COLLOQUIUM MATHEMATICUM

VOL. XXXIII 1975 FASC. 1

NON-CLOSED THIN SETS IN HARMONIC ANALYSIS

BY

S. HARTMAN (WROCLAW)

This paper is concerned with a condition implying Sidonicity in some
abelian groups. Let G be a locally compact non-discrete abelian group
and I'" its dual. By G; we denote the group G with discrete topology.
E ¢ Sid(G;) means that E is a Sidon set in G;. For a countable non-void
set £ = @ with compact closure E, let E' denote the set of limit points
of E. For a compact K, in general, let C(K) be the space of continuous
functions on K, and A(K) that of restricted Fourier transforms g|K
(ge L,(I')) with the quotient norm. We put

Co = {fe C(E): fIE' =0},
A’ = {fe A(@): fIE =0},
Ay = {fe A(E): fIE = 0}.

So we have A, = A°/I, where I ={fe¢ A°: f|E = 0}. The correspond-
ing dual spaces are
C* = M,(E\E')

(the space of (atomic) measures in E\E’), and
AO* — Lw(l‘)/J,
where
J = {(pe Loo(r): fq)g =0 ngLl(r), élEl — 0}’

45 ={l¢ls: [og =0 Vge L(I), §1E =0},

and [¢]; means the class of pe L, (I") modulo the ideal JJ.
It follows easily from the regularity of A (@) that A4, is dense in C,.
Moreover, it can be shown that if fe 0, is such that

Y If@I< oo,

te ENE
then fe Ay. In fact, if ENE’ = (§;) (1 <j< oo), we choose, for each j,
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a function k;e A(G) such that
ki) =ft),  KIEN{L} =0 and |kl < If(3)],

which is possible whatever be f (see, e.g., Theorem 2.6.1 of [6]). Then,
putting k = D'k;, we have
i

k() =f@t) VieE and |kl < oo.

Hence fe A,.

THEOREM 1. If C, = A,, then EN\E’ € Sid(Gy).

Proof. Let n be the canonical imbedding A, - C,. Then, for
ue Mz(ENE’) and fe Ay, we have

arp, ) = <pyaf) = ffdlu = fg:&7 where ge L,(I'), g = f.
G r

So
1

1) ll72*ul| = sup

~ ~ - def
fgul < sup f.w] = o = llsllpas-
Geay 191l 17

gty =11
If A, = C,, then the norms |=*u| and || (the total variation) are

equivalent and since, by (1), lla*ull < llullps, We have ||ullps > alu| with
a positive constant a. It means that every finite sum

P@) = ) &z, t) (sel)
lpeE\E’
is minorized in absolute value by a} |a,|. Moreover, since I'is dense in
its Bohr compactification I, we have

max |P(z)] > a ) la.

zel
As I is the dual of G;, this estimation is equivalent to B\ E’ ¢ Sid (G,).
As an easy consequence of Theorem 1 (via Bohr compactification)

one can obtain the following result:
Let A be a countable set in a discrete abelian group H and let the

following hold:

(*) Every function from ¢y(A1), i.e. every function defined and tending
to 0 on A4, can be extended to the Fourier transform of an atomic measure
on the dual of H.

Then A is Sidon.

Obviously, the assumption cannot be satisfied unless A is weakly
isolated, i.e. if it-does not contain any limit point in Bohr topology. Further,
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this result is by no means unexpected. For H = Z we know even more
for a long time, namely

(A) If A = H is such that every ge ¢y(A) is a restriction of u for some
(not necessarily atomic) measure on the dual on H, then 4 is Sidon.

The assumption H = Z appears to be inessential in view of a result
of Curtis and Figa-Talamanca [1] (see also [3], p. 284) who proved that,
for any locally compact abelian group X, the space C,(X) of continuous
functions vanishing at infinity factorizes into 4 (X) and Co(X): C, = AC,.
So, if pecy(A), we take a ge A(H) such that ¢ = glA-yp with ye ¢y(A).
Then, according to the assumption of (A), y is the restriction of some Fou-
rier-Stieltjes transform: p = »|A. The measure o = g*» is absolutely
continuous and ¢ = g|A. Since ge ¢y(A) is arbitrary, (A) is proved. In
the case H = Z the known argument runs along the same lines with ¢ — a
suitable real even convex function from ¢,(Z). It is classical that such g
is an element of A (Z) ([8], p. 180).

