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A REPRESENTATION OF THE CATEGORY OF ALGEBERAS
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BY THE CATEGORY OF ALGEBRAS OVER ONE SUITABLE
MONAD IN A CATEGORY OF POINTED MONADS

BY
JOZEF SLOMINSKI (TORUN)

In this paper we consider the categories Alm(4) and Mon,(4) of
all monad algebras and of all pointed monads, respectively, over an arbi-
trary 2-category A. For each pair B = (M, B) which has the prop-
erty (8), where M is a subcategory of Mon,(A) and B is a subcategory of
Alm(A), we give the adjunction

2r = (Hg, Lpg, "7;2: 83)’ M —B

for which the comparison functor K5 from B to M F is an 1somorphlsm,
where Dp, is the monad defined by 2y, and M PR is the category of Dy-alge-
bras in M. The pairs

(Mon, (4), Alm(4)y, (Mon,(4)(X, —), Alm(4)(X, —),
{Mon, (4)(—, X'), Alm(4)(—, X'),
{(Mon,(4)(X, X’), Alm(4)(X, X)),

(Mon,(4)(X, T), Alm(4)(X, T)), <{Mon,(4)(—, T), Alm(4)(—, T)},

where X and X’ are any 0-cells in 4 and T is any monad in A, have the
property (S).

For any 2-category A we also introduce the diagonal 2-cate~
gory 2-d, A of any diagonal type @ and the notion of right monad algebra
in A. In Section 3 we give a category of R-automata, where R is a pair
with the property (S), and we formulate a problem. In the last part of
Section 2 we formulate a representation theorem for the category of all
automata in the category of functors from X to X and we give other
examples.
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1. PRELIMINARY DEFINITIONS AND PROPOSITIONS

The reader is assumed to be familiar with the basic concepts from
theory of categories [4].

1.1. Remarks on foundations. The fouridations arc based on standard
Zcrmelo-Fracnkel axioms from the set theory with the notion of a uni-
verse and the following axiom (see [6]):

(i) Hvery set is an element of a universe.

Let U be any universe. A category C is a U-category if Ob(C) and
Mor(C) are subclasses of U. A U-category C is small if Ob(0) e U and
Mor(C) € U; in the opposite case — C is large. By (i) there exists a uni-
verse U, with U € U,. Hence every U-category C is a small U,-category.
The small sets over U, i.e. the clements v € U, as objects with the mappings
a8 morphisms, define a U-category Set(U). All gets over U, ie. allo = U
with the mappings, define a U,-category SET(U) which is a full sub-
category of Set(U,). The small U-categories, as objects with the functors,
define a U-category Cat(U). All U-categories with functors define a U,-
-category CAT(U) which is a full subcategory of Cat(U,).

1.2, 2-categories. Ve use the notion of a 2-category in the sense
of [3] and [6]. Let U be any universe. A 2-category A over U consists
of a U-category A, (called the local discrete category of A) with the fae-
torization

Cat (U)

(-l

AP X 4, > Set (U)

Ao("v-)

such that for all objects X, Y, Z in A, there are functors
A(X, Y)xA(Y,7) 220802 | 4 (%, 7)

which are natural, associative and unitary in all variables and agree with
composition in A, on objects.

Let A be any 2-category over U. The objects and morphlsms of A,
are called 0-cells and 1-cells of A, respectively. For any 0-cells X, ¥ of 4
the morphisms of the category A(X , Y) the objects of which are 1-cells
from X to Y are called the 2-cells of A from X to Y. The compositions
O = Ox,y,z are called strong in A and we write aof = fa. The composition
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in the category 4 (X, Y) is said to be the weak one of A and it is denoted
by -. If ¢: m'f — gm is a 2-cell in A, then it is presented by the diagram
square

X 1,X

o

Y—>Y

If p: gm —>m'f is a 2-cell in A, then the diagram square for ¢ is
obtained from the above one by replacing ¢| by ¢1. Let 4 be any 2-cat-
egory over U and let X, Y, Z be any 0-cells in A. Moreover, let f, &, b’
and g, ¢’, ¢’ be any 1-cells in 4 from X to Y and from Y to Z, respec-
tively. Since o are functors, we have the following well-known facts [3]:

1.2.1. PROPOSITION. (a,) (' y)(¢’ @) = (v'¢’) (vp), where ¢: f — b,
¢':h—>h'y wy: g—>g and y': g —g¢' are any 2-cells in A.

(a2) g(9"-¢) = (99") (9p), where @: f—h and ¢': h —h' are 2-cells
mn A.

(8s) (¥ 9)f = (') (vf), where y: g —>g' and 'z g’ —g" are 2-cells
m A.

(ag) a*h = h'-a = a, where a: h —h' is any 2-cell in A.

(as) (ga)-(Bh) = (BRh')-(fa) = Ba and Ya = aX = a, where a: b > &’
and B: g — g’ are any 2-cells in A.

(ag) For any diagram in A of the form

—x—" g~

ml el lm’ ¢} lin"

Y——Y—5—>Y"

nl vl ln’ vl lﬂ"

Z—w >4 %"

we have
TV Te)=0'Ve)T (pV ¢),

where yV @ = (ym)-(n'¢) and ¢’ T ¢ = (9'¢)-(¢'f) are the compositions
of vertical and horizontal squares, respectively, or 2-cells in A.

(a¢) For any diagram in A obtained from the diagram in (a ) by replacing
the squares ¢ |, ¢' |, v | and ¢’ | by the inverse squares ¢ 4, ¢’ 4, v 1 and
v’ 1, respectively, we have

(v L) A" Lo) =(v A¢') Ly Ag),

where y A\ = (n'@)(ym) and ¢’ L ¢ = (¢'f)-(¢'p) are the compositions
of inverse vertical and imwerse horizontal squares, respectively, or 2-cells in A.
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For any 2-category A there is a total category A, of A the objects
of which are all 0-cells in A, morphisms from X to Y are all 2-cells in A
from X to Y, and the composition agrees with o. The categories Cat(U)
and CAT(U) with the natural transformations of functors as 2-cells define
the 2-categories 2-Cat(U) and 2-CAT(U) over U and U,, respectively.

