and X, resp.). Moreover,
Z=XuYand A=XnY. Thus A is closed. Let us establish a few more
facts concerning the general nature of this decomposition.

First, let us show that p is a closed mapping. Hence, assume F is a
closed subset of X,+Y,. Then F n X, is closed. By [10], Proposition 6.2, p.
128, f(F) is closed in Xo U, Y, if (F N Yo) Uf (F N Ap) is closed in Y,. Clearly,
FnY, is closed in Y,. Since F n A, is a closed subset of 4, and f is closed,
f(Fn Ay is closed in By, which is closed in Y,. The result follows.

Next, we will prove that Z is Hausdorff. Let -, and z, be distinct points
of Z. Then p~'(z;) is the union of a closed subset of X, and a closed subset
of Y, the latter being either a singleton or the empty set. Since X, is normal
and Y, Hausdorff, p~!(z,) and p~'(z,) have disjoint open neighborhoods.
The remainder of the argument is standard and relies on the closedness of p.

Finally, let us show that Y is a retract of Z. Clearly there is a retraction
r: Xo— A,. Consider the diagram below.

X+ Y rod Ay v

S<
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It is easy to see that there is a retraction completing this diagram. We
could also appeal to [14], Proposition 3.2, p. 16, since f can be extended
over X,.

Concerning the proof of Theorem 1.1 itself, if Z admits an n-mean, then
Y does also, being a retract of Z.

To prove the converse, we proceed in a sequence of steps, each asserting
that some set is a retract of another.

Step 1. The set [4 x X" 'Ju[4X] is a retract of X"/T
To establish this, recall that [4, x X3 ']JU[4X,] is an AR by Lemma
4.3. Thus, there i§ a retraction ro: X3/T — [4o x X5 'JU [4X,].

Consider the diagram below.
p" n v

Xy - X -X)T

|
|
v |
|

. '
XfT —B o (A% Xy Vol — P s [Axx"") o 14X]

Let us define a relation r as follows: If [pé&,, ..., p¢,]e X"/T, put

rlpé,, ..., pEa) = P'rov(&y, ..., ). If r is a function, it clearly completes this
diagram. Suppose that

[pél’ R péu] = [p"l, LS ] P'In]

If (&,,...,&) X (4, ..., o), we are done. Otherwise, we may assume that
fx, "IEAO arfd pél = pn. Then [61, LX) cn]’ ["la LR ""]e[onxu—l]’ so

r[péla R pén] =p’7r0v(é1, sy én) = pirO[él’ ceey én]
= pi[él’ tey cn] = [pil’ (R pén]

Similarly, using the representation [pn,, ..., pn.] we get [pn,, ..., pn.]- Thus,
r is a function and is the identity on [A x X"~ ']. If [p¢,, ..., pé.]edX,
either ¢,, ..., ¢,€do and p(&) = ... =p(&,) or {;eXo~ Ag and &, = ...
= ¢£,. In either case, we have r[pé,, ..., p¢.] = [P, .., PE.)

To show that r is continuous, it will suffice to demonstrate that
P"1 X5: Xo— X" is a quotient map. We shall do this by showing p|X,:
Xo— X is a bi-quotient (see the definition in Michael [16]) map. Since the
class of bi-quotient mappings is closed under the formation of (arbitrary)
products [16], it will follow that p"| X§ = (p| X,)" is- a bi-quotient. But
bi-quotients are quotients, so p"| Xg is a quotient.

To effect this, let us first observe that p| X, is a closed mapping. Since p
is closed and X, is closed in X+ Y,, this is clear. Since f is closed and B,
metrizable, the Hanai—-Morita—Stone Theorem (see [21]) asserts that df ~!(y)
is compact, for each ye B,. Clearly then, d(p| X,)~ ! (y) is compact, for each
ye X. Since, as we noted above, p| X, is closed, again by [21], we have X
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metrizable. By Michael ([16], Corollary 9.10), we see that p| X, is a bi-
quotient map. This completes the proof of Step 1.
Before proceeding with the next step, let us observe that

ZYT =[X"JU[X" ' xY]u ... U[X xY" 'JU[Y"].

Step 2. The set [X" ! xY]Ju[X" 2xY?]u...u[Y"Ju[d4Z] is a
retract of Z"/T.

To see this, observe that in Z"/T, [X"] meets the above set in
[X""'xA]Ju[4X] =[AxX" 'Ju[4X]. Thus we may extend the retrac-
tion r obtained in Step 1 by the identity outside [X"].

Step 3. The set [Y"JU[4Z] is a retract of [X" ! xYJu[X" 2
xY?]u...u[Y"]u[4Z] (and thus of Z"/T, by Step 2).

First let us define a retraction of Z"T onto [Y"]. The mapping r
mentioned in the diagram below is the retraction Z — Y obtained in the
proof of the converse of this theorem.

z" rn y"
v‘
2T — — — — — —[Y"]

By passage to the quotient, we obtain a retraction r": Z%/T — [Y"].
If 1: [4AZ] - [AZ] denotes the identity, then

FFICX" ' xY]u ... u[Y"]) U1
is the retraction required in Step 3, since

(X" 'xY]u... U[Y")~[4Z] = [4Y].

Now let m be an n-mean on Y. By Lemma 3.3, there is a map mi: [Y"]
- Y with #i|[4Y] = j|[4Y]. We can extend #i to A': [Y"]u[4Z] - Z so
that mi'|[4Z] =]j.

Combining Step 2 and Step 3 of the foregoing, we obtain a retraction,
say r: Z"/T - [Y"JU[AZ]. Thus fi'r: Z"/T — Z is an extension of ni. It is
clear that ni'rv is an n-mean on Z extending m.

CoroLLARY 5.1. Let (X, A) be a finite dimensional AR pair with A
compact. If f: A— Y is a map, then X U, Y admits an n-mean if and only if Y
does, n > 2.

CoroLLARY 5.2. Let (X, A) be a finite dimensional AR pair, (Y, A) a pair,
and Z =XV Y. If XNnY = A, then Z admits an n-mean if and only if Y does,
n=2

CoOROLLARY 5.3. Let (X, A,), ..., (X, As) be a sequence of k pairs of finite
dimensional AR’s and fi,: A, > Y a closed map onto a closed, metrizable
subspace of Y. Let Z, =X,0u, Y, and for each i, 2<i<k, let Z;
=X; vy, Z;,,, where f;: A;—Z,;_, is a closed map onto a closed, metrizable
subspace of Z;_,. Then Z, admits an n-mean if and only if y does, n > 2.
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