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1. Introduction. Let D?* < E* be a topological disc bounded by
a simple closed curve C = dD? in the plane E* and let

¢: C—E?
be a homeomorphism (into) with

Ip—qi < llp(p) —e@(g)l for each pair p,qeC,

where ||-|| denotes the Euclidean norm.

Steinhaus (2] raised the following question: Is the area |D?| of D?
less than or equal to the area of the domain bounded by the simple closed
curve ¢(C)?

In this note we give a positive answer to this question.

2. Preliminaries. Let D" < E" be an n-dimensional topological ball
lying in the Euclidean space E". Let oe,...¢, denote a fixed ortho-
normal frame in E". If | = E" is an arbitrary straight-line, then every
component of INn D™ is called a chord of the boundary dD" of D". A chord
is determined by its end points p, ¢ € 9D". A chord parallel to ¢, is called
a k-chord, 1 <k < n.

Definition. A homeomorphism

(2.1) ¢: D">E"
is called chord-decreasing if for every chord pg with p, g € D" we have
(2.2) ip—dqll = llp(@)—e(Ql.

The transformation (2.1) is called k-chord-decreasing if (2.2) is satisfied
for every k-chord, 1<k< n.

The main result of this paper is the following

CHORD THEOREM. If the homeomorphism (2.1) is k-chord-decreasing,
then ithe (Lebesgue) measure of the domain bounded by ¢(0D") is less than
or equal to that of D".
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The ball D" < E" can be arbitrarily closely approximated by a ball
whose boundary is an analytic surface (see [3]). Since the measure of the
approximation can be made arbitrarily close to that of D" we can suppose
that the ball D" < E" itgelf has an analytic boundary and that (2.1)
is an analytic diffeomorphism. Since dD" is an analytic manifold, the set

(2.3) 0Dy = {p € D" |¢, is tangent to JD" at p € D"}

for every k with 1 <k < n is an (n —2)-dimensional compact submanifold
of aD".

By Bj we denote a tubular neighbourhood of dD", where 7 is the ra-
dius of the one-dimensional ball B,(p) orthogonal to D" at p € 0D". For
the definition and existence of tubular neighbourhoods see [1].

Since 0D" is @ smooth submanifold of E", on 0D there exists a measure
density induced from E", and since dD" is compact, we have

(2.4) | D™, _1 < o0,

where |- |,_, denotes the measure on d D" defined by the introduced measure
density. Since 0D} defined by (2.3) are compact (n —2)-dimensional sub-
manifolds of D", we obtain

IUDZIn—l = 0.
k=1

Similarly, ¢(0D}) are compact (n —2)-dimensional submanifolds on
@(0D") and, therefore, with respeet to the measure defined on ¢(dD")
by the measure density induced from E", we have

(2.5) IkL:J1<p(0DZ)In-1 =0.

3. Finite nets. By s*, 1 <%k < n, we denote a k-dimensional segment,
i.e., a set of E" isometric with

ZeE"0<z;<a,, 1<i<Fk,x = (2y,...,%,0,...,0),a,e R, }.
We write
(3.1) d, = max(a,,...,a) and d, =min(a,,...,a;).

Let us take # families N, 1< k < n, of straight lines in E" with the
following properties:

(i) all straight lines of N, are parallel to ¢,;

(ii) for a positive number J, the straight lines of all the families N,
1< k< mn, define a partition of E" into n-dimensional segments such
that the numbers (3.1) for k¥ = n satisfy d, < é and d, > 8/2 for every
segment of that partition.

Let us take any finite number of n-dimensional segments, defined
by (i) and (ii), whose union is a connected set denoted by F"(4).



CHORD-DECREASING HOMEOMORPHISMS 85

A finite net is said to be imscribed tn D™ if F"(4) is the union of all
n-dimensional segments contained in D" and the vertices of F"(4§) belong
to aD™.

If 6 is sufficiently small, then such finite nets exist.

. Indeed, if B} denotes a tubular meighbourhood of D" in E", then
it suffices to set 6 = #. This assures the connectedness of F™(4). Since
d, and d,, 6/2 < d, < d, < 4, are arbitrary, we can achieve that the ver-
tices of F"(4) belong to dD".

Into the finite net F"(J) inscribed in D" we introduce, for » > 3,
the structure of a polytope, denoted by PF"(6), as follows. The vertices
of PF"(6) are exactly those of all (»n —1)-dimensional segments contained
in the boundary 0F"(8) of F"(48). Every (n—1)-dimensional segment of
OF™(6) is decomposed into (n —1)-dimensional simplexes whose vertices
are those of the segment. These (» —1)-dimensional simplexes are called
faces of PF"(8). For n = 2 the above construction is not necessary.

We have

Lim F*(6) = LimPF"(4) = D"
30

3—0
and
(3.2) },E!(}IPF”(O)I = |D%|,

where |-| denotes the measure in E".