1.3. The diagonal categories and 2-categories. Let A be any 2-category
over U. Let us denote by d, A (respectively, d; A) the set of all 1-cells in A4,
as the set of objects, together with:

(b,) the correspondence which with any 1-cells f: X — X’ and g:
Y - Y’ of A associates the set d,4(f, g) (respectively, ds A(f, g)) of all
3-tuples (m,m', ¢), as the set of morphisms from f to g, in such a way
that in A there is a square of the form

x-Lrx
ml ol lm' for d, A(f, 9)
Y—Y
and
x-Ls>x
Ml 0’1’ lm' fOl‘ dsA(f, g)’
Y5>

and the identity morphism of f is the 3-tuple (X, X', f);
(bg) the composition of vertical squares (respectively, inverse vertical
squares) of A4, as the composition in d, 4 (respectively, d;4), i.e.

(nyn'y p)(m,m',p) = (nm,n'm’,pV ¢) in d,4,
(n, '""’ v) (m, 'm"r 9’). = (nm, '”"m'f v A9) in d;4.

1.3.1. THEOREM. For any 2-category A over U, d, A and d;A are U-
-categories (called diagonal and inverse diagonal categories of A, respectively).

There are the extensions of d, A and d; A to the 2-categories.

1.3.2. THEOREM. For any 2-category A over U there are 2-categories
2-d, A and 2-d; A over U such that:

(c,) 4, A and dz A are the local discrete categories of 2-d, A and 2-d; A,
respectively.

(cg) For any objects f: X - X' and g: Y - X' in d,; A or d;A the
category 2-d, A(f, g) or 2-ds A(f, g) consists of

(1) the set of all morphisms from fto g in d, A or dz A as the set of objects;

(2) the set of pairs of 2-cells in A of the form

{<a,8) | a: m —>my, f: m’ —>m; and (ga)-¢ = @, (Bf)}
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or the set of pairs of 2-cells in A of the form
{Kay B> | a: m —>my, B: m’' —my and (Bf)-¢ = p1°(9a)},
as the set of morphisms from @ = (m,m’,¢): f—g to
b = (my, my, ¢:): f—>9g

in 2-d, A(f, g) or 2-d, A(f, g), where @ and b are any morphisms from f
to g in d, A or ds A and with {m, m") as the identity morphism of a;
(3) the direct square of the weak composition in A, as the composition

in 2-d, A(f, g) or 2-d, A(f, g).
(es) The composition rules in 2-d, A or 2-d; A are the funciors

o .
2-d;A(f, g) x2-d;A(g, h) —> 2-d;A(f, h), i=1,3,
defined by the mappings

(('m’: m'y @)y (0,0, 'I’)) (nm,n'm', p O @)
(Ka,8>:¢a1,B1)) |—> l(“xanﬂnﬁ)
(('mn 'mfy @)y (N, '”';y 'P')) (nymy, ”"';"”;’ v O¢')

where [Jis V fort =1 and [ i8 A fori =3.
Proof. By (a,), {m, m’) is indeed a morphism of a. By (a,) and (as),

the composition of morphisms in 2-d,A(f, g), given by <a', f'>{(a, >
= {d'-a, BB, fulfils the equalities

g(a'-a)-¢ = ga'-ga-p = ga' @, ff = @a B’ f-Bf = s (B'-B)S,

and thus it is also a morphism in 2-d, A(f, g). Hence 2-d, A(f, g) is a
category. The last part follows easily from the definitions.

1.3.3. Definition. For any 2-category A over U we denote by d, A
(respectively, d, 4) the subcategory of d, A (respectively, d;A) determined
by objects of the form f: X — X, where X is any 0-cell in 4, and by
morphisms of the form (m, m, ¢), briefly written as (m, ¢). The categories
2-dyA and 2-d, A are subcategories of 2-d; A and 2-d; A defined by 0-cells
and 1-cells in d; 4 and d; 4 and by 2-cells of the form <{a, ) with a = 8.

1.3.4. Definition. By 4 | A we denote the subcategory of d,4
defined by all objects and by morphisms (m, m', ¢) with ¢ = id. Moreover,
2-A | A is the full subcategory with respect to 2-cells of the 2-category
2-d; A.

1.3.5. Definition. Let ¢ = (a,, a,) be any pair with a, € {0, 1, 2, 3}.
The diagonal category of type a of a 2-category A is the category d,4
which is the subcategory of the direct product d, A X d,,zA defined by
all objects (fy,f.) with domf, = codomfl and by all morphisms of the
form ((my, My, @1), (May My, @s)) With my = m,.
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By 2-d,A we denote the subcategory of 2-d, A x2-d,, A defined by
all 0-cells and 1-cells in d,A and by 2-cells of the form (<a,, 8,>, {as, B2))
with 8, = a,.

In an analogical way we can define the categories d,4 and 2-d,A
for any diagonal type a = (a,, ..., a,) with a;€ {0, 1, 2, 3}.

1.3.6. Definition. Let A be any 2-category over U. By I'(4A) and
r-I'(A) we denote the sets '

{(X’ —')7(-’X')7(X’X’)’(X7T)’(_’T)}
and
{(Xr —), (-—,X'),(X, X')y (TM X')’ (Tm —)}7

respectively, where X, X' are any 0-cellsin 4 and T: X' - X', Ty: X - X
are any 1-cells in 4. For any diagonal type @ = (a,, a,) witha; € {0, 1, 2, 3}
and for any element » in I'(4) or in r-I'(A) we define a category d,A4x
which is a subecategory of d,A determined by all objects (f;, f.) and mor-
phisms ((my, my, ¢1), (ms, m,, @s)) such that

1) domf, =X, m;, = X if » = (X, —);

(2) codomf, = X', m; =X' if x =(—,X');

(3) domf, = X, codomf, = X', m, = X, m; = X' if »x = (X, X');

(4) domf, = X, fy, =T, my =X, ¢ =T if x =(X,T);

B)fo=T, . =T if x=(—,T);

(6) fi = Ty, codomf, = X', ¢, =Ty, my = X' if x = (T, X');

(1) fr =T, %1 Z.To if ® = (Tp’ _"“)- ‘ S

For any » in I'(4) or in r-I'(A) there is a 2-category 2-d, Ax which
is a subcategory of 2-d,A defined by all 0-cells and 1-cells in d,4» and
by 2-cells of the form

(Cayy B) : ((’m'n "”':" %)) - (('”'i’ ”o"’ ‘P;)), 1=1,2,

such that
1) ay = 'm} =X i.f ® € {(Xs -), (X, X"), (X, I)};
(2') pr=m =X"if xe{(—, X"), (X, X")};
(8') By = m; = domT, B, =n, =codomT if xe {(X,T),(—, T)};
(4') . = m; =X"if x = (T, X');
(6') @y =m; = domT,, a, = m, = codomT if x € {(T,, X), (To, —)}.

