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ON SOME PROPERTIES OF THE FAMILY OF INDEPENDENT
SETS IN ABSTRACT ALGEBRAS

BY
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1. Introduction. For every family R of subsets of a fixed set A we
put
v(R) = sup{|E|: E<R}

(where |E| denotes the cardinality of E), and we say that R has property
(w) if every set belonging to R is finite and, simultaneously, »(R) = §,.

Moreover, we say that R has a rank, if 1° every set belonging to R
is contained in a maximal one and 2° all maximal sets in R have the same
cardinality. Of course, this cardinality is equal to »(R); it is then called
the rank of R. Clearly

(i) No family with a rank has property (o).

We adopt here the terminology and notation of [1] and [7] concerning
closure operators and those of [6] and [8] concerning abstract algebras.
E.g. we put «(A) = »(Ind(A)) (where Ind(A) denotes the family of all sets
independent in ). We say that an algebra U has a rank if the family
Ind(UA) has a rank. Analogously U is said to have property (o) if the family
Ind(UA) has this property.

The first example of an algebra with property (o) was given by
C. Ryll-Nardzewski. Later J. Anusiak remarked that an application
of a Swierczkowski theorem [9] easily gives another algebra with this
property.

The purpose of this paper is to give some examples, to prove some
theorems and to raise some questions concerning the notions of rank
and property (w). And so, in Sections 2 and 3, we connect these notions
with some other properties of closure spaces and general agebras, in
Sections 4 and 5 we give some examples of Boolean algebras and semi-
groups with property (o) and in Section 6 we consider rank and property
(w) in Abelian groups (2).

() We thank Professor A. Hulanicki for his valuable advices, concerning this
section.
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It seems (but we do not know examples) that there exist groups,
rings and separable variables algebras (see [3], p. 207) with property (w)
(P 665). We do not know equational classes of groups (except Abelian)
in which every free group has a rank (P 666).

Each of the Sections 4, 5 and 6 can be read directly after Introdu-
ction.

2. Closure spaces. Let (X, C) be a closure space, or, in other terms,
a set X with a closure operator C, i.e. an extensive, monotone and idem-
potent function C:2% —2%. Let us recall that C is said to have the
exchange property if, whenever b ¢C(E) and beC(E v {a}), then aeC(E v {b})
(see [1], p. 209, and [7], p. 23). If a¢C(I\{a}) for every acl, we say
that I is C-independent and we write IeInd(C).

If C has the exchange property, then every minimal set of C-gener-
ators is a maximal C-independent set and conversely. Hence (see e.g.
[1], p. 210, proposition (0)):

(i) If a closure operator C has a finite character and the exchange
property, then the family Ind(C) has a rank, and, consequenily (in view
of 1(i)), has not property (o).

Nevertheless,

(ii) There exists a closure operator C, with a finite character such that
Ind(C,) has property (o).

Namely, let us consider a sequence X, of disjoint sets with |X,| =n,

and put
X=UZX,, J= 2%,

0. (B) E it Eed,
Ul x it B=25\J.

It is easy to check that C, is a closure operator in X with a finite
character and that

Ind(C,) =J o {E:Ec X and |E| = 2}.

Of course this family has property () and proposition (ii) is thus
proved.

3. General algebras. The purpose of this section is to connect the
rank and the property (w) of abstract algebras on one hand and with
different known properties of such algebras — on the other.

Let us first recall that every algebra U = (A ; F) induces a closure
operator C in A, namely for every £ = A we take for C(E) the subalgebra
of A generated by E. We say that U is a v}-algebra, if Ind(N) = Ind(C),
and that U is a v*-algebra, if, moreover, the operator ¢ has the exchange
property (cf. [11]). It follows from 2 (i) that
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(i) No v*-algebra has property (w)
(which can be deduced also from (iii) or (iv), because every v*-alge-
bra satisfies hypotheses of these propositions). We do not know whether
there exist vi-algebras with this property (P 667).

Swierczkowski proved ([10], p. 751, Theorem 3) that

(s) If in an algebra U there is a finite set G of generators and an inde-
pendent set I with |G| < |I|, then there is in W an infinite independent set,

It follows that

(ii) No finitely generated algebra has property (w),
whence

(iil) No algebra with a base has property (w).