The author does not know whether, for weakly isolated Sidon sets
(then, may be, for all Sidon sets), condition () is satisfied (P 941). It
would be so if Theorem 1 admitted a converse. We do not see any reason
for such conjecture (). We now prove

TUEOREM 2. If E’ is not of synthesis and E is of synthesis, then A, C,.

Proof. By assumption, there exists a pseudomeasure 7' with support
in E' (briefly, Te PM(E’)) and an fe A, such that (T,f> # 0. But T is
a functional on A (E) because E has synthesis. Thus, if we had 4, = C,,
the restriction 7, = T|A, would be a non-zero measure » on E\E'. If
toe EN\E’ is an atom of v, we take a ge A (G) such that g(t,) = 1and g(t) = 0
on an open set including E\{t,} > E'. Then g|Ee¢ A, and (T,, g> = 0,
but [gdv # 0 — a contradiction.

THEOREM 3. A, = C, does not imply A(E) = C(FK).

Proof. In order to produce an isolated set E such that C, = 4, but
C(E) # A(E) we take E- — a countable Sidon set in T, (an independent
set will do) such that

(i) £' is countable without being a Helson set, for example
F ={0,1,...,1/n,...} (see [4], p. 32), and

(i) ¥ and E’ are independent in the sense that subgroups of T
generated by E and E’ are disjoint except for 0.

Let Te PM(E). Then the Fourier tra»;xsform T is an almost periodic
function on I' ([4], p- 49). So T'(-) is represented by a Fourier series

D)ty ).

!ﬁsE

(1) Added in proof. Tt fails in fact (an cxample by Y. Meyer).
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By (ii), the partial series

Yagty, ) and D a,(ty, )

teE taek
represent also some almost periodic functions ¢, and ¢,. Since F is Sidon
in T,, the first series is absolutely convergent, and so ¢, = # with ue M (E)

(i.e., ¢ — @ measure in E). Thus we have T' = u+4 T, with T, = @, and
T,« PM(E'). Since E’ is of synthesis, we have (T, f) = 0 for every fe 4,
and 7 is a linear functional on A (F) whose restriction to 4, equals ue Cj.
Since every linear functional on A (E) is an element of P M (E), it follows
that Ay = C; and, finally, 4, = C,. However, by (i), C(E') # A(E')
and, a fortiori, C(E) # A(E).

We are not able to construct an example proving Theorem 3 for
a set E with uncountable closure (P 942) (2). The converse implication
A(E) = O(E) > Ay = C, holds trivially.

If F is a convergent sequence #, — t,, then the three conditions, i.e.
EeSid(Gy), Ag = C, and A(E) = C(E), are equivalent. To see it we
first state a well-known result (see, e.g., [4]) that for a countable compact
set K to be Sidon in G, is the same as to be Helson in @. In fact, every u
on K is atomic, and so

a@) = D p({td)(ta, 2)  (@e D).
theK
We are allowed to let z run over /". Hence the equivalence of the norms
llullpar @nd |ju]l, which is characteristic for Helson sets, is at the same time
the very definition of the class Sid(G;). Now, if Fe Sid(G;), then

E = Eufty) e Sid(Gy),

and so C(E) = A(E). In view of Theorem 1, nothing else is to prove.

THEOREM 4. If K is a Helson set in G, E is a countable Sidon set in
G; and E' < K, then EUK is Helson n Q.