1.3.7. Definition. Let A be any 2-category over U and let X be any
0-cell in A. By d, A(X, —) we denote the subcategory of d, A defined by
all 1-cells f with domf = X and by morphisms of the form (n,n', ¢)
with » = X. By 2-d, A(X, —) we denote the subcategory of 2-d; 4 de-
fined by 0-cells and 1-cells in d, 4 (X, —) and by 2-cells of the form (a, 8)
with a« = X. Let f, g be any 1-cells in A with domf = domg = X. The
terminal object, if there is any, of the category 2-d,A(X, —)(f,¢g) is
called the right Kan extension of g along f and is denoted by (X, 7,(g), ¢).
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The right Kan extension (X, r,(g), ¢) is said to be preserved by 1-cells if
for any 1-cell h: Y' — Y’ in A, where f: X - X' and ¢g: X — Y’, there
exists a right Kan extension (X, r,(hg), ¢) which is isomorphic in the
category 2-d, A(X, —)(f, hg) to the object (X, hr,(g), he). By Kan(4 | A4)
we denote the full subcategory of A | A defined by all 1-cells g for which
there is a right Kan extension along ¢ and this extension is preserved
by 1-cells in A.

1.4. The monad categories and 2-categories. Let A be any 2-category
over U. A monad (1-cell) in A is any 4-tuple T = <X, T, 5, 4> consisting
of any endocell T: X - X in 4 and 2-cells n: X > T, u: T* > T in A
such that

Ty =p-puT and puTyp=pyT =1T.

1.4.1. PROPOSITION. The above-defined 4-tuple T ==<{X,T,n, u) is
a monad in A if and only if

pVpup=pTp aod nTu=pVnyn=T.

T =<X,T,n,u) is a monad in A, then T = FT, %, u are the
endocell, the unity and the operation of T, respectively, and T is said to
be a monad of the O-cell X in 4. Jet T =<{X,T,n,u) and T’
=<(X', T, 5, 4> be two monads in A. Then a monad morphism (respec-
tively, inverse monad morphism) from T to T’ is any morphism (m, @)
in d, A (respectively, d; A) from FT to FT' such that

n’m =¢@-my and @mu =pumIT¢@T
(respectively, mn = ¢-9'm and ¢@-u'm = mu-pT-T'¢p). Hence we have

1.4.2. PROPOSITION. A morphism (m,¢): FT — FT' in dyA (respec-
tively, d, A) i3 @ monad morphism (respectively, inverse monad morphism)
tn A from T to T' <+f and only if

n"Tm=¢eVny and oV pu=9¢T (Ve
(respectively, mV n =@ T n" and p' T ¢ = (pT p) V @)

Consider the composition b = (m,, ¢,)(m, ¢) = (m,m, ¢, V @) of mo-
nad morphisms in dyA. Then we have

(n''my)m = (g myn')m = @gym-myn'm = g, m-m,(n m)

= @M My (Q-mn) = @ym-my@-mymn = (p, V @) -mymn
and
@EVAVr=nVeTWVe) =@Vu)V(Te)
=@ T W'V eIV (T 9)
=T"Tu )V UV O)T (91 V )]
=[UT"V o)V elT [#'V (91 V 91)]
=(@VeTIWV (V¥ el
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and thus & is also a monad morphism in 4. Moreover, the identity of
FT is a monad morphism. We can prove analogically that the composition
in d; A of inverse monad morphisms is also an inverse monad morphism
and the identity of F'T is an inverse monad morphism.

1.4.3. THEOREM. For any 2-category A over U the monads in A with
the monad morphisms (respectively, inverse monad morphisms) define a U-
-category Mon (A) (respectively, Mon™(A)), and the functor F: Mon(4) - d, A
(respectively, F: Mon* (A4) — d,A), defined above, is forgeiful.

Mon(A) and Mon* (A4) are the local discrele categories of 2-categories
2-Mon (A) and 2-Mon* (A) such that 2-Mon (4)(T, T') and 2-Mon* (4)(T, T')
are the full subcategories of 2-d, A (FT, FT') and 2-d, A (FT , FT’) determined
by all monad morphisms and inverse monad morphisms.

For any 0-cell X in A we have the category Mon(4)(X) (respectively,
Mon“(A4)(X)) of all monads of X which is a subcategory of Mon(4) (res-
pectively, Mon*(A4)) determined by all monads of X and all morphisms

of the form (X, ¢).
Any object g: X - X' of Kan(4 | A) defines a monad T =
=<(X',T,n,u> in A such that

(X,nd: (X, X', 9)>(X,Tye) and (X, p): (X, T, ¢ Te)>(X,T,e)

are the unique morphisms in 2-d,A(X, —)(g, g) defined by the terminal
object (X, T, ¢) which is the right Kan extension of g along g. Indeed,

g = ¢e'ng, ¢-Te = ¢-pg and, by (as),
ng-c¢ =Te-nTg and Te uTg = pg-Te.
Hence
e (u-uT)g = e pug-pTyg = e Te-pTyg = e-pug-T?e = ¢-Te-T?¢
— - T(e-Te) = e T(s-pg) = ¢-Te-Tug = e pg-Tug = e-(u-Tu)g,
and thus, by the property of the terminal object, we have
popul = p-Tu.