However, there are algebras with finite bases without rank, e.g. every
algebra having bases with different numbers of elements (see [6], p. 59).
We shall now prove that

(iv) If every independent set in an algebra A can be extended to a bases
then Ind(A) has a rank.

Since every base is a maximal independent set, and since every inde-
pendent set is contained in a maximal one, the hypothesis (iv) is equiva-
lent to the following condition: every maximal independent set is a base.

Thus we have only to prove that all bases have the same cardinality.
If not, then all bases are finite (see [6], p. 59) and we can apply theorem
(s). Consequently, there is in U an infinite independent set, and thus,
by hypothesis, an infinite base. So we obtain a contradiction and propo-
sition (iv) is proved.

(v) A finite algebra has a rank and a base if and only if every inde-
pendent set can be extended to a base.

Necessity. Let B denote a base of a given algebra A = (4; F).
Since A has a rank and B is a maximal independent set in 9, then, by
hypothesis, we have |B| = |M| for every maximal independent set M
in UA. Hence we also have |C(B)| = |C(M)| (see [6], p. 58, (iii)). Since
C(B) = A and A is finite, we obtain C(M) = 4 and, consequently, M
is a base of A. Thus every independent set is contained in a base.

Sufficiency follows from (iv) and from the fact that the empty
set is independent.

The hypothesis on the finiteness in proposition (v) is essential. Counter-
example: (N;*), where N = {0,1,2,...}Jand 2" = z+1.

We shall now prove that there is a connection between the notion
of rank and the condition of exchange of independent sets (EIS-condition,
see [3] and [8], p. 174).

(vi) If every subalgebra of a finite algebra U has a rank, then U satisfies
the condition EIS.
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Let Pu@Q,ReInd(A) and R < C(P). Since the subalgebra C(P)
has a rank, there exists, in view of (v), a base R, of the subalgebra C(P)
such that R < R,. The set R, is independent in A (see [3], p. 202, A2).
Thus (vi) follows from the “exchange theorem” ([6], p. 58, (ii)).

4. Lattices and Boolean algebras. In this section we shall prove that
(i) There exist Boolean algebras and distributive lattices with property (o).

Let A be an infinite denumerable set and K the family of all subsets
of A being finite or having finite complements. Let B be the lattice
(K; v, ~) and B’ the Boolean algebra (K; v, ~n,’).

Since B is a reduct of B’, all sets independent in B’ are indepen-
dent in B, and the sets dependent in B are dependent in B’. Thus
in order to show that both B and B’ have property (w) it suffices
to prove:

(«) for every n there exists in B’ an m-element independent set
and

(B) every infinite set in B is dependent.

Now («) follows immediately from the following statements: 1° for
every n the algebra B’ contains all subsets of a certain 2"-element set,
2° the number : in Boolean algebra 2°" is equal to n, and 3° the following
easily proved proposition:

(«*) if B is a Boolean algebra of sets and every subset ¥ of X belongs
to B, and if the set F is independent in Boolean algebra 2%, then F is
independent in B.

In order to prove (8) let us suppose that X = {X,, X,,...} is an
infinite independent set of elements of B. If the set X, is finite and its
power is k, then we have X;~n X, ~ ... n X, =0 for » >k, since in
view of the independence of X wehave X, ~n ... ~n X, # X, ~ ... ~n X, ;.
This gives a contradiction. In the case, where the complement of X,
is finite we apply an analogous argument replacing intersections
by unions. Proposition (8), and consequently, proposition (i) is thus
proved. ,

Since Boolean algebras satisfy the condition EIS (see [3]), we see
that EIS and (») are not contradictory.

Let us notice incidentally that in general (on account of proposition
4 (vi) of [5], p. 142) a Boolean algebra (X; v, ~,’) has the property
(w) if and only if the lattice (X; ~, v) has this property.

5. Abelian semigroups. We shall prove that

(1) There is an Abelian semigroup which has property (o).

Let S be an additive family of non-empty subsets of a fixed set X
such that X S, and let us suppose that there are in S some disjoint sets.
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For every E, FeS we put

EvF i{#E~F=0,
X it E~F #0.

EoF =

It is easy to see that S = (S;0) is an Abelian semigroup, and that
if f is an m-ary algebraic operation in S depending on every variable,
then

f(E,, ..., E,) = Eo...0E,.

The set X is the unique algebraic constant in S. Hence

(*) A family E,, ..., E,eS is an independent set in S if and only if
the sets F; are disjoint and (J E; # X.
i

For any family P of sets let us denote by P the family of all sub-
families of P consisting of disjoint sets.

