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GROUPS ACTING ON COVERING SPACES

BY

T. JAKUBOWSKI (WROCLAW)

1. Introduction. In [1] Bredon proved that if a connected Lie group @
acts effectively on a connected, locally connected and pathwise connected
space X, then the unique covering group @ of @ acts effectively on some
covering space X of X.

In this paper we consider the more general problem:

Given a G-space X and a covering group & of the topological group &,
under what (necessary and sufficient) conditions does @ act on gome covering
space X of X1

The answer is provided for X connected, locally pathwise connected
and locally 1-connected, and this yields a generalization of Bredon’s
theorem to topological groups. (Bredon’s remark that his theorem remains
true for a topological group having an open component of the unit is
invalid: the group Z,; acts offectively on 8' = {z € C: |2| =1} by the
rotations as the 3-rd roots of the unit but no covering group of Z; acts
effectively on the universal covering space R' of §).

2. Actions of pathgroup. Denote by A the class of all connected,
locally pathwise connected and locally 1-connected topological spaces.

For X e ¥, let P(X, x,) be the space of all paths starting at the point
@, € X. This space provided with compact-open topology is a total space
of the fibration (P(X,#,), ax, X), where ax: P(X, z,) - X is a contin-
uous map given by ax(w) = w(1) (see [2]).

Every continuous map f: X — Y induces the unique continuous
map P(f): P(X, ) > P(Y, f(2,)) such that the diagram

P(f).
P(X,z) —> P(ny(wo))
1 ax oy
(1) l f l
X ——> Y
commutes.

If @ is a topological group in the class U, then the group rule in ¢
induces a continuous rule in the space P(@) of all paths starting at the

6 — Collogquium Mathematicum XLIII.1



82 ' _ ' . T. JAKUBOWSKI

unit ¢ € G. The space P(@) with this rule forms a topological group and ag
is a continuous homomorphism.

Let a topological group G € A act on the space X € U (for simplicity,
we consider only left actions) and let v: G x X — X be this action. If »
is a free action (i.e., if »(g, %) = &, then g =¢) and <v,((g,),2) =g is
a continuous map of the space X* = |(v(g,%),%): v€X and geG}
c X x X onto G, then » is a principal action.

ProPOSITION 1. If X 48 a left G-space, then P(X, x,) i8 a left P(G)-space
and the diagram

P(@) xP(X, 7)) —> P(X,,)

2) agxax l la:x

GxX > X

commutes. MM oreover,
(i) ¢f v 78 a principal action, then so is P(v),
(ii) ¢f » is an effective action, then so i8 P(»).
Proof. Commutativity of diagram (2) follows from that of (1), since

P(G x X, (e, m,)) = P(@) XP(X, a,).
The equations
P()(y1, P(»)(72; @) = P(») (1175, ©) and  P()(¢, 0) = o,

where y,, y, e P(#), o € P(X, 2,), and € is a constant path at e, follow
from that for ».

Now let » be a principal action. We show first that P(») is a free
action. Note that if P(y)(y, w) = », then »(y(t), o(t)) = w(t) for all
t [0, 1]. Since & acts freely on X by assumption, y(f) = ¢ for all ¢. Hence
y = é. Since the action v is principal, we have the continuous map '

7,: X* >@Q.

Thus P(X*, (,, %)) = (P(X, @))*, and so the map p,, coincides
with the continuous map induced by r,. Hence P(») is & principal action.

Finally, let » be an effective action. Assume that P(»)(y, w) = @
for all w € P(X, x,). Fix the point ¢, € (0, 1]. Then for every « € X there
exists w, € P(X, x,) such that w,(,) = «. Hence

x = w,(ty) =P (y, w,)(t) = ”(7’(”0)1 wz(to)) = ”(Y(to)y a’)
for all x € X.

Since v is an effective action, we have y(¢,) = e. Thus y(¢,) = e for all
t,€[0,1] and P(») is an effective action.
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In the proofs of next theorems we shall use the following

LEMMA 1. Let o,, 03 X XX and g1, 0, ¥ XY be equivalence re-
lations on topological spaces X and Y, respectively. Let f: X — Y be a con-
tinuous map and let

(i) o1 < 02 and ¢, < gy,

(i) (f xf)(e) = ¢ for i =1,2.

Then there exist unique continuous maps f, and f, such that the diagram

X ! >y
(3) > X e, L i \; Y /e,
X /e, NG, 7% /
commutes.

The proof is obvious.

