COLLOQUIUM MATHEMATICUM

VOL. XXXVI 1976 FASC, 2

ON A CONJECTURE OF NARKIEWICZ
ABOUT FUNCTIONS WITH NON-DECREASING NORMAL ORDER

BY

P.D.T.A. ELLIOTT (BOULDER, COLORADO)

An arithmetic function f(n) is said to have a non-decreasing normal
order g(n) if, for each ¢ > 0, those integers n for which the inequality

|f(n) —g(n)| = eg(n) >0

is satisfied have asymptotic density zero.
A well-known example is f(n) = w(n), the number of distinct prime
divisors of the integer n. In this case we may set

loglogn if n > 9,

n =
g(n) 0 if 1< n<<8.

This result was established by Hardy and Ramanujan [3]. We may
express it in the form “almost all integers » have about loglogn distinct
prime factors”.

In his paper [6] Narkiewicz made the following conjecture (P 923):

Assume that the function f(n) with a non-decreasing normal order
is of the form

f(n) = D' f(p) (p prime),
pin
where f(p) is non-negative, and increases with the prime argument p.
In particular, f(n) is strongly additive. Then for each fixed ¢ > 0 the
bound

f(p) = O((logp)'**)

holds for all primes p. He could establish this conjecture if the function
f(p)/logp were decreasing. In particular, he showed the result to be false
if ¢ is replaced by zero.

We shall here prove his conjecture to be correct.

Remarks. It proves possible to establish® a form of Narkiewicz’s
conjecture even if we do not assume that f(p) increases with p.
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It was shown by Birch [1] that the only multiplicative functions
which have non-decreasing normal orders are those of the form »°, where ¢ is
a constant.

Without loss of generality we may assume that g(n) = 0 holds for
every positive integer n. For example, we may replace f(n) and g(m)
by f(n)+ Alogn and ¢(n)+ Alogn, respectively, with a suitably chosen
constant A.

THEOREM. Let the additive function f(n) have a non-decreasing normal
order g(n). Then for each fixed ¢ > O there is a constant c(¢) such that for
all integers m = 2 the inequality

lg(n)] < ¢(e)(logn)'**

i8 satisfied. Moreover, if ¢ > 0 and x i8 sufficiently large, the bound |f(p)|
< D(logx)'** holds for every prime p not exceeding x save possibly for a set

of primes q which satisfy
1
Ste
< 1

Remark. In the statement of this theorem the function f(n) is only
assumed to be additive. The number ¢, is considered fixed, also the number
D, which depends upon ¢, and ¢; and « is to be large enough depending
upon ¢, and e&.

Deduction of Narkiewicz’s conjecture. Assume that f(p) is non-
-negative, and increases with p. Then, if p is sufficiently large, we can
find a real number z such that iz < p < z. We apply the Theorem with
g0 = 3log2, any fixed ¢. Since for x large (cf. [4], p. 351)

1 1 2 1
E' T:log(logw )+0(1 )>eo,
T ogx ogx
1 prime

there is a prime ! in the interval («, 22] for which the bound

()] < D(logl)***

is assured.
Hence
0 < f(p) < f(l) < D(loga?)'** < E(logp)'**

for 'a suitably chosen constant E.
This establishes Narkiewicz’s conjecture.

In order to prove the Theorem we need the following result of large-
-sieve type, a proof of which may be found in the author’s paper [2]. In
this, and in the sequel, fhe symbols p, ¢ and ! will denote rational prime
numbers.
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LEMMA 1. There is an absolute constant ¢, such that the imequality

P 2 ‘ 01-’02]%]2

PT n<r n<x nLr
pin

holds uniformly for all real x = 1, and for complex numbers &, (fn =1,2,
- [#])-
Remark. The notation p|n means that p divides n, p* does not.

LeEMMA 2. Let b, < b, < ... be a sequence of inlegers of asymptotic
density one. Let w and x be real numbers, w >3, 2 <z < w(logw)™. Let
&£ > 0 be fized. Then for each prime p not exceeding x, save possibly for a set

of primes q which satisfy

gsz

the equation b; = pb; (p1b;) is soluble with an integer b; in the range 1w < b;
< w, provided only that w exceeds a certain value w, which does not depend
upon .

Remark. The method of proof of this lemma has considerable flexi-
bility in application.

Proof. Let r, < r, < ... be those integers r in the interval }w <r
< w which are not members of the sequence b;. Let é be a positive number
which is to be chosen presently. '

We apply Lemma 1 with

1 if » = r; for some %,
a ——
" 0 otherwise.

