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Kino and Takeuti defined [2] a constructive sublanguage (which we
call CL,,,, ) of L, , . The formulas of CL, ,, are just those of L, , which
are assigned a numerical notation by a method closely related to that
for assigning notations for ordinals; the corresponding constructive sub-
language CL, , of L, ., was studied by Lopez-Escobar in [4]. Just, as
with ordinal notations (cf. [3]), it is possible to restrict the functions used
in constructing notations to be primitive recursive, and, as in the ordinal
case, it turns out that essentially the same formulas of L, , are assigned
notations. The purpose of this note is to prove this remark, and to observe
that the methods used here and in [3] easily extend to the class &* of [1].
We assume familiarity with [2] and [3]. ~

Let Ny, be the set of notations generated by 2.1.1-2.4.2 of [2].
We will refer to the elements of N, , as (general recursive) notations.
Let N :"1w1 be the set of notations generated by the following rules:

(N'1) Any number generated by 2.1.1-2.1.4 of [2] belongs to N, ,, .

(N'2) If 2¢ N, , then 27-T°¢ N, .

(N'3) If In(2) and, for each n, pr(2, <n))e N, , , then both 2°-7%¢ N, ,
and 2"-7%¢ N;,lwl .

(N'4) If yeN,, and if In(z), then both 2%-7°-11'¢ N, , and
2%-7%-11Ye N, ,, - _

(N'5) A number ¢z is in N, , if and only if its being so follows from
finitely many applications of (N'1)-(N'4).

We define maps || ||and || | on N w @y and N :”10*1’ respectively, whose
values are formulas of Ly o, (cf. [4]). For the case of || ||, we proceed as
follows:

(1) If, in the notation of [2], 2 = "@ = b", where @ and b are either
individual variables or constants, then [z| is the formula @ = b.

(2) If ze N, ., then 27-7%| is the formula 7jell"
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(3) If 2°-7T°e¢ N, (2"T°¢ N, ) according to (N'3), then [2°- 77|
(I2"-7%)') is the formula Vllpr 2, {my)l Allpr(z, ).

(4) If ye Nw1<w1 and In(z), and if n; —pr(z, (t)) for all ¢, then
12%-7%11Y" is I<w,: i < o)yl and [2%-7%-11Y) is V<o, i< o)yl

The map || || on N“’l“’l is defined similarly.

We write rk(U) = n(A) and qr(A) = n’'(A), where the functions n
and n’ are defined as in [2]. Let us write @(z, «) for the general recursive
function U(uyT,(y, =, 2)), let g be a general recursive Godel number of
the function Azen® (z, pr(c, {n))), and let h be a general recursive Godel
number of the identity function. Define a function ¢ as follows:

¢ it Ik, 1 {3,534, [e = 2% -T¥* 1177,
gk 7e(=()) if ¢ = 2% 7 and ke {9, 11},

o(z, ) = SHam@3) _ _e(znlc)y) o G
2k. 771 2157 e = 257781174, ke {13, 15},

0 otherwise.

Since the 8} '-function is primitive recursive, so is ¢. Then, by Kleene’s
Recursion Theorem for primitive recursive functions (see [3], p. 75),
there exists a number » which is an index of Aco(r, ¢). Set g(¢) = o(r, ¢),
so that g(c) is primitive recursive. Then the following theorem is easy to
establish by induction on cases corresponding to (N'1)-(N'5):

THEOREM 1. For each ce N;,lwl, o(e)e N‘”l‘”l’ and |c| is lle(e)ll.

Thus, as one expected, N, , has notations for at least as many
formulas as N, w0, does. Next, let q be a Godel number of the function
chzdi(z, c, )), and set 8(z,¢) = S82(q, 2, ¢), so that s(z, ¢) is primitive
recursive. Then define

"0=1" if (c)y =9,

2,0,0) =
vz, 0, 0) 0 = 0" otherwise;

U((M)mmy-1—1) if Seq(n)&1h(n) > 0&
p(R,c,n+1) = | Vii<lh(n)T1(s(z70)77:7('”'):';1)’
y(z,c,m) otherwise.
Then v is primitive recursive, say with an index e. If we set d(z, ¢)
= sbi(e, s(2, ¢)) (cf. [3], p. 75), then d(z, ¢) is primitive recursive. Now
define #%(2,¢,0) = 0 and %(z, ¢, n+1) just like y(2, ¢, n+1), so that 5

is also primitive recursive, say with an index ¢. Let { be a primitive recur-
sive function such that if ¢ is a Godel number of AxF (x), then {(g) is a
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Godel number of lw(F(a:)—i—l); also, let ¢ be a Godel number of the
function lzfi(b(z, D(f, i)). Now define g by

(¢ if ¢ =279 .19
N SR D if ¢ = 922. 791115
’
22 . 75‘5‘]‘2 -1137.+1 if ¢ = 22. 75’i+1.1137.+1’
92 .75i+2_1157'+2 if ¢ — 22.75i+1.1157'+1’
Bz, 0) = q g1.77(=(h) if ¢ — 21-7%,
2
gk. 7510:5(%) if ¢ =2%7% ke{9,11},
gk.78(@s). 1770 4 o gk ;.11 k.13 15},
0 otherwise.

Then g is primitive recursive, and so, again by the Recursion Theorem
for primitive recursive functions, there is a number b which is an index of
AeB(b, ¢). If B(c) = B(b, ¢c), then B is primitive recursive. Now, for any
formula A of L, , let A* be the result of simultaneously raising the
subscript on every variable occurring (free or bound) in U by 1. Then,
it is easy to verify, by induction, that if ce N, , , then [|B(c)ll = le|*.
Note that the variable v, cannot occur in 2A*.