We shall prove that

(3) There exists an additive family P of non-void subsets of a set X
such that X <P and that P has property (w).

Let X denote the set of all infinite sequences (a,)> of natural numbers
such that a, < n», having only finitely many elements different from
zero.

Next, let X;; = {(and>eX :a; = j} and P, = {X;;:j <}. The sets
X1y Xnay --.y Xanare mutually disjoint and, since n %= m implies X x ~ X
# 0 for every X,x, XmmeP,, there exists no infinite family of disjoint
sets X;;eP,, i.e. the family I;0 satisfies (w). Finally, let us consider the

family P consisting of all finite unions of sets X;;eP,. Of course P also
satisfies (w) and X eP. Proposition (i) is thus proved.
Propositions (*) and (i) give directly (i).

6. Abelian groups. We consider here three notions of independence
in Abelian groups. A subset I of an Abelian group G is called linearly
independent (in symbols I e Ind,G) if 1° 0¢I and 2° for every a,,..., ayel
and every integers k,, ..., k, the relation

(%) kya,+...+knay = 0
implies %kja; = 0 for j =1,2,...,n (see e.g. Fuchs [2], p. 29). If (%)
implies k; = 0 for j = 1,...,n, we say that I is linearly strongly inde-

pendent (in symbols IeInd;(G)). Moreover, G can be regarded as an ab-
stract algebra ® = (G,z+y, —z), and IeInd(G) if it is independent
in the general algebraic semse (i.e. in the sense of [6] and [8]) in ®. It is
easy to see that for every Abelian group G

Ind,(G) c Ind(Q) = Ind,(G).

Colloquium Mathematicum XX.2 13
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More precisely: I eInd,(G) if and only if I eInd;(@) and every element
of I is of infinite order, while I <Ind(@) if and only if IeInd;(@G) and
every element of I is of the maximal order (i.e. 0(a) > 0(b) for every
ael, be@).

It is well known (see e.g. Fuchs [2], p. 31, Th. 8.2) that

(i) For every Abelian group G the family Indy(G) has a rank (denoted
usually by r,(G)) and consequently fails to have property (o).

On the other hand,

(i) There are Abelian groups (e.g. G = Z,XZ;) without rank of
Ind)(@).

(iii) In an Abelian group G the family Ind;(G) does mot have prop-
erty (o).

Proof. If for every n there exists in G an n-element linearly inde-
pendent set consisting of elements of infinite order, then the theorem.
follows from (i).

Therefore, we can restrict our consideration to the maximal periodic
subgroup H < G and suppose »(Ind;H) = co. Let H = Y H,, be a de-
composition of H into primary p;-groups Hy, . If there are infinitely many
summands H,, in the decomposition, then 7,(G) = oo and the theorem
follows. If not, the theorem is an immediate consequence of the formula:

v(Indy(Hy, x H,) = »(Indy(H,,))+»(Ind;(Hy,)).

Now we pass to the family Ind(G@) and our aim is to prove that.
it has a rank and, consequently, it does not have property (w).
It is sufficient to show that

(v) If G is a bounded group, then the family Ind(@) has a rank.

Let I be a maximal subset of linearly independent elements of maximal
order in @. Since @ is a bounded group, there are only finitely many direct:
summands in the decomposition

G =Hy+...+ Hy,

where p; # p; for ¢ # j and Hp, is a p;-group. Since every element a of I
has maximal order, ¢ = a, +...+ ap,, Where apjer and O has maximal
order in Hy, . It is easy to verify that Ip, = {a, : ael} is linearly inde-
pendent in’ H In fact, kla,, +...+k, a,, — 0 and k,a,, #0 1mp11es
Ak,a'+.. +Ak a" = 0, where A = maximal order of Z Hpia,nd Ak;a® #0.

i#7
Let p; be the maximal order of Hp, . Then the set pi I is linearly
independent and, of course, |p;~ p,| - lI,,l Since p,"H,,j 1s a linear

space over Z,,’., we have

\Lp;| = 197~ Ip;| < dimpj~" Hp,.
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On the other hand, since I is maximal, we have, for some p;, |I,,f|
= |Pf_11p,| = dimp,-"alj. Thus

. . -1
1I| = mindimp;~" Hy,,
7

which completes the proof of (v).
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