Consider those primes ¢ in the range 2 < ¢< « (v <w) for which

the inequality
Iza,,—q" 2 anl < dwq™?

gin

fails. Aceording to Lemma 1 these primes may be estimated by
2 — < —CWw E 1.
éfw)2
a<z risw

Since the b; have density 1, for all sufficiently large values of w the
number of 7; not exceeding w is at most s2w. We choose 6 = (¢,¢)"? so that

Z_

gz
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We shall now show that for large enough w, and each remaining
prime p not exceeding z, the equation b; = pb; (p1d;) is soluble. In fact,
the number of b; which lie in the range 4w < b; < w and which are exactly
divisible by p is at least

w w w
1= 2, 125-—o o —4——(8+0) > —
w/2<m<w w/2<r;<w P b P P
plm plirg

provided that ¢ is sufficiently (absolutely) small, and w is sufficiently
large.
Thus there are at least w/5p integers p~'b, in the interval (w/2p, w/p].
This same interval contains

w 2w
1> rv. (1—2e3)4+0(1) > 7y
w/2p<by<w/p P P
members of the sequence of b;, once again assuming that w is sufficiently

large. Since the p~'b; and b; comprise between them more than 3w /5p
integers in an interval of length w/2p, we must have

P =0b;  (plby)
for some integer b; in the range 3w < b; < w. This is what we wished to

prove.

Proof of the Theorem. Define the function g(x) by linear inter-
polation, so that g(z) = g(n) if # has the integral value n (n > 1).

Let w and « be real numbers, w >3, 2 <z < wf/logw. In the fol-
lowing argument these may be thought of as being large.

We apply Lemma 2 with the b; chosen to be those integers » for
which the inequality |f(n) —g(n)| < eg(n) is satisfied (g(n) > 0, ¢ fixed,
0 < 4¢ < 1). Then from each equation of the form

1
b; = pb; (?w < b;<w, ptdy),

and the hypothesis that f(n) is additive, we deduce that
J(b) = f(p)+f(b;)

and
(1) g(b;)(1+6,¢) = f(p)+9(by)(1+ b,¢),

where |0, <1 (k =1, 2).
We may do this for each prime p not exceeding z, save possibly for
a set of primes ¢ which satisfy, say,

E_‘\eo

a<sT
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Here ¢, may be chosen arbitrarily small if w is chosen sufficiently
large.

We apply this argument with w = 2, and then w = «"?** in turn,
and find solutions of equation (1) with the same value of the prime p
for each prime p in the range 2"*~* < p < 2%, save possibly for a set of
primes ¢, which satisfy

1
- < 280.
U

Since

Z - ( . ) +0 ( L ) > 2
Ll2—togegllz g 1—2¢ logx o

Iprime
if we choose ¢, to be Be with a suitable constant B, we conclude that the
simultaneous solution of equation (1) for w = x, #**** and at least one
prime p in the range #"*~* < p < « is possible.
Let us denote the second solution by

(2)  g(b)(L+058) =F(p)+g(bs)(L+0,e) (32 < b, < 2'2°)

with [6,] <1 (k = 3, 4).
Eliminating f(p) from equations (1) and (2), and making use of the
fact that ¢(b,) is non-negative, we see that

: 1
(b < T {g(5) +9(5)}-

Since g(x) is non-decreasing (a property which we use here for the
first time in the proof of the Theorem),

1
g(-:—) <g(b) < +£{ (p)+g(w"“‘)}<2(1+£)g(w"2+’

1—¢

We can express this result more simply, by adjusting the value of ¢

to be sufficiently small, as
9(2) < (2+ Ke)g(a'**?)

for some constant K, for all > =z, > 2.

We apply this inequality iteratively:

9(@) < (2+Eefg(@™)  (k =1,2,...),

and choose the integer k¥ to be the largest one which is consistent with
the requirement that g2+t 5 2,. Hence

loglogx
log(2/(1 4 2¢))

9(@) < c2eXp( log(2 +Ke)) ¢, (loga)'+#,

9 — Colloquium Mathematicum XXXVI.2
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where

- 1 log {1 +(X +2)e+ ke
# = log(2/(1 1 2¢)) Og{ +('2“+ )8+ 8}

may be made arbitrarily small if ¢ is chosen near enough to zero.
This proves that

g(x) = 0((logw)l+") for any fixed & > 0.

From equation (1) we see that for most primes p (with a sufficiently
thin exceptional set)

IF(2)] < 29(b;) +2g(b) < 4g(2) = 0((10giv)1+'1),

This completes the proof of the Theorem, and so of Narkiewicz’s
conjecture.
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