PROPOSITION 2. Let X, be the covering space of X determined by a sub-
group m of 7, (X, z,). If »: G XX - X 48 & continuous action of G on X,
then there exists only one continuous action P,: P(G) x X, - X, such that
the diagram

P(@) xP(X, x,) ki > P(X, z,)
W‘ Y
(4) 1xa% GxX v ch N X
% /
\ P, \
P@Q)x X, > X
commutes.

Proof. The homotopy class of a loop w will be denoted by [w]. Define
two relations, ¢ on P(G) X P(X, z,) and ¢’ on P(X, ,), as follows:

(y, ®) ¢ (¥, ®') if and only if w(1) = o’(1), [wow' '] en and y = y';

wp'»’ if and only if w(l) = 0’'(1) and [wow' '] em.

We show that if (y,, ®,) o (¥, @), then

(P(”)(J’u wl))e' (P(")(?’zr wz))'
If (71, 1) e(yey ws), then

Y1 =72y (1) = wy(1) and [w,00;']emn.
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Thus
P(v)(y2y wp)(1) = ”(72(1); wz(l)) = "(7’1(1)’ wl(l)) = P(v)(y1, @,)(1).
To show that [P(v)(y1, @;)0(P(»)(ysy ®s)) 7] €%, We put

(o = [od2n i 0<i<y,
P =\ if 1<1<1

for i =1, 2, where = w,(1) = w,(1), and

'(t)—-{“ if 0<<t<},
YW S pet-1) i p<t<1.

Note that w;, w; are homotopic rel {0, 1} for ¢ = 1,2, and y, y' are
homotopic rel {0, 1}. Hence

P(v)(y, @)0 (P(»)(y, @o))™"  and  P(»)(y', ;)0 (P(»)(y’, w;))™!
are homotopic as loops. For 0 <¢< } we have
P@) (', @) (1) = »(y' (1), 0;(t) = v(e, wyl?)) = w;(t) = oy(28),
and for $ <?< 1 we obtain
P()(¥'y ag)(t) = »(y'(2), wi(t)) = »(y(2t-1), 2).
If we denote by w the path »(y(?), =), then

P(y)(y'y &) = 000
and
P(»)(y'y o)o (P(») (', @)™ = (@10 w)o (w0 w)7*.
The map

h(t, v) = (0,0 @p)0(w,0 wo)—l (?),

where w,(1) = o((1—2)t), is a homotopy of the loops (w,0 w)o (w0 w)™*
and ,0w;!. Thus
[P(”)(V: wl)O(P(")(% wz))-l] = [(o,0w)o(w00)7'] = [w,00; '] e .
Since
P(@)x X, = (P(@) xP(X,z))le and X, =P(X,u)le,

P(») induces a continuous map P,: P(G) X X, - X which is an action.
Commutativity of diagram (4) follows from Lemma 1.

3. Groups acting on covering spaces. Let »: G XX — X be an action
of G on X and let p,: X, — X be a covering determined by a subgroup
n < 7, (X, z,). We will find all groups G covering the group G which are
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acting on X, in a way such that the diagram
GxX, — X,

(5) v |7
GxX —> X

commutes, i: @ — @ being a covering homomorphism and #: G x X, - X,
an action.

Let & = (v,)s (%), Where (v, )y: m,(G,€) - = (X, x,), be a homo-
morphism of fundamental groups induced by the map », (9) = »(g, %,)-
Denote by a3: P(G) - G; the canonical homomorphism.

LeMma 2. If P.: P(G)x X, — X, i8 the action induced by », then
P.(y,y) =y for all y ¢ X and all y € KeraZ.
Proof. Let o € P(X, «,) represent y € X, and let y € Kerof. Put
"(t) = y(2t) ifo<t<i},
Y= e if 1<t<1,
and
o' () = |70 O0<ti<i,
o(@2t-1) if }<t<].
The paths P(»)(y, o) and P(»)(y', ') are homotopic rel{0, 1}. For
0<t<4,

P(»)(y'y @) (1) = »(y'(3), @' (1)) = »(y(20), o) = v, (¥)(21),
and, for } <t<1,
P)(y', o) (1) =»(y'(1), o' (t) = 'v(e, w(2t—1)) = 0(2t-1).
Therefore, the path P(»)(y’, ') is a juxtaposition », (y)ow. Hence
[P(»)(y, w)ow™'] = [P()(¥', @)oo™] = [(v,(y)00)oo™|
= [7,,(1)] = () (YD € .
Thus the path P(»)(y, o) represents the point y. By diagram (4),
P (y,y) = Pro(1 Xox)(y, o) = axP()(y, w) =y.
COROLLARY 1. For every subgroup n' < & = (v,)3'(n) the covering
group G, of @ acts on X, tn a way such that diagram (5) commutes.
Proof. Since P,(y,z) =« for every y e Kera? and every z e X,,
then the factor group P(G)/KeraZ = @, acts on X . Let »_ be this action.