Now define a primitive recursive function 7 as follows:

(¢ if Ak, le {3, 5}32,] [¢c = 22,7ki+1.11,j+1]’
o7 7™%) if ¢ =277,
7 (2, ¢) = 4 2% 7% if ¢ =2% 7%, ke {9, 11},

1 p—
ok .71 7€) g o _ ok 7@. 1108 ke 13, 15),

0 otherwise.

We infer from the Primitive Recursive Recursion Theorem that
there exists a number p which is an index for the function Acz(p, B(c));
let =(c) = 7(p, B(c)), so that = is primitive recursive.

THEOREM II. For each ce Nwlwl’.”( )e Nwla,1 and

(i) Tk llz(c)|’ = rkllell and qrlz(e)l = qrlell;

(ii) llm(e)l s valid in the natural mumbers iff |lc|* is.

Proof. We argue by induction on the definition of ce N o+ THO
reasomngs corresponding to cases (N1) and (N2) are stralghtforward

Suppose that ¢ = 27 7%, In(z), and 2= P(2,mp)e N, ,, for each n. Then

m(e) = 2°-79PFO) g(c) = 2°- e , and

s2(a,0,
d(p, B(c) = sbyle,s(p,2°-7 l(”z))).
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In a similar manner to the y in Section 11 of [3], we see that d(p, f(c))
is an index of the sequence obtained from the sequence x(2,), 7 (2,), ...,
n(z,), ... by first prefixing a certain (finite) number of occurrences of
0 =17 and then replacing each =(z,) by a certain (finite) number of
instances of itself. Now, by induection, n(2,)e N ;,1,,,1, and so, clearly,
7(c)e N:vlwl' From the remarks above, (i) and (ii) immediately follow.
The case where (¢), = 11 is treated similarly.

Now suppose that ¢ = 223-7%-11Y, ye N
7(y)e Nyw, and we have

, and In(z). By induction,

w1 @)

n(e) — 22710 1 ga)
Now f(c) = 218-7¢®.11°0) 5o
1
ni(e) = 237" 1200,

For each n, let 2, = @(2, ny). Then {(2) is a Godel number of the
sequence z,+1,2,+1,...,2,+1,... Just, as above with y, since ¢ is an
index of #, we infer that sbj(t, {(2)) is an index for the sequence obtained
from the sequence z,+1, 2, +1, ... by first prefixing some (finite) number
of occurrences of 0, and then replacing each occurrence of z,+1 by
some (finite) number of occurrences of itself. Thus we see that |c|| is
v, ..., ... 1yll, w(c)e N, and |z(c)] is

’
0y .o DV, g1 v Vo1 Vg oee Vgpir - (@)

Statements (i) and (ii) now quickly follow (for (ii), note that v, does
not occur in [y||*), completing the proof.

Obviously, if % is a formula of L, , with one free variable, then 4
and A* define exactly the same set of natural numbers. From this and
from Theorems I and II, it follows that if CL;,lw] is the set of formulas
having notations in N ;,lwl, then CL, , and CL;,],,,1 define exactly the
same sets of natural numbers.

To see that the foregoing results can be extended to the class &*
of [1], we first note that it is easy to verify that &* is the class of functions

determined by schemata (I)-(IV) of [3] together with two schemata

0, a,,...,a,) =p(ay,...,a,),

(Vi) ‘P(aua’za---,an)=X1(“1$‘P(“17a27---ya’n);az,---’a'n) Bynygyhyy by,
Py Agy eovy ) < X2(@1y Aoy - ooy By),

(VI) ¢(ay, a5) = fi(a,, as) <6, 2, 47,

where y,, x. and y are previously introduced functions with indices h,, h,
and g, respectively, and f, is as defined on p. 28 of [1]. Then we can define
an &*-predicate &*-In(e) analogous to the predicate In(e) of [3]. Moreover,
since the function sb]’ of [3] is, in fact, elementary and hence also in &*,
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the proof of the Primitive Recursive Recursion Theorem easily adapts
to prove the following

&*-RECURSION THEOREM. If @(@g, Gy, ..., a,) 18 in &%, there ewists
a number e such that e is an &*-index of the function Aay, ..., 6,0 (€ @y, ..., a,).

Let e4(2, n) be that function, analogous to the function pr of [3],
which enumerates the class &*. The system O, of ordinal notations and
its accompanying order relation <, are defined by adapting the definition
of 0’ and <’ of [3]. Namely, all occurrences of O° and <’ are replaced
by O, and <,, respectively, and all occurrences of In(e) and pr(z, n) are
replaced by &*-In(e) and e4(z, n), respectively. Using the fact that &*
is closed under the operation 2 (cf. [1], p. 34), it is easy to see that the
functions n, and y ([3], p. 75) are in &* by schema (Vy,), so that +, can
be defined by the using the &*-Recursion Theorem. The analogues of
properties (I)-(XXIV) for this system are easy to prove with simple
modifications of the original proofs. Now the funections lh(n), (n);, —
and U are in &* as are the predicates Seq(n), < and T. Then, again using
the closure of &* under 2 and schema (Vy,), it follows that not only the
function y defined on p. 76 of [3] is in &*, but also the obvious analogues ¢,
and =, of the functions ¢ and =, respectively, are in &*. Then, adapting
the methods of [3], one easily .shows that, for all ¢eO, if a <, ¢, then
ny(a)e O, and |m,(a)|* = |a|, where the definition of |a|* is analogous to
that of |a|. Hence O, has notations for as many ordinals as O. The converse
is established as easily as its analogue in [3], so that we see that the
&*-ordinals coincide with the recursive ordinals. The adaptation to &*
of the results above on notations for infinitary formulas is carried out in
a similar manner.
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