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ON SUBSPACES OF LOCALLY CONVEX SPACES
WITH UNCONDITIONAL SCHAUDER BASES

BY
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It was shown by James ([7]; see also [12]) that if Y is a Banach space
with an unconditional basis, then

(a) if no subspace of Y is isomorphic to co,, then Y is weakly
sequentially complete;

(b) if no subspace of Y is isomorphic to I;, then every bounded subset
of Y is weakly sequentially precompact (i.e., every bounded sequence in Y has
a weak Cauchy subsequence).

Later, Bessaga and Pelczynski [1] proved that these results remain also
valid when Y is merely a closed subspace of a Banach space with an
unconditional basis.

The purpose of this note is to prove some analogues of the results of
Bessaga and Pelczynski for subspaces of locally convex spaces with
unconditional bases. For similar extensions of the original results of James,
see [9], [14], and [15] (cf. also the recent book of Jarchow [8]). We hope
that our proof of part (a) of the Theorem below may be of some interest also
in the case of Banach spaces.

Following De Grande-De Kimpe [3], by a G-space we understand a
(Hausdorfl) locally convex space X whose topology is the Mackey topology
(X, X') and whose (topological) dual space X' is o(X’, X)-sequentially
complete. The reader is referred to [2], [3], and [10] for more information
about this class of spaces.

A sequence (x,) in a locally convex space X is called a Schauder basis of
X if there exists a sequence (f,) in X’ which is biorthogonal to (x,) and such
that

x=) fi(x)x; for every xeX.
i=1

A Schauder basis of a G-space is equicontinuous, i.., the partial sum
operators associated with the basis are equicontinuous ([3], Proposition 3.4).
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Similarly, if (x,) is an unconditional Schauder basis of a G-space X, then the
family of all projections

PAx = éﬂ(x)xi’

where A is a finite subset of N = {1, 2,...}, is equicontinuous. If a basis has
this property, then we say that it is unconditionally equicontinuous (u.e.). It is
easily seen that if (x,) is an equicontinuous (resp. u.e.) basis of a locally
convex space X, then (x,) is also an equicontinuous (resp., u.e., and hence
unconditional) basis for the completion X of X. As an immediate
consequence of this fact we infer that a sequentially complete space with an
equicontinuous basis is necessarily complete. It is also clear that if (z,) is a
block sequence of an equicontinuous basis (x,), then (z,) is an equicontinuous
basic sequence, i.e., an equicontinuous basis for the closed linear span [z,]
of (z,).

THEOREM. Let X be a complete G-space with an unconditional Schauder
basis and let Y be a closed linear subspace of X. Then:

(@) If Y is metrizable and has no subspace isomorphic to c,, then Y is
weakly sequentially complete.

(b) If Y has no subspace isomorphic to l,, then every bounded subset of Y
is weakly sequentially precompact.

Proof. Let (x,) be an unconditional Schauder basis of X and (f,) the
associated sequence of biorthogonal functionals. Thus, for each x in X,

X = ilﬁ (%) x;,

where the series converges unconditionally, and hence is subseries summable
(cf. [8], Corollary 14.6.6).

(a) With every x in X we may therefore associate a countably additive
set function

| x(:): PN = X,
where 2(N) is the power set of N, by defining
x(A) =Y fix)x; for AcN.
ied

Next, by the weak-star sequential completeness of X', we easily see that if
feX and 4 < N, then the linear functional f, defined on X by

Jax) =f(x(A4)) = lim (¥ f (x)f)(x)

R0 jcd
i<n
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is continuous. Clearly, if xe X, fe X', then

fx(1): A= fu(x) =f(x(4))

is a countably additive scalar-valued measure on #2(N).

Let (y,) be a weak Cauchy sequence in Y. Then, for each fe X', the
sequence of measures (fy,(-)) is setwise convergent on £(N). By the
Nikodym theorem ([6], Corollary II1.7.4), the limit set function, say m,, is
countably additive. Moreover, if

t; = limf;(y,) for every ieN,

n—*aw

then
Yt <o and  mp(4) = ¥ S (tx)
i=1 iecA

for all feX’' and A = N.
Suppose the sequence (y,) does not converge weakly. Then the series

a

Y t;x; does not converge in X (otherwise, its sum would be the weak limit
i=1

of (y,). It tollows that there exist a continuous seminorm p on X and
a sequence of integers 0 = ny, <n; < ... such that if

z;=) t;x;, Wwhere A={n_,+1,...,n},

ied;
then
(1) p(z;) =1 for every jeN.
Clearly,
() Y If(z)l <o for every feX'.
j=1

We shall now prove that the subspace Z = [z;] is isomorphic to ¢,.
Since X is complete, conditions (1) and (2) imply that

3 Y s;z; converges if and only if (s)eco.
j=1

Let h; be a linear functional on E; = [x;: i€ A;] such that
h(z) =1 and |hj(x)| < p(x) for every xeE,.
Define g;e X’ by

gj(x) = hj(Pij)'
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Since
lg;(x) < p(P4;x) >0 as j—»oc for every xeX,

using (3) we may define a linear operator P on X by

Px =) g;(x)z.

j:: 1
From the Banach-Steinhaus theorem for G-spaces [2] it follows that P is a
continuous projection of X onto Z. Hence Z is a G-space. Now the linear
map T: ¢, — Z defined by

T(s) =) s;z
j=1
is clearly continuous, one-to-one and onto. From the closed graph theorem
for G-spaces [10] (or from the Banach-Steinhaus theorem for G-spaces [2]
again) we infer easily that T~! is continuous. Thus T is an isomorphism of
co onto Z (and Te, = z,, where e, is the n-th unit vector in c).

