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A natural non-Archimedean analogue of the notion of adjoint trans-
formation on a complex Hilbert space is the following:

Definition. Let A: X — Y be a linear transformation between
non-Archimedean normed linear spaces. A linear transformation B:
Y, - X defined on a subspace Y, of Y containing the range of A is called
an adjoint of A if, for x € X and y € Y,, Ax |y implies « | By. The set
of all adjoints of A defined on Y, will be denoted by (4: X — Y,)’, and A’
will denote (A: X — Y)'.

Very loosely speaking, our main result is that A has an adjoint iff
there is a restriction A |,, of A such that A|,, has the same norm as 4,
A (M) is “almost” equal to Y,, and A |, is “almost” an isometry. If these
conditions are fulfilled, (4: X — Y,)’ consists of those operators that are
“almost” inverses of A |,,.

Some notation from [1] and [2], to which the reader is referred for
background material, is recalled below.

X and Y will denote non-Archimedean normed linear spaces over
the complete non-trivially valued field F. In case F has discrete valuation,
the symbol = will be reserved for a prime element of the ring of integers
of F. An asterisk will denote “non-zero elements of”; e.g., X* = X — {0}.

The space of bounded linear transformations from X to Y will be
denoted by L(X, Y). If A is a linear transformation on X, then R(A4)
= {Ax|x € X}. The cardinality of the collection of cosets {|iz| |F*| |z e X*}
will be denoted by e(X).

The relation w»non | » (v i8 not orthogonal to ») is an equivalence
relation on X*, and # denotes the equivalence class of . The conventions
Onon | z and z non | 0 for all x € X are adopted. X is singular if w non | v
for all u, v € X*, and X is an émmediate extension of its subspace M if, for all
ze X*,znon | M (i.e.,znon | m for some m € M*). A linear transformation
A: X > Y i8 orthogonal if w | v implies Au | Av. (According to [1], an
orthogonal transformation 4 on a non-singular space X is “almost an
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isometry”, in the sense that ||Az||/|z|, # € X*, is almost constant. The
assumption in [1] that X is complete is not essential.) Define .4 (X)
to be the set

{A e L(X, X)*|Az non | z for all z e X*}.

We assume from this point on that A is a non-zero linear transfor-
mation from X to Y (possibly ¥ = X), ¥, is a subspace of Y containing
R(A), and X and Y, are non-singular.

One observes immediately that the notion of adjoint is not vacuous:
A 'e A’ if A is biorthogonal, i.e., if A is bijective and A and A~! are
orthogonal; and (¢: M - X) e (E: X - M)’ if F is an orthogonal projec-
tion on a non-singular subspace M, and ¢ is the injection mapping. Adjoints,
when they exist, are never unique, since a non-zero scalar multiple of
an adjoint is also an adjoint; more generally,

Be(d: X -> Y,) implies /' (X)BA (Y,) c(4: X > Y,)
(see Lemma 1 below). Relations such as
(¢d) = A’ for acF*
and
(A4: X - Y)Y(B: Y—>Z) c (BA: X - Z)
are obvious.

LeEMMA 1. Let D: X — Y be an orthogonal transformation. If F has
non-discrete valuation or e(X) = e(Y) = 1, then | Dz| = ||D| ||lz||' for all
zelX.

For the proof, apply Theorem 1 of [1].

LeEMMA 2. Each operator in 4 (X) i8 a scalar multiple of an isometry.

Proof. First it is established that an operator D e A4'(X) is 1-1.
Suppose that Du — 0 for u %« 0. If | u, then, choosing a € F* such that
llz|| < |lau|l, we obtain

Dr = D(x+au) € uyU {0}.

Since also Dz e xU {0}, we have Dz = 0. If v € , the above argument
with z replaced by v and u replaced by z implies Dv = 0. Thus D = 0,
contradicting the choice of D. Since D is 1-1 and » non j v i8 an equiv-
alence relation on X*, D is orthogonal. The conclusion of the lemma is now
& simple consequence of Theorem 1 from [1] (cf. the proof of Lemma 8.2
in. [2]).

LEmMMA 3. If (A: X — Y,) is not empty, then Y, i an immediate
extension of R(A).

Proof. Suppose that Y, is not an immediate extension of R(A)
and that B: Y, — X is a linear transformation. Choose a vector y € Y,
which is orthogonal to R(A). Let + = By if ABy # 0; let * = By +p,
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where Ap # 0 and |p|| < |By|, if ABy = 0 and By # 0; and let = be
any vector such that Az = 0 if By = 0. Then Az | y and x non | By,
so that B is not an adjoint of A.

LEMMA 4. If Be(A: X - Y,), then B is 1-1, A[(By) ] c y for all
yeY, and AB e ¥ (Y,).