Analogically we prove that u-Tn = u-9T =T.
1.4.4. THEOREM. For any 2-category A over U the mappings

X—">X' T =<X",Tyn,mw
l(m-m') l—> l(m’.y)
YY1 =Y, T,

define & fumctor Str: Kan(4 | A) —Mon™ (4), where (X,T,¢) and
(Y, T, &) are the right Kan extensions of g and of g' along g and g', T and
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T’ are monads of those extensions, y = 2~ h with (X, z): (X, m'T, me)

—(X,T",a) 18 the isomorphism in 2-d,A(X, —)(g, m'g) to the right

Kan extension (X,T'',a) of m'g along g, and (X, h): (X,T'm', ¢'m)

— (X, T, a) ts the unique morphism in this category to the terminal object.
Proof. Since

a-(zm'n)g = a-zg-m’'ng =m'e-m'ng =m'(s:mg) =m'g =g'm
and
a'(zy'n'm')g = a-hg-n'm’'g =¢&m-n'm'g =cmnygm
= ("n'g")ym =g'm,
we have z-m'n = z-y-9'm’, and thus m’'n = y-n'm’. Since
a-(z:y-pu'm')g =a-(z:m'p-yIT-TI'y)g,

we obtain y-um’ = m'u-yT-T'y. Hence (m',y): T —T' is an inverse
monad morphism. In an analogical way we prove that Str is a functor.

1.5. Pointed monad categories and 2-categories. Let A be any 2-cate-
gory over U. A pointed monad (respectively, right pointed monad) in A is
any pair (f, T) (respectively, (T, f)), where f is any 1-cell in A and T is
any monad of the 0-cell with codomf (respectively, domf) in 4. A pointed
monad morphism (respectively, right pointed monad morphism) from (f, T
(respectively, (T',f)) to (f',T’') (respectively, (T, f’)) is any morphism
t = (t,t,) in dgA (respectively, d,,4) from (f, FT) (respectively,
(FT, f)) to (f'y FT') (respectively, (F'T', f')) such that ?, (respectively, t,)
is a monad morphism in Mon (4) from T to T"'. The composition of pointed
monad morphisms or right pointed monad morphisms is the same as the
composition in d;, 44 or dg,A. In this way we obtain the categories
Mon,(4) and r-Mon,(4) and the forgetful functors

G: Mon‘ (.A) -> d(l,O)A and G': r-MOD; (A.) - d(O,I)A .

Those categories are local discrete categories of the 2-categories
2-Mon,(A) and 2-r-Mon,(A) such that the categories 2-Mon, (4)(k, A')
and 2-r-Mon, (4)(k, k') are the full subcategories of 2-d, .4 (Gh,Gh’)
and 2-d, ;)4 (G, k, G, h') defined by the pointed monad and right pointed
monad morphisms.

1.5.1. Definition. Let A be any 2-category over U. By I, (4)
and r-I',,(4) we denote the sets

{(X, —)7 (_’7 X')) (X’ X’)y (Xy T)1 (—':T)}

and
{(Xa "’)’ (""1 X')a (X, X’)y (To’ I), (To, —)},
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respectively, where X, X’ are any 0-cellsin A andT: X' - X', Ty: X - X
are any monads in A. These sets may be considered as subsets of the sets I"(4)
and r-I'(A) defined in 1.3.6. For any element » in I', (A) or r-I',,(A) we
denote by Mon, (4)(x») or »-Mon, (A)(x») the subcategory of Mon,(A4) or
r-Mon, (A) determined by the objects » and the morphisms p» such that
Gh and Gp or G.h and G,p are in d; A (%) or d ;)4 (x).

In a similar way we define the 2-categories 2-Mon, (A)(x) and 2-r-
-Mon, (4)(x) for » in I',(4) or r-I',, (4), using the 2-categories 2-d, ) A (x)
and 2-dg ,) 4 (%).

If A = 2-Cat(U)or A = 2-CAT(U), then the category Mon, (4)(1, —)
is denoted by Mon, (U) or MON,(U). Since any functor f: 1 - X' is
uniquely dctermined by the object f1 of category X', and any 2-cell

is uniquely determined by the morphism m'fl — f'1 of the category X',
then the objects of Mon, (U) or MON, (U) may be considered as the pairs
(f, T) such that f is any object of X' and T = (X', T, 5, u) is any monad
of the category X', and the morphisms ((1, m’, @), (m', ¥)) may be con-
sidered as the 3-tuple (¢, m’, ) such that ¢: m'f — f’ is a morphism in ¥’
and (m’, ): T — T’ is a monad morphism.

1.6. The algebra categories and 2-categories. Let 4 be any 2-category
over U and let s,t€{0,1,2,3}. Let us consider the category C(s,?)
such that

C(s,t) =dz2-d,A.
The objeets of this category are morphisms (¢, ¢,, ¢): g, —¢g,in d;A.
Using Theorem 1.3.2 we can prove
1.6.1. THEOREM. Let

’ ’ ’ ’
C = (C,C,0a): g —>¢gs and ¢ = (¢, ¢,a) g g,

be any objects in C(s,1). Then the morphisms from ¢ to ¢’ in C(s, 1) are all
3-tuples (m*, n*, y*), where m* = (Mmy, My, @)t g1 —> g1y B* = (Mg, Ny, @'):
g, — g, ave 1-cells in 2-d; A, v* = (p, ¢') i8 any 2-cell in 2-d; A from n*c
to ¢'m* if t € {0,1} and from ¢’ m* to n*c if t € {2, 3} such that
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(1) m* = n* if 3 € {0, 2},

(2) 299" V a) = (' V @) 9'g, if 1€{0,1},

(3) ¥'9:°(a' T ¢) = (¢' T a)-gay if t{2,3}

1.6.2. Definitions. (I) The objects of the category C(0, 1) of the
form

(domf, Ty a): f —f,
i.c. the diagrams in A of the form

x-Lx
|l
X f—)X !
are called endoalgebras in A. If (domf, T, a): f — f is an endoalgebra

in A, then a is a T-structure on f and (f, T') is the strong type of this algebra.
(IT) The objects of the category C(1, 0) of the form

(f,f, a): T - codomf,

i.c. the diagrams in 4 of the form

XX

ol

XI ?_) XI
are called right endoalgebras in A. If (f, f, a): T' — X' is a right endoalgebra
in A, then a is a right T-structure on f and (T, f) is the strong type of this
algebra.