Proof. It is enough to prove that E is Helson, for then Varopoulos’
theorem ([7], p. 152) gives the assertion. So we must show the equivalence
of norms ||| and |ju]ps for measures in E. Since E is countable, the con-
tinuous part u, of u is supported by E’, and so ||u.| ~ |lu.lpy because
E’ is Helson. From [2], Corollary 2, we have |ullpay =~ lullpar+ l@allpar-
Since E’ is Helson in G, it is Sidon in G,. Consequently, £ = EUE’ ¢ Sid(G,)
by Drury’s theorem. Hence ||ugllpas = llugl. Obviously, (lull = lluall+ Il
So we infer that ||ulpy ~ |||l and the proof is complete.

We shall deduce some corollaries from Theorem 4. First we take
for F a weakly isolated Sidon set /1 in a discrete group H and we consider

(2) Added in proof. Recently, Y. Meyer gave such an example.
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this A as & subset of H , a8 we already did after proving Thecrem 1. Functions
on A which are extendable to elements of AP (H) (almost periodic functions
on H) are precisely those which are continuously extendable over the clo-

sure A of A. The difference between two functions on A having the same
extension.on A’ belongs to ¢o(A). If A’ is a Helson set, then every contin-

uous function on it can be extended to an element of A (H) and so, for
every fe AP(H), the restriction f| A differs for a ¢e ¢y(A) from a function

which is extendable to an element of A (H) or, in other words, to an element
of |[AP|(H) (almost periodic functions with absolutely convergent Fou-

rier series, or else, Fourier transforms of atomic measures on H). Thus
in this case Theorem 4 yields

COROLLARY 1. If A is a weakly isolated Sidon set in @ discrete group
H and if, for the restriction flA of any fe AP(H), there is an element
fie [AP|(H) such that f|A—f;|Aecy(A), then any f|A (fe AP(H)) is
extendable to an element of |AP|(H).

In view of the fact that every function from ¢y,(4) can be extended

to the Fourier transform of a function belonging to Ll(ﬁ ) we can reformu-
late Corollary 1 in the following way:

CoROLLARY 1. If A is a weakly isolated Sidon set in a discrete group
H and if the restriction f| A of any fe AP(H) can be extended to the Fourier
transform of a measure without continuous singular part, then every fumction
on A which is extendable to an almost periodic function on H can also be
extended to the Fourier transform of an atomic measure.

We do not know whether a compact set without synthesis can ever
become a set of synthesis by adjoining an isolated Sidon set to it (P 943).
In view of Theorem 2 the answer is “no” if we assume that Sidonicity
of ENE’' implies 4, = C,. Without assuming any conjecture we infer
from Theorem 4 that a Helson-Korner set K (i.e., @ Helson set without
synthesis, see [5]) cannot become a set of synthesis by adjoining a Sidon
set to it. In fact, the enlarged set would be again a Helson set and would
carry a “true” pseudo-measure since K carries one. This remark gives
raise to the following corollary which is related in some way to arithmetic
properties of Helson-Korner sets:

COROLLARY 2. For a compact K c T, let H,, be the set of numbers 27j/n
(0 < j< m) which are outside K but in a distance less than 2=/n from K.
Following Hewitt and Ross [3] we call a set B < G dissociate if, for every
finite subset {x,}r_, of E, the equality

akmk = O W’ith -2 < a; < 2

-bﬂz

does not hold unless a;, = 0 (L < k<< N). Then, if K is a Helson-Korner
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set, there is no infinite sequence ne Z* for which the set H = |_J H,, would be
either void or dissociate. k=1

Proof. In virtue of the known theorem of Herz ([4], p. 58), if such
a sequence existed, then, by adjoining H to K, we would get a set of syn-
thesis. This, however, is impossible in view of the argument which pre-
cedes Corollary 2 and of the fact that a dissociate set is Sidon ([3], p. 427).

CorROLLARY 2. If K < T is a Helson-Korner set, then there is no infi-
nite sequence of pairwise relatively prime numbers n, such that H, are
either void or dissociate.

In fact, otherwise | H, would be void or dissociate.
k

The property of K, claimed in the assertion of Corollary 2, seems
remarkable if K is independent, and so a Helson-Korner set can actually
be [5].
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