Now, if no subspace of Y is isomorphic to c,, then Y and Z are totally
incomparable, i.e, they have no isomorphic infinite-dimensional subspaces
(use [12], Proposition 2.a.2). Since then dim(Y nZ) < z, we may assume
Y nZ = {0}. Then, by the generalized Gurarii-Rosenthal theorem proved in
[5], the subspace Y+ Z is the topological direct sum of Y and Z. (It is the
only point where the metrizability of Y is needed.)

Since (y,) does not converge weakly to 0, there is ge Y’ such that

lim g(y,) # 0.

n—wo

We extend g to Y+ Z so that g|, =0, and next, using the Hahn-Banach
theorem, to a continuous linear functional f on X. Then

me(N) = lim fy,(N) = lim g(y,) # 0.

n—a n—w

However, on the other hand,
mf(N) = Z f(zj) =0,
j=1

and thus we have obtained a contradiction. It follows that Y must contain
an isomorphic copy of c,.

(b) (Cf. [9], Proof of Theorem 2.2.) As easily seen, it is enough to prove
that if (y,) is a bounded sequence in Y such that

4) lim f;(y,) =0 for every ieN,

n—ao

then y, — 0 weakly. Suppose it is not so. Then we may assume that there
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exists fe X’ such that
3a =inf|f(y,) > 0.

Let

q(x) = i Ifn(x)f(x)| for every xe X;
n=1

then q is easily seen to be a continuous seminorm on X. Using (4) we pass
to a subsequence of (y,), which we still denote by (y,), and find a sequence
of integers 0 = my <m; < ... such that if

Zy = z jl:(yn)xi’

i=mn_l+1
then
(5) If(ya—z)l < q(ya—z,) <a for every neN.

Hence |f (z,)| = 2a for every ne N. Since the sequence ( y,) is bounded, so are
the sequences (z,) and (y,—z,). Hence, if t = (t,)el;, then the series ) t,V,,
Y t,z,, and ¥ t,(y,—z,) converge in X and, as easily seen,

q(taza) = 21 @It = 2aliell,
a2 ta(ya—2z,) < alltll.
The linear map A: I, — Y defined by

(6)

a

At =) t,yn

n=1

is clearly continuous. Since (6) implies q(Ar) > allt|, A is an isomorphism,
and thus Y has a subspace isomorphic to /;. A contradiction.

COROLLARY. Suppose X is as in the Theorem and let Y be a closed
metrizable subspace of X. Then Y is reflexive if and only if Y contains no
subspace isomorphic to ¢y or ;.

Proof If Y has no subspace isomorphic to ¢, or /,, then from the
Theorem it follows that every bounded subset of Y is relatively weakly
sequentially compact. Hence Y is reflexive (cf. [11], 24.2(7)).

Remarks. 1. The author does not know whether the metrizability of Y
is essential in the part (a) of the Theorem. Note that, by the extension of a
famous result of Rosenthal proved in [13], if Y is a Fréchet space containing
no subspace isomorphic to /,, then every bounded subset of Y is weakly
sequentially precompact. That is, in this case, we do not have to assume the
existence of X o Y with an unconditional basis.
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2. The following two results answer some natural questions concerning
spaces with unconditional bases:

(A) Every locally convex space X with an equicontinuous (u.e.) basis (x,) is
isomorphic to a subspace of a product of Banach spaces each of which has an
(unconditional) basis.

(B) If Y is a metrizable (normed) subspace of a locally convex space with
a u.e. basis, then Y is isomorphic to a subspace of a Fréchet (Banach) space
with an unconditional basis.

Sketch of the proofs. (A) Let (S,) be the sequence of partial sum
operators associated with the basis (x,). For each continuous seminorm p on
X let

p(x) = supp(S,x);

then p is a continuous seminorm on X and p < p. Furthermore, let X,
= X/p~'(0) and let Q,: X — X, be the quotient map. Then the sequence
obtained from (Q, x,),.y by removing the zero terms is a basis of the Banach
space X » which is the completion of the normed space (X, p), where p(Q, x)
= p(x) for xe X. Suppose now that P is a family of seminorms determining
the topology of X; then also {p: pe P} has this property. It is now easily
seen that the map x—(Q,x),, is a required embedding of X into a
product of Banach spaces with bases. The other part of (A) has a similar
proof. '

(B) follows immediately from (A) and from the fact that a metrizable
(normed) subspace of a product is “essentially contained” in a subproduct of
countably (finitely) many factors (cf. [4], Proposition 3).
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