The full subcategory of C(0,1) (respectively, C(1,0)) defined by
all endoalgebras (respectively, right algebras) in A is denoted by wAl(A4)
(respectively, r-wAl(4)). The morphisms of these categories are called
weak algebra (respectively, right algebra) homomorphisms in A. Those
categories have extensions to 2-categories 2-wAl(4) and 2-r-wAl(4) which
are subcategories of 2-d,2-d;A. By 1.6.1 and 1.6.2 (I), the weak algebra
homomorphism @ from (domf, T, a): f - f to (domf’, T", a'): f' — f' may
be considered as the pair ((m,m’, ¢), (v, y')) such that the 1-cells in
A, ie.

’ m: domf —domf’, m': domT - domT",
and the 2-cells in A, i.e.
p:m'f>fm, yp:m—->m, o:mT->Tmnm,
fulfil one of the following equivalent equalities:
(a2) fy(pV a) =(a'V 9)-¥'f,
(qs) Fopma=amTeyf,
(9s) (pV a)Ty=9"T(aV o).
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By 1.6.1 and 1.6.2 (I1I), the weak right algebra homomorphism @
from (f,f,a): T — X' to (f',f', a’): T — X' is determined by a 3-tuple
((m, @, (n, '), (v, ¥')) such that the 1-cells in A4, i.e.

m: domT - dom7T', =n: X' >Y',
and the 2-cells in A4, i.e.
g: mT ->T'm, ¢:n—->n, y,¢:nf—>fn,

fulfil one of the following equivalent equalities:

(rq,) v (¢'V a) =(a' V ¢)-9'T,
(rq.) v@'frna=amfoy'l,
(rqs) @PVaTy=9T(Ve).

A weak algebra homomorphism ((m,m’,¢), (v, 1/;')) in A is said
to be an algebra homomorphism in A provided p = m. Conditions (q,)
with 9 = m are denoted by (q,;,) and they have the following forms:

(dyn) eV a=(aV o)v'f,
(Qn) pgm'a=amTpyf,
(Qsn) eV a=9"T(aV ).

A weak right algebra homomorphism ((m, ¢), (%, ¢’), (v, ¥')) in 4
is said to be a right algebra homomorphism in A provided ¢’ =n and
y = ¢’. Conditions (rq;) with ¢’ =n and y = ¢’ are denoted by (rq;,)
and they have the forms

(rqmn) p(nV a) =(aV @)yT,
(rqsn) yne =amfoyl,
(Tqan) yVa=dV(pTe).

Obviously, the composition of algebra or right algebra homomorphisms.
in wAl(4) or r-wAl(4) is an algebra or right algebra homomorphism.
Hence the endoalgebras or right algebras in A with algebra or right algebra
homomorphisms determine the categories Al(4) and r-Al(A4). Moreover,

there are functors
L': Al(A4) —d;n4d and L: r-Al(A) — o4

such that L’c and L,c are the strong types of ¢, and
L!(((mi m', @), (m, '/"))) = (('my m'y @), (m', 'l")):
L{((m, ¢), (n, n), (v, 9))) = ((m, ¢), (m, 0, y))

fer morphisms.
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Obviously, the categories of algebras have the extensions to the
2-categories 2-Al(A) and 2-r-Al(4).

1.6.3. Definition. A monad algebra (respectively, right algebra)
in a 2-category A over U is any 3-tuple @ = (T, f, a) consisting of a mo-
nadT =<X',T,n,u)in A, a 1-cell f: X — X' (respectively, f: X' — X)
in A, a 2-cell a: Tf — f (respectively, a: fI' — f) in A such that

{(m,) aTa=capuf and agf=f
for the monad algebra, and

{rm,) ¢l =afy and afp=f
for the right algebra.

Conditions (m,) and (rm,) are equivalent to
{m,) aVa=upuTa and gTe=f
and
{(rm,) aTa=aVu and aV9y=f,
respectively.

If a =<T,f,a) is a monad algebra (respectively, right algebra),
then the pointed monad (f, T') (respectively, (T, f)) is said to be the sirong
type of the algebra a.

Any monad algebra or right algebra a = (T,f,a) determines
the endoalgebra (domf, T',a): f— f or right endoalgebra (f, f,a):
T — codomf, denoted by @, or a,,, respectively.

A monad algebra (respectively, right algebra) homomorphism in A
from a monad algebra @ to a monad algebra b in A is any algebra (respec-
tively, right algebra) homomorphism @ from a, (respectively, a,,) to b,
(respectively, b,,) such that L'Q (respectively, L,Q) is a pointed (respec-
tively, right pointed) monad morphism from the strong type of @ to the
strong type of b. The composition in Al(A4) or r-Al(A) of monad algebra
or right algebra homomeorphisms is a monad algebra or right algebra
homomorphism.

1.6.4. THEOREM. The monad algebras or right algebras in A with the
monad algebra or right algebra homomorphisms define the category Alm(A)
or r-Alm(A). Moreover, there are fumciors

L: Alm(A) >Mong(4), —,: Alm(4) - Al(4)
and
L,: r-Alm(4) —r-Mon,(4), —,,: r-Alm(4) —r-Al(4),

where L and L, are the sirong types of algebras on objects, L = L', L, = L,
and —, and —,, are the tdentity mappings on morphisms.
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Obviously, the monad algebra categories in A have the extensions to
the 2-categories 2-Alm(4) and 2-r-Alm(A4).