Proof. Suppose that Be(4: X — Y,)’. Since the non-singular
space Y, is an immediate extension of R(A4), R(A) is non-singular. If
By = 0, then Az non | y for all Ax € R(A). Since R(A) is non-singular,
this implies that y = 0 and B is 1-1.

For ally € Y, and z € (By) , Az non | y. Equivalently, Az € yU {0}.
The assumption Ax = 0 leads to a contradiction: choose y, € Y, such
that y, |y, choose z, such that Ax, € y, and |lz,|| < |z, and let v = -+ z,.
Then Az = 0 implies A | y but » non | By, contradicting the hypothesis
that B is adjoint to A. It now follows that [4 (By) ]< ¥, and this readily
implies that AB e 4 (Y,).

THEOREM 1. Suppose that F has mon-discrete valuation or e(X) =
=e(Yy)=1. Then Be (A: X - Y,) iff B = (A |5) " 'T, where

(1) M i3 a subspace of X such that A |y (is 1-1 and) has an orthogonal
tnverse (defined on A (M));

2) Tenx(Y,) and R(T) = A(M); and

(3) 14 1yll = II4].

Proof. Assume that Be(4d: X - Y,). Let M = R(B) and let
T = AB. Then T e #'(Y,) by Lemma 4, and R(T) = A(M). Also, A|,
is 1-1, since T is 1-1. The orthogonality of (4 |,,)~' is established as follows.
If v 1v, where u,v € A(M), then

A(Aly) () LT (v) and (4]y) 7" (w) LBT ' (v) = (Apn)7" (v).

Next we prove that condition (3) is satisfied if F has discrete valuation
and ¢(X) = e(Y,) = 1; the proof for the non-discrete case is similar.
Let « be any element of X such that Az # 0. Choose an element y € Y,
such that Az | y and, applying Lemma 1 to B, choose a € F such that

o — ol
[zl 1Bl Iyl
Then (by Lemmas 2 and 4, and Lemma 1.3 from [1])
[l |l
la Byl = lalIBlllyl = —,
' |72

aBy+ze(By)", aABy+Azey,

4 | aall il

lAz|| < lleABy| = |a||Tlllyll = 1

y Azl << |4 [all ] -
Therefore |4 |l = ||4].
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Now assume that B = (4 |;,)"'T, where M and T satisfy conditions (1)
through (3), and let Ax | y. Ifx | M,then2 | By.Ifxnon | M,z = m+p,
where m € M and |p| < ||m|. Hence

lAm| = [[A]llm] > [|4]lpll = I|4pl,
which implies
Ammnon | (Am+ Ap) = Ax.
Therefore

Ax Ly = Am 1y = Am 1Ty =>m 1 (A|y) Ty =z 1 (A|y) ' Ty.

Examination of the proof of Theorem 1 shows that, without any
restrictive hypothesis concerniny ¥, X or Y, each Be(4: X - Y,) is
of the form (A4 |,,)"'T, where M and T satisfy conditions (1) and (2) and,
if F is discretely valued, then

4 [all = bl A1l

COROLLARY 1. Adjoints are orthogonal tramsformations.
COROLLARY 2. Unbounded transformations have mo adjoints.

COROLLARY 3. Assume that A € L(X, X)*, ¢(X) = 1 and X is finite-
dimensional and orthogonalizable. Then A’ is non-empty iff A is a non-zero
scalar multiple of an isometry, and in this case

= {a(A"'+D)|ac F*, |D| < A7}

Proof. If A’ is non-empty, 4 = A, is a non-zero scalar multiple
of an isometry by Corollary 1.3 from [1]. The description of A’ follows
from Theorem 1 and Lemma 8.5 in [2].

THEOREM 2. If X is complete and B e (A: X > R(A))’, then the
extension by continuity of B to R(A) is the unique extension of B belonging
to(d: X —>R(A)) .

THEOREM 3. If X 18 spherically complete, Y is an immediale exten-
sion of Y, and By e (A: X — Y,)’ satisfies |Byyll = ||Bylllly|l for all y € Y,,

then there exists an extension B € A’ of B, which sansfws Byl = I|BIlllyll
forally e Y.

For the proof assume that B is any extension of B, to Y satisfying
IBll = Byl

COROLLARY 4. Suppose that X is spherically complete, Y is an imme-

didte extension of Y, and either F has non-discrete valuation or e(X) =
e(Y) =1. Then each Bye (A: X — Y,) has an extension Be A’'.

Example. Let F' be discretely valued, let X have an orthonormal
base {z,, x,}, and let Y have an orthogonal base {y,, y,} with

1 = |lyyll > llyall > |7
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Let A be the linear transformation ecarrying z; into y; (i =1, 2),
and let B = A~'. Then B e A’; thus adjoints do not necessarily have
orthogonal inverses. Also, B’ = @, showing that B € A’ does not imply
A e B’ and that A'B’ # (BA)'.
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