Now we define a piecewise linear mapping p of PF"(4) onto a polytope
denoted by ¢PF"(d). Let us take the restriction of (2.1) to the vertices
of PF"(8). Since the faces of PF"(J) are simplexes, they are uniquely
determined by their vertices and, therefore, every face of PF™(4) cor-
responds to the simplex spanned by the images of its vertices. This (n —1)-
dimensional simplex is a face of pPF"(4). That assignment of simplexes
defines, by the use of barycentric coordinates, the piecewise linear map-
ping

(3.3) §: PF"(8) 2% GPF™(8)
and we have
(3.4) LimpPF"(3) = ¢(D"), Eﬂ}llﬁPF"(é)l = |p(D")].

Examples. Consider finite nets inscribed in a manifold D* under
a chord-decreasing homeomorphism ¢: D*>E?. The homeomorphism ¢
restricted to the vertices of F?(8) inscribed in D? induces a transforma-
tion ¢ of the finite net F*(4).

1. Let us take the finite net ABCDEF as shown in Fig. la. Its
chords are AB, AC,CD, DH, F@G. The area of the domain bounded by the
polygon A’'B’'C’'D'E’F’ in Fig. 1D is larger than that of the domain bounded
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by ABCDEF in Fig. 1a, though lengths of the chords satisfy the in-
equalities
|AB| > |A'B’|, |4C|>|A'C’|, |0D|>|0'D’'|, |DH|> |D'H’|,

|[FG| > |F'&).
D C DI Cl
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Fig. 1

2. Let us take the ellipse in two different positions with respect
to the standard frame e,, ¢;, namely in the canonical position (Fig. 2a)
defined by the equation

2
ay | @ =1
Zt==1
& a4

and in the position which arises from the canomnical one by a rotation
about the origin of the frame for the angle = /4 (Fig. 2b).

A\e
2 A 92
-1

N/

Fig. 2

In the case n = 2 we denote by ¢ F*(4) the polygon which is the union
of all chords ¢(p)p(q), where pq is a k-chord of F*(d), ¥ =1,2. Let
A (F*(6)) denote the area of F*(4), and A (pF*(d)) the area of the domain
bounded by ¢F*(4).

For every chord-decreasing homeomorphism ¢ of the ellipse in the
position as in Fig. 2a and for every finite net F?(4) inscribed in the ellipse
we have
' A(Fz(é)) = A (q‘SFz(é)).

This is true for any convex domain symmetric with respect to a co-
ordinate line defined by e, or e,.
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For ¢ sufficiently small there exist finite nets F*(4) inscribed in the
ellipse in the position as in Fig. 2b, for which

A(F*(8)) < A(FF(8))

for some chord-decreasing homeomorphism ¢. This can be checked by
applying the effect shown in Example 1.
We call the number

AF*(3) = sup |4 (§F°(8)) — A (F*(8))]

the area defect of a finite net F*(4), where ¢ denotes a chord-decreasing
homeomorphism. The area defect of any finite net inseribed in the ellipse
shown in Fig. 2a i8 equal to zero, and that inscribed in the ellipse in Fig. 2b
can be different from, zero. From the proof of the chord theorem given
in the next section it follows that for a topological disc D* and F*(4)
inseribed in D? we have

lim AF*(8) = 0.
3->0

The exact value of 4F*(4) for a fixed finite net F?(48) is not known.
The concept of the area defect can be generalized to the concept of the
volume defect in the case n > 3.

4. Proof of the chord theorem. Let ¢: B"—~E", D" < B", denote an
analytic diffeomorphism of a ball such that ¢ restricted to D" is chord-
decreasing. If ¢: D"—E" is defined, then B" can be defined with the use
of the tubular neighbourhood B of D" by adding to D" the exterior
normal vectors multiplied by 7, and ¢: B"—E" denotes then an extension
of p: D" E" to segments of length # lying on the vectors exterior to D"
with values in segments lying on vectors normal to ¢(D"). Moreover,
we suppose that the map (3.3) does not decrease the volume of the polytope
PF™(3).

For every k, 1< k< n, we take in D" a tubular neighbourhood

B, of the set dD? defined by (2.3). We consider the set

e
n
(4.1) D" \kL_)l ke

Take any (n —1)-dimensional segment $"~! < dF™(8) of the partition
defined by (i) and (ii) and orthogonal to ¢,. By ¢,, 1 < a < 2™}, we denote
a k-chord of the family of those k-chords of F*(8) which pass through the
vertices of s"~!. We have ¢, = 9.¢,) Pay 4. €0D", 1 <a< 2" . If p, and
¢, belong to the set (4.1) for 1 < a < 2", then, by the definition of the
set (4.1) and by (ii), there exists such a constant K,(»,) that, uniformly
on (4.1), for every two points p,, p, € D™ defined above, i.e. for every
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segment s"~! < 9F™(4) defined by (i) and (ii) and the end points p, con-
structed for this segment as above, and for sufficiently small 6 > 0 we
have
(4.2) IPa—Dsll < Ky(m)d, 1<a,f<2"" .