For any element x in I, (4) or r-I,(4) we denotc by Alm(4)(x)
or r-Alm(A)(x) the subcategory of Alm(A4) or r-Alm(A4), defined by all
objects e with a, € Al(A4)(x) or a,, € r-Al(4)(»), and by monad algebra
homomorphisms in Al(4)(x) or r-Al(4)(x»). The subcategory Al(A)(x)
or r-Al(A4)(x) of the category Al(4) or r-Al(4) is defined by objects ¢
with L’'c or L/c in d(, o4 (%) or d ;) A (%), and by algebra homomorphlsms
h with L'k or L,h in da,0)A (%) or dig 1) A (%) (*).

1.6.5. ProrosITION. For each » in I',(A) or r-I',(A) the formulas
L, = L|Alm(4)(x), L, = L|Al(4)(x),
L,, = L|r-Alm(4)(x) and L, = L |r-Al(4)(x)
define the functors of the form
L.: Alm(A4)(x) -~ Mon, (4)(x), L,: Al(4)(x) >dnd(x), xel,(4),
L,,: r-Alm(A)(%) - r-Mon, (4)(%), L, r-Al(A4)(x) - dg 1) A (%),
xer-I,(4).

If A =2-Cat(U)or A = 2-CAT(U) and » = (1, T), where 1 is a one-
-object category and T is a monad of the category X, then Alm(d4)(x),
denoted by X7, is the category of all monad T-algebras of the category X.

2. MAIN THEOREMS

2.1. THEOREM. Let A be any 2-category over U. Then
(i) there are fumctors

H: Mon,(A) - Alm(4) and H,: r-Mon,(4) — r-Alm(4)
such that
H((f,T)) =T, If, pf> ond H,((T,f)) =<T,fT,fu>
on objects, and
H(((m,m’, g), (m', y)) = ((m, m', ' T 9), (m, ¥')),
H,(((m', v'), (m'y m, 9))) = (', ¢'), (m, m), (@ T ¢'s0 T )
on morphisms;

(1) The catcgories Al(A)(x) with 4 = 2-CAT(U) and x = (1, —) or (1, X) are
considered in [1] and [2] as the categories of process system dynamics.
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(ii) the formulas
H, = H|Mon,(A)(x) and H,, = H,|r-Mon,(A)(x)
define the functors
H,: Mon,(A)(») - Alm(4)(x), where xeI,(4),
H,,: r-Mon, (A4)(x) - r-Alm(A4)(x), where xer-I', (4).

Proof. Obviously, <T', Tf, uf> and <T, fT, fu) are the monad algebra.
and the right algebra, respectively, in A. Since

WTAVU =0TV ETH=0'VuTEV/

=W TWVYNTe= T VITS Ve

=9’ T V)TVl

=V TIWTHAVETA=vTRKSIV T,
therefore, by (qs,), H is well defined on morphisms. H also preserves the:
composition, and thus H is a functor. Analogically we prove that H,.
is a functor. H-images and H,images of objects and morphisms in
Mon, (4)(») and r-Mon,(4)(%) belong to Alm(A4)(») and r-Alm(A4)(x).

Let us consider the sets of morphisms

(P,) 7' = lngr = (X, X', nf), (X, T) : (f, T) € Mon, (4)},
(p2) & = {3:1',{,«) = ((Xy X', a), (X, T)) LT, fy @) eAlm(A)I’

(rpy) rnt = lﬂ:r,j) = ((X7 7), (X, X',f’?)) (T, f) e "‘Mon*(A)} ’
(rp2) r-e* = {G:T,f,a) = ((Xr T)v (X" X’), (a, a)) : <T7f’ a) er—Alm(A)},

where X = domf and X' = codomf.

For any x eI, (A) the sets 7*|Mon,(4)(x) and e*|Alm(A)(x) are
denoted by 7, and &), respectively. For any xer-I',(A) the scts
r-n*|r-Mon, (4) and r-¢*|r-Alm(A4)(x) are denoted by r-5. and r-e), res-
pectively. °

2.2. Definitions. Let A be any 2-category over U.

(I) We say that a pair R = (M, B) of categories fulfils property (S)
under (S,)-(S,) if

(S,) M is a subcategory of Mon, (4) such that, for each object (f, T'):
in M, 5z is a morphism in M;

(S;) B is a subcategory of Alm(4) such that, for each object (T, f, a)
in B, ey, . i8 2 morphism in B;

(S;) H(Q) is a morphism in B for any morphism @ in M;

(8,) L(Q) is a morphism in M for any morphism @ in B.

(IT) We say that a pair R = (M, B) of categories fulfils prop-
erty (rS) under (rS,)-(rS,) if
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(rS;) M is a subcategory of r-Mon,(4) such that, for each object
(T, f) in M, 9y, is & morphism in M;

(rS,) B is a subcategory of r-Alm (4) such that, for each object (T, f, a)
in B, &, i8 a morphism in B;

(rS;) H,(Q) is a morphism in B for any morphism @ in M;

(rS,) L,.(Q) is a morphism in M for any morphism @ in B.

(III) We say that a pair B = (M, B) has property (8) or (rS) if it has
property (S) under (8,)-(S,) or property (rS) under (rS,)-(rS,) and the
following condition (8;) or (rS;) holds:

(S5) (a) For each morphism of the form ((X, X', a), (X’, T)) from
(If,T) to (f, T) in M, where X = domf and X' = codomf, if <T', f, a)
is a monad algebra in A, then it is an object in B.

(S;) (b) It

(('”'7 n'y ), (n'ﬁ’l”)): f, T) > (f,T),
where
fi X->X, T:X->X and f:Y->Y, T:Y->Y,
is a morphism in M,

Q = (('"’7 n'y ), (n, 1/)')): T, fyay =T, fya")
is a morphism in Alm(4),
((X1 X', a), (X', T)): (Zf, T) - (f, T)
and
(Y, Y, ), (Y, I): (T'f", T') = (', T")
are morphisms in M, then @’ is a morphism in B.

(rS;) (a) For each morphism of the form ((X,T), (X, X', a)) from
(T, fT) to (T, f) in M, it (T, f, ¢) is a monad right algebra in A, then it
is an object in B.