If a’ < &, then the group @, covers G5, and if h%: G, — @G, is a covering
homomorphism, then the mapping

v,0(h% x1): G, x X, - X,
is an action. Commutativity of diagram (5) follows from that of diagram (4).
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THEOREM 1. The covering group G of G acts on X, in a way such that
diagram (5) commutes if and only if @ = G, for some subgroup n’' < (v, o);’ (7).
Proof. Let G, act on X, in a way such that diagram (5) commutes.
Put ¥, (¢') = »(g’, @,). Since _
P,ov, =wv,0h and (¥, )y (7(Gx)) = 7 (X, @,),
we have ‘
(P2 () = (z)st (b (72(G2))) = (D20 () (ma(G)
< '(pn)# (nl-(xn” wn)) =T
Hence the condition »’ = (vxo);‘(ai) is heceSsa;ry. The sufficiency fol-
lows from Corollary 1. ' '

Note that, on some covering spaces X, of a G-space X; several cov-
ering groups of @ may act. If G5 acts on X, and n’  #%, then also the
covering group @, acts on X, . But if we consider only effective or principal
actions, then exactly one covering group G acts effectively or principally
on a covering space X,.

We start with the following

LEMMA 3. Let v: G x X — X be an effective action and let & = 7, (X, x,)
be any subgroup. If P,(y,y) =y for all y € X,, then y € Kera3 c P(Q).
Proof. By diagram (4) we have

Pa(Pal(y, ¥)) = v(ag(p), Paly)) = »(r(1), Pal¥)).

Assume that P,(y, y) = y for all y € X,; then »(y(1), p.(¥)) = p.(¥)-
Since @ acts effectively on X, (1) =.e. Let the path w € P(X, x,) repre-
sent y. Since

Y =P.(y,9) =Po(l XaX)(y, 0) = ax(P(»)(y, w)),

we have [P(v)(y, w)ow '] en. Let ’ and «’ be defined as in the proof
of Lemma 2. The paths P(»)(y, o) and P(v)(y’, ') are homotopic rel {0, 1}.
On the other hand,
. v,(7)(20) i 0<I< Y,
PO, a0 = fme %<t<f.
Thus
| P(»)(y', o')oo™ = (1, (y)ow)jow™
and
() (Y] = [, ()] = [(2, (V)0 )0 07| = [P(3) (¥, w')ow™"]
= [P()(y, @)oo ] e m.

Hence [y] € . Since @; = P(G)/Kerad, we have y € Keras.
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The following Corollary is a generalization of Bredon’s result from [1].

COROLLARY 2. If v: G X X — X i8 an effective action and = < =,(X, x,)
t8 any subgroup, them only the group Gz, where & = (v, )# (n), acts effec-
tively ‘on X, i3 a way such that dwgmm (5) commutes.

Proof. By Lemma 2 the kernel of ineffectiveness of the action
P,: P(GQ)x X, —> X, is KeraZ. Hence the group G5 = P(G)/Kerai acts
effectively on X, and the corollary follows from Theorem 1.

THEOREM 2. Let v: @ XX - X be a principal action and let
7z = (v, )# (), where m = (X, x,) 18 any subgroup. Then only the group
@G5 acts prmmpwlly on X, in a way such that diagram (5) commutes.

Proof. By Theorem 1, G; acts on X, and diagram (5) commutes.
We have to show that this action », is principal. We show first that »,
is a free action. Assume that »,(g, ¥,) = y, for some y, € X and g €G;.
Then

Pa(Yo) = Pa(?a(8, ¥0)) = »(hz(9); Pa(90)),

where hy: G 5@ isa covering homomorphism. Since » is a free action,
hi(g) = e

Let V be an open nelghbourhood of Yo such that p,p: 14 ->p,,(V)
is a homeomorphism and let U < V be an open neighbourhood of y, such
that »,(9, U) = V (such a U exists since », 1s a continuous action). For
y' € U we have

p,..r(vn(g,y ) = »(#3(9); Pupr(¥) = Payp(¥')

because hz(g) = e. Since p,,,y is a homeomorphlsm and »,(g, y ) eV, we
have w,(g,¥’') =9’ for all ¥’ € U..If w is a path starting at y,, then, by
the standard argument,-we have »,(g, @(t)) = w(t) for all ¢. Hence v,(g, y)
= y for all y € X,,. Since », is an effective action by Corollary 2, g = e.
Thus », is a free action.