In the tubular neighbourhood B} of dD" let us choose a compact
neighbourhood—B—:,-' of D", 7 < n. We write

9

K, = sup ) 1<4,j<n,

where ¢ = (¢4, ...,¢,) and p = (,,...,2,). There exists a 4, > 0 such
that < d, and |p—¢qll < é, p,q €0D", imply that the segment pgq is

contained in 1_27;,‘ . Then we have the estimation

43) @) —p@I< D lep) =il

v
<V2nE,|p—gll < V2nK,34,
where the derivatives d¢;/0x; are evaluated at a point of the segment

pg < BZ.

For a fixed integer a¢, 1< a, f< 2"}, and K,8< 4, the points
@(p;) are all contained in a ball B, ((p(pa)) with the center at ¢(p,) and
the radius (see (4.2) and (4.3))

(4.4) e = V2 K,K,nd.
Up to an isometry of E" we can suppose that

q)(pa) = .pa and w(pa)¢(Qa) < paQa = ca'

Since ¢ is chord-decreasing, the length of chords ¢, cannot increase
and they can only change their mutual position. Therefore, the increase
of the volume of PF™(4), which arises from the action of ¢ at the end points
ps of the chords ¢4, is less than the volume of the cube described over
the ball B,(p,), hence less than (2¢)". We repeat the above considerations
for all (» —1)-dimensional segments of dF™(8) such that the end points
of the orthogonal chords to these segments which pass through their
vertices belong to the set (4.1). Since all edges of segments defined by
(i) and (ii) are greater than /2, we have

O9:
6wj

7,(p) — 23 (@) < K, > lay(p) —;(a)|

2 n—-1
(4.5) |[PF"(8)| + |10F"(8)ln—1 (—6—8) *2¢ > |pPF"(8)| + C(ny, 6),
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where C(n,, ) is continuous with respect to 6 at 6 = 0 and

(4.6) ldinga(m, |<P(U Bnl,k)ln—

Put C(n,) = C(n,, 0). We denote by [0F"(J)|,_, the (r —1)-dimensional
volume of 0F"(6), i.e., the sum of volumes of (» —1)-dimensional segments.
contained in 0F" (8). Let 0F(J) denote the union of all (n —1)-dimensional
segments of 0F™(4) which are orthogonal to ¢,. Using (2.4) we have

(4.7) 10D,y > [0F(8)ln-1-

Since

n

OF™(8)ln—1 = D, 10F%(8)ln_1,

k=1
by (4.4), (4.5), and (4.7) we have
(4.8)  |PF"(8)|+n|0D",_,(2V2 K, Kyn)" 8 > |GPE"(8)| + O, 8).

If 4 tends to zero, then from (4.8) with the use of (3.2), (3.3), (3 4),
and (4.6) we infer that

|D"| = lo(D")|+C(n1)-
By (2.5) we have
lim C(»,) = 0.
710
Thus
| D" > |¢P(D”)|7

and the first part of the chord theorem is proved.
For the proof of the remainder let us suppose that for a fixed %,
1 < k < n, there exists a k-chord pg = D" such that

(4.9) Ip —qll > lp(p) —@()ll-

Since ¢ is continuous, we suppose that (4.9) is satisfied if p (respec-
tively, ¢) varies in a neighbourhood U < D" (respectively, ¥V < D"), and

that U and V are disjoint with the set U B"‘k for sufficiently small 7,.
k=

Let us take 8, > 0 such that for some segment s"~! < 9F™(4) ortho-
gonal to ¢, the k-chords ¢, (1 < a<<2"') of F*(8,) which pass through
the vertices of s"~! satisfy ¢, = »,q, and p,e U, ¢,€ V. There exists
a number a > 0 such that for every a,1 < a<< 2"},

IPe — .l = llp(Pa) — (@)l +a.
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Inequality (4.8) remains valid if we add to its right-hand side the
number 67~ !-a/2""!. Hence, if 8 and 75, tend to zero, we get

n—1

0
|D*| = |p(D™)|+ 2:,_1 -a

4

and, therefore,
|D* > |p(D")].

This completes the proof of the chord theorem.

REFERENOCES

{11 J. R. Munkres, Elementary differential topology, Princeton University Press
1963.

{2] H. Steinhaus, Problem 131, Wiadomodei Matematyczne 9 (1966), p. 99
[in Polish].

{31 H.Whitney, Differentiable manifolds, Annals of Mathematics 37 (1936), p. 645 - 680.

Regu par la Rédaction le 19. 2. 1974;
en version modifieé le 15. 9. 1975