(rS;) (b) If

((n" v'), (n'ym, 7))3 T, f) - (T"f');
where

T:X>X, f:X->X and T:Y->Y, f:Y¥Y->Y,
is a morphism in M,
Q" = ((n'y 9", (nyn), (¥, ) \
is @ morphism in r-Alm(4) from (T, f, a) to <T",f’, a’) and, moreover,

((Xr ), (X,X', a): (T7f-T) - (T, )
and
(Y, 1), (Y, X', a)): (T, f'T") > (T', f')

are morphisms in M, then Q' is a morphism in B.
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Let R = (M, B) be any pair which fulfils property (S) under (S,)-(S,)
or property (rS) under (rS,)-(rS,). By Ly and e; we denote the cuttings
of L or L, and of &* or 7-¢* to B, respectively. By Hy and %} we denote the
cuttings of H or H, and of * or r-n* to M, respectively. Obviously,
Lgp: B> M and Hp: M — B are functors. Let us observe that the
pairs

{Mon, (4), Alm(4)>, <(Mon,(A)(x), Alm(A)(x)> with xe I, (4)
have property (S), and the pairs
{r-Mon,(4), r-Alm(4)>, <{r-Mon,(4)(x),r-Alm(4)(x))

have property (rS). The functors Ly, Hy of those pairs are the same as
L,HL,H,L,H,, L, and H,,, respectively.

2.3. THEOREM. Let A be any 2-category over U.
(X) For each pair R = (M, B) of categories which fulfils property (S)
under (S,)-(S,) or property (rS) under (rS,)-(rS,) we have the adjunction

Zg = (Hpy Lg, 1, ¢py: M — B.
(II) We have the following adjunctions:
(a) 2 =(H, L, n* &*): Mon,(A4) — Alm(4),
(b) E, = (Hyy Ly, n%y ¢5: Mon, (4)(x) — Alm(4)(x)
for each element x» in I'y,(4),
(ra) 2, =<(H,y L, r-n*, r-e*>: r-Mon, (4) — r-Alm(4),
(tb) X, = (H,uy Lpyy 705, 1-€30 ¢ 7-Mon, (4) (%) — r-Alm(4)()

Jor each element » in r-I',,(A).

Proof. Using definitions (p;), (rp;), equalities (q;,), (rq;,) and Pro-
position 1.2.1, we see that

')]*R: 1M -—)LRHR and 8’;2: HRLR e ]'B
are the natural transformations of functors. Now we verify that
¢pHp Hpng = Hp and  Lgep-nplp = Lg,

and thus X5 is indeed an adjunction. Part (II) follows from (I).

Let us denote by Dg, D and D, the monads defined by the adjunctions
2Z'g, (a) and (b) from Theorem 2.3, and by D, and D,, the monads defined
by the adjunctions (ra) and (rb) from this theorem, respectively.

2.4. THEOREM. Let A be any 2-category over U.
(I) Let R = (M, B) be any pair of categories which has property (S)
or (r8). Then the category B is isomorphic to the category M Pr of all monad

2 — Collogquium Mathematicum XLIIL1
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Dpg-algebras in the category M. This isomorphism i8 given by the comparison
Junctor defined by the adjunction Xy from Theorem 2.3 (I). :
(IT) We have the tsomorphisms

(a) Alm(4) ~ Mon, (4)?,

(b) Alm(A4)(x) ~ Mon,(4)(x)"* for x e I, (4),
(ra) 9-Alm (4) ~ r-Mon, (A)D"

(rb) r-Almn(4)(x) =~ r-Mon, (4)(x)°™  for x er-I',(4),

which are given by the comparison functors defined by the adjunctions (a),
(b), (ra) and (rb) from Theorem 2.3 (II).

Proof. Consider the comparison functor K: B — MPE Jefined by
the adjunction 2 and assume that B has property (8). Then

K(a) = {Dg, Lga, LR£::“> = (Dg, (f, T), ((X7 X', a), (X, T)))?
where @ = (T, f, a), and
LR‘E};a = {(X7 X', a), (X', T)): DR(f’ T) = (Tfs T) _>(f7 T)

is a morphism in M. Moreover, K@ = Lz on morphisms.
Now we will define a functor G: M"F - B. For this let b*

= {Dg,b,Q)> be any monad Djy-algebra in M. Then b = (f,T), and
Q= ((m’ m', @), (m', V")): (f, T) - (f, T)

is a morphisn in M such that
Qnpb=b, Q DgQ =Q-LpepHpb in M,
From the first equality we obtain

((’my m'y 9 V 9f), (m', 'P')) = ((X7 X', f), (X’ T))’
and thus
m=2X, m=X') ¢ =T and ¢V nf=9nf=f

where X = domf and X’ = codomf. By the second equality we have

((Xy X', 9), (X', T))((Xa X', To), (X', T))

= ((X’ X', 9), (X7, T))((X7 X', uf), (X', T))\’

and thus ¢V Tg =9 V pf, ie. ¢-Tp = ¢-uf. Hence Gb* = (T, f, p)
is, by (m,), a monad algebra in A and, by (8;) (a), it is an object in B.

Consider any DR-algebra morphism ¢ = ((n,n, y), (n', ")) in M

from any Djp-algebra b* = (Dg, b, Q> to Dpy-algebra b] = <DR, by, Q>
in M. Then ¢-Q = @, -Dgrq. But, by the above,

b=(f,T), Q=((X7X’7¢)7(X’;T))r
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where X = domf and X' = codomf = domT,

b, = (f"T’)y @, = ((Y7 Y'y ?'), (x’, T’))’

where Y = domf’' and Y’ = codomf’ = domZ’, and thus the last equality
gives _ |
(n, ',y V @), ', 9) = ((m,n', ¢ V (v T 2)s 0", ),

ie.yVo=¢'V (v T 7). Hence
yVe=¢V(Tyyf)=¢n(T'yvf) =¢'nT'yy'f=(V y)vS,
and thus Gq = ((», n, p), (n, ¥')) is, by (q,,), 2 monad algebra homomor-
phism in 4 from @b* to @b] which, by (S;) (b), belongs to the category B.
Moreover, G preserves the composition and GK = 15, KG = 1,,. Hence

the functor K is an isomorphism. The proof for the pair with prop-
erty (rS) is obtained in an analogical way. Part (II) follows from (I).