Let

(P(X, 20))* = {(P(5)(y, @), 0): 7 € P(G), w e P(X, ay)}
and o .
o X* =|v(g,2),2); €@, v e X].

Define the following four relations:

(P(v)(r, ), @) oy (P(»)(y’, @), @’) if and only if w(l) = w’(1), (1)
=y’ (1), [woa'™], [P()(y, @)0(P() (¥, @')) "] e = and [yoy'™] e #;

(P(9)(7y @), 0) 03 (P()(¥', o), ') if and only if (1) = '(1) and
r(1) = y'(1);

y @1 7' if and only if (1) = »’(1) and [yoy *]e#;

y @ 7' if and only it y(1) = '(1).
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Then g, = g, and g; = ;. Let P(1): (P(X, #,))* - P(G) be a con-
tinuous map induced by z: X* — @. Since P(7)(P(7)(y, ®), 0) =y, We
have P(r) X P(7)(g;) < o; for © = 1, 2. And since coset-spaces of the re-
lations ¢, ¢,, o1, 0; are X3, X*, G5, G, respectively, there exists a unique
continuous map v, such that the diagram

(P(X, =,))* i > P(G)

a.» ~

X, "Z;'

°x*
\ l by
Py r P ; G

commutes. Observe. that

X‘

T,.((é, ¥), y) = ‘c’,,oax;‘(P(v)(y, w), w)
= a3P(7) (P(»)(7, ©), ®) = a3(y) = §,

where y and o represent ¢ and y, respectively. Thus », is a principal action.
The proof is complete.
Every principal action »: @ x X — X determines the prineipal G-bundle

Ev = (X) qu Xv)’

where X, is a coset-space of orbits and ¢, is a canonical map. The map g,
is open, since (g,)”'(q,(U)) = px(»"*(U)), where px is a projection of
G x X onto X.

Let X, be a covering space of X and let »,: Gy XX, > X, be the
induced prinecipal action. Consider the prinecipal G3;-bundle

£x = (X €y -Xv,,)

determined by »,. The subgroup Kerh; = G;, where hz: G; — G is a cov-
ering homomorphism, acts principally on the space X,. Denote by X7
the orbit-space of this action, and by ¢#: X, — X7 the canonical map.
The factor-group Gz/Kerh, = G acts freely on the orbit-space X#. It is
easy to see that this action is principal. Denote it by #,. The orbit-space
of the action G on X7 is the space X, . Thus we have the new principal
G-bundle

N = (Xii p;“:’ X'”)!

where p;,'?: X i - X v is a canonical map. Since Kerhy is a discrete subgroup
of G; and it is a totally discontinuous subgroup of the group G(X,|X)
of covering transformations, there cxists a covering map p*: X% -~ X
such that p, = p*q, (see [4], Part 2, § 6). Commutativity of the diagram
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-~ : ~
GxX* — X=

(6) ngP,;l l)tf

GxX — X

implies that there exists a unique continuous map p#=: X, — X, such
that
prropi = piog,.

The pair (p*, p»») forms a G-bundle mapping.

THEOREM 3. p== i3 & covering map.

Proof. Let G, denote the orbit of the point z € X. If y € X,, then

¢, (y) = G, for some z € X. Since p" is a covering map, there exists a neigh-

bourhood U c X of z such that (p¥)~'(U) is a union of disjoint open sets
{0}, and p? IU‘ U, - U is a homeomorphism for each t. For ' € U the
set (p#)~'(G,) is a union of disjoint orbits G , where z, € U, by diagram (6)
Thus p7 (U U;) is a union of disjoint open sets pi(U,). Hence p~a:

p3(U0,) - q,,( U) is a homeomorphism. Since ¢,(U) is an open neighbourhood
of y, p=n is a covering map.

THEOREM 4. The covering p== i8 proper (i.e., not a homeomorphism)
if and only if there exists a proper subgroup n, c =,(X, x,) such that (1’3,0)4;l (72,
= m,(@) and ® c =,.

Proof. Necessity. If p~= is a proper covering, then so is p*. Hence
7y = (p';")#(nl(xi', %) is a proper subgroup of x,(X,x,) and = c m,.
Since @ acts principally on sz we have (v,o);‘(nl) = 7, (@) by Theorem 2.

Sufficiency. (p?),(m (X7, 2%)) is an intersection of all subgroups
n, < m (X, 2,) for which = < n:, and (» )# () = = (@).
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