2,5. Examples. Let A = 2-CAT(U). The categories Alm(A4)(x)
and Mon, (4)(x) with » = (1, X') will be denoted by Alm(X’) and
Mon, (X'), respectively.

Example 1 (the category of all group actions). Let X’ = Set(U).
Each group @ in X’ defines a monad

T(@) = <X, T(@), ng) #g>

such that T(G)(f) = @ xf, ng(f)(e) = {u, >, u being the unit of @, and
ta(f) ((g, (g', e))) = (gq’, €¢). The G-group action a: @G Xf — f on the set f
is exactly the monad T (@)-structure on f and it defines the monad T'(G)-
-algebra {(T'(@), f, a>. The monad algebra homomorphism in Alm(X’) of
the form

((17 X' 9), (1, 'P)): T(@),fya) > <T(G), [ a),

where G and G’ are groups, can be regarded as the group action morphism,
since y: G - @' is a group morphism and ¢: f —f' is a set morphism
with ¢(ge) = w(g)p(e) for g € @ and e € f. Let us denote by Alag and Mag
the full subcategories of Alm(X’) and Mon, (X') defined by all objects
T @), f,a> and {f, T(@)), respectively, where @ and f are any groups
and sets. The pair R = (Mag, Alag) has property (S), and thus, by Theo-
rem 2.4, we obtain

2.5.1. THEOREM. The comparison functor K: Alag — MagDR defined
by the adjunction Xy with R == (Mag, Alag) i8 an isomorphism.

Remark. The consideration of Example 1 also holds if instead of
groups and of X’ == Set we take the monoids and monoidal category.

Example 2 (the category of all modules). Let X’ = Ab be the cate-
gory of all Abelian groups. Every ring P defines a monad of X’ of the
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form
T(P) = <X', T(P), nps up),

where T(P)(G) = P®G is the tensor produet, 7,(G)lg) =1®,, and
#p(@)(P1, (P2, 9))) = (P1Ps, 9). A monad T(P)-algcbra <T(P), &, a> in the
category Ab is precisely a left P-module. The 1.0nad algebra homomor-
Phism in Alm(X’), which is of the form ((1, X', ¢), (1, y)) from <T'(P), G, a)
to <T'(P'),@, a’), can be regarded as a ring module morphism, since
y: P —» P’ and ¢: G — @' are ring and set morphisms, respectively, with
@(pg) = w(p)o(g) for all p € P and ¢ € G. Denote by Mod and Mr the full
subcategories of Alm(X‘) and Mon, (X’) defined by all objects <T'(P), G, a)
and <G, T(P)>, respectively, where P and G are any ring and Abelian
group. The pair R = (Mr, Mod) has property (S).

2.5.2. THEOREM. The comparison functor K: Mod — Mr"® defined by
the adjunction Xp with B = {Mr, Mod) ¢s an isomorphism.

Example 3 (functor automata). Let X' be any U-category. The
notion of a monad in the category e(X’) of all functors from X’ to X' is
equivalent to the notion of a monoid in ¢(X’). Thus the monad algebras
in ¢(X’) can be regarded as the automata in this category and Alm (e(X ")
is the category of functor automata in X’'. Moreover, the pair B =
= (Mon,(e(X")), Alm(e(X’))> has property (S).

2.5.3. THEOREM. The comparison functor

K: Alm(e(X’)) — Mon,(e(X"))°?

defined by the adjunction Zg with B = (Mon,(e(X’)), Alm (¢(X’))) is an
2somorphism.

3. R-AUTOMATA

Let A be any 2-category over U and let R = (M, B) be any pair of
categories which has property (S) under (8,)-(8,). For fixed objects I*
and Y in M we define the category R(I*, Y) of all R-automata with input
state I* and output state ¥. The objects of this category are all R-auto-
mata M = {a, h, 7, §), where a = (f,T) is any object in M, {T,f,h)
= (@, h) is an object in B, 7: I* —~@a, f: @ - Y are morphisms in M,
and T =<X',T, n,p) is a monad with X' = codomf = domT in A.
Each R-automaton It defines in M the diagram

(Tf, T) —> (f, T) —> ¥,

1*
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where h! = Lgep<a, h) = ((X. X', h), (X', T')) is the next state morphism,
7 and B are the initial and output morphisms of 9, respectively.

Given R-automata 9 and M’, an R-simulation ¢: M — M’ is a mor-
phism o: T, f,h> —<T',f’, k') in B such that the diagram

(T
/ \ﬂ‘y

I* Lpe.

.\>\$ /4(1

(f T

commutes in M. The morphisms of the category R(I*, Y) are the R-simu-
lations.

Now we define the external behaviour of R-automaton I =
={f,T), h, 7, ), where T = (X', T, 5, u> and f: X — X' are a monad
and a 1-cell in A, respectively. By Theorem 2.3, there is an R-free algebra
in B over every object in M. Let (I*, I, Ii, u®), where I* = (i, I) and
I ={(J,1,%° u°), be an R-free monad algebra in B over I*. Hence the
initial morphism z: I* — (f, T) has the unique extension morphism z*
from I, Ii, p°i) to {T,f, h) in B such that the diagram

. 0" . 0.
(I%, I) - > (Li, I S > G, D=1
1)%," IIRLl:l" [)Rr Lnl‘ d
(T, T) ——— (Tf, T) — ) > Y

commutes in M. If L,7* is an epimorphism in M, then I is said to be
reachable. The morphism BLgt*: (Ii,I) - Y in M is denoted by gg
and it is called the external behaviour of M. Conversely, an R-realization
of a morphism g: (I7,I) - Y in M is any R-automaton It whose behaviour
is g, i.e. g, = ¢. A realization M is minimal if M is reachable and for any
other reachable R-realization i’ there is an R-simulation o': ' — M.
We ask under what condition minimal R-realizations exist, i.c. under
what condition the category E,, which is a full subcategory of R(I*, Y)
determined by all reachable R-realizations of g, has the terminal object?
(P 1164). The category E, always has an initial object. The general open
problem is determining all pairs E for which this problem